Investigating Salt Tolerance in Melon During Germination and Early Seedling Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Salt Tolerance Identification at the Germination Stage
2.3. Salt Tolerance Identification at the Seedling Stage
2.4. Statistical Analysis
3. Results
3.1. Effects of Different NaCl Concentrations on Seed Germination of 10 Melon Varieties
3.1.1. Effects of Different NaCl Concentration on Germination Potential of 10 Melon Varieties
3.1.2. Effects of Different NaCl Concentration on Germination Rate of 10 Melon Varieties
3.2. Salt Tolerance Identification During the Germination Stage of 10 Melon Varieties
3.2.1. Statistical Analysis of Traits During the Germination Stage
3.2.2. Correlation Analysis of Salt Tolerance Coefficients During the Germination Stage
3.2.3. PCA of Salt Tolerance During Germination
3.2.4. Comprehensive Evaluation and Cluster Analysis of Germination-Stage Salt Tolerance
3.3. Salt Tolerance Identification During the Seedling Stage of 10 Melon Varieties
3.3.1. Statistical Analysis of Traits During the Seedling Stage
3.3.2. Correlation Analysis of Salt Tolerance Coefficients During the Seedling Stage
3.3.3. PCA of Salt Tolerance During the Seedling Stage
3.3.4. Comprehensive Evaluation and Cluster Analysis of Seedling-Stage Salt Tolerance
3.4. Correlation Analysis Between Germination and Seedling Stages Under 200 mM NaCl Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Erdogan, I.; Cevher-Keskin, B.; Bilir, Ö.; Hong, Y.G.; Tör, M. Recent Developments in CRISPR/Cas9 Genome-Editing Technology Related to Plant Disease Resistance and Abiotic Stress Tolerance. Biology 2023, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Maurya, N.; Sharma, A.; Sundaram, S. The Role of PGPB-Microalgae interaction in Alleviating Salt Stress in Plants. Curr. Microbiol. 2024, 81, 270. [Google Scholar] [CrossRef]
- Mokrani, S.; Nabti, E.; Cruz, C. Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. Appl. Sci. 2020, 10, 7025. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Baek, K.H. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity. Plant Physiol. Biochem. 2017, 116, 116–126. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Rev. Environ. Sci. Bio-Technol. 2015, 14, 407–426. [Google Scholar] [CrossRef]
- Egea, I.; Estrada, Y.; Faura, C.; Egea-Fernández, J.M.; Bolarin, M.C.; Flores, F.B. Salt-tolerant alternative crops as sources of quality food to mitigate the negative impact of salinity on agricultural production. Front. Plant Sci. 2023, 14, 1092885. [Google Scholar] [CrossRef]
- Feng, C.; Gao, H.T.; Zhou, Y.G.; Jing, Y.; Li, S.Q.; Yan, Z.; Xu, K.H.; Zhou, F.X.; Zhang, W.P.; Yang, X.Q.; et al. Unfolding molecular switches for salt stress resilience in soybean: Recent advances and prospects for salt-tolerant smart plant production. Front. Plant Sci. 2023, 14, 1162014. [Google Scholar] [CrossRef]
- Qin, H.; Li, Y.X.; Huang, R.F. Advances and Challenges in the Breeding of Salt-Tolerant Rice. Int. J. Mol. Sci. 2020, 21, 8385. [Google Scholar] [CrossRef]
- Rasheed, A.; Raza, A.; Jie, H.D.; Mahmood, A.; Ma, Y.S.; Zhao, L.; Xing, H.C.; Li, L.L.; Hassan, M.U.; Qari, S.H.; et al. Molecular Tools and Their Applications in Developing Salt-Tolerant Soybean (Glycine max L.) Cultivars. Bioengineering 2022, 9, 495. [Google Scholar] [CrossRef]
- Gupta, A.; Shaw, B.P. Field- and laboratory-based methods of screening salt tolerant genotypes in rice. Crop Pasture Sci. 2021, 72, 85–94. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Hewedy, O.A.; Battaglia, M.L.; Jalal, R.S.; Alhammad, B.A.; Schillaci, C.; Ali, N.; Al-Doss, A. Field Crop Responses and Management Strategies to Mitigate Soil Salinity in Modern Agriculture: A Review. Agronomy 2021, 11, 2299. [Google Scholar] [CrossRef]
- Anwar, Z.; Ijaz, A.; Ditta, A.; Wang, B.H.; Liu, F.; Khan, S.; Haidar, S.; Hassan, H.M.; Khan, M.K.R. Genomic Dynamics and Functional Insights under Salt Stress in Gossypium hirsutum L. Genes 2023, 14, 1103. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.A. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 2016, 192, 38–46. [Google Scholar] [CrossRef]
- Ghalati, R.E.; Shamili, M.; Homaei, A. Effect of putrescine on biochemical and physiological characteristics of guava (Psidium guajava L.) seedlings under salt stress. Sci. Hortic. 2020, 261, 108961. [Google Scholar] [CrossRef]
- Hussain, S.; Khaliq, A.; Tanveer, M.; Matloob, A.; Hussain, H.A. Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol. Plant. 2018, 40, 68. [Google Scholar] [CrossRef]
- Hussain, S.; Zhang, J.H.; Zhong, C.; Zhu, L.F.; Cao, X.C.; Yu, S.M.; James, A.B.; Hu, J.J.; Jin, Q.Y. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. J. Integr. Agric. 2017, 16, 2357–2374. [Google Scholar] [CrossRef]
- Luo, J.; Huang, C.H.; Peng, F.; Xue, X.; Wang, T. Effect of salt stress on photosynthesis and related physiological characteristics of Lycium ruthenicum Murr. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2017, 67, 680–692. [Google Scholar] [CrossRef]
- Trusca, M.; Gadea, S.; Vidican, R.; Stoian, V.; Vatca, A.; Balint, C.; Stoian, V.A.; Horvat, M.; Vatca, S. Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress. Agriculture 2023, 13, 734. [Google Scholar] [CrossRef]
- Zulfiqar, F. Effect of seed priming on horticultural crops. Sci. Hortic. 2021, 286, 110197. [Google Scholar] [CrossRef]
- Gao, B.W.; Sun, D.; Yuan, G.; An, G.; Li, W.; Liu, J.; Zhu, Y. Salt tolerance identification of 121 watermelon materials during seedling stage. J. Fruit Trees 2022, 39, 1597–1606. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, L.Q.; Zhang, Z.W.; Wang, F.S.; Li, J.S.; Liu, Y.C.; Ding, Y.L.; Wang, G.Z.; Jia, J. Analysis of physiological indexes and aroma-related genes of thick-skinned melon (Cucumis melo L. cv. hetau) under salt stress. Pak. J. Bot. 2023, 55, 1723–1728. [Google Scholar] [CrossRef]
- Shafii, H.; Haghighi, M. Responses of Growth, Physiological and Anatomical Characteristics of Resistant and Sensitive Cultivars of Cucumis inodorous L. to Salt Stress. J. Agric. Sci. Technol. 2021, 23, 661–671. [Google Scholar]
- Sun, X.Y.; Hu, L.X.; Xie, Y.; Fu, J.M. Evaluation of genotypic variation in heat tolerance of tall fescue by functional traits. Euphytica 2014, 199, 247–260. [Google Scholar] [CrossRef]
- Liu, P.; Yang, W.Q.; Wang, C.; Jiao, Z.; Sun, J.; Dong, Y.M. Identification and screening of salt tolerance during the germination period of melon strains. Chin. Melons Veg. 2024, 37, 34–50. (In Chinese) [Google Scholar] [CrossRef]
- Guo, X.; Ahmad, N.; Zhao, S.Z.; Zhao, C.Z.; Zhong, W.; Wang, X.J.; Li, G.H. Effect of Salt Stress on Growth and Physiological Properties of Asparagus Seedlings. Plants 2022, 11, 2836. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.T.; Chen, D.Y.; Wang, W.; Song, T.Y. Heat and drought priming induce tolerance to subsequent heat and drought stress by regulating leaf photosynthesis, root morphology, and antioxidant defense in maize seedlings. Environ. Exp. Bot. 2022, 202, 105010. [Google Scholar] [CrossRef]
- Liu, P.; Li, Q.; Gao, Y.A.; Wang, H.; Chai, L.; Yu, H.J.; Jiang, W.J. A New Perspective on the Effect of UV-B on L-Ascorbic Acid Metabolism in Cucumber Seedlings. J. Agric. Food Chem. 2019, 67, 4444–4452. [Google Scholar] [CrossRef]
- Gobade, A.; Arathi, S.; Gijare, S.; Pawar, D.; Patil, A.S. Evaluating salt tolerance in soybean core collection: Germination response under salinity stress. Genet. Resour. Crop Evol. 2024, 72, 2059–2076. [Google Scholar] [CrossRef]
- Ashrafi, E.; Razmjoo, J. Seed treatment to overcome salt and drought stresses during germination in safflower (Carthamus tinctorius L.). J. Plant Nutr. 2015, 38, 2151–2158. [Google Scholar] [CrossRef]
- Li, H.P.; Sun, H.C.; Ping, W.C.; Liu, L.T.; Zhang, Y.J.; Zhang, K.; Bai, Z.Y.; Li, A.C.; Zhu, J.J.; Li, C.D. Exogenous Ethylene Promotes the Germination of Cotton Seeds Under Salt Stress. J. Plant Growth Regul. 2023, 42, 3923–3933. [Google Scholar] [CrossRef]
- Li, Z.X.; Pei, X.N.; Yin, S.P.; Lang, X.B.; Zhao, X.Y.; Qu, G.Z. Plant hormone treatments to alleviate the effects of salt stress on germination of Betula platyphylla seeds. J. For. Res. 2019, 30, 779–787. [Google Scholar] [CrossRef]
- Lu, Y.T.; Liu, H.L.; Chen, Y.F.; Zhang, L.; Kudusi, K.; Song, J.H. Effects of drought and salt stress on seed germination of ephemeral plants in desert of northwest China. Front. Ecol. Evol. 2022, 10, 1026095. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, H.Z.; Wang, L.; Zeng, Y.L. Effect of salt-alkali stress on seed germination of the halophyte Halostachys caspica. Sci. Rep. 2024, 14, 13199. [Google Scholar] [CrossRef]
- Hu, H.R.; Liu, H.; Liu, F.H. Seed germination of hemp (Cannabis sativa L.) cultivars responds differently to the stress of salt type and concentration. Ind. Crops Prod. 2018, 123, 254–261. [Google Scholar] [CrossRef]
- Jiang, K.N.; Moe-Lange, J.; Hennet, L.; Feldman, L.J. Salt Stress Affects the Redox Status of Arabidopsis Root Meristems. Front. Plant Sci. 2016, 7, 81. [Google Scholar] [CrossRef]
- Peduzzi, A.; Piacentini, D.; Brasili, E.; Della Rovere, F.; Patriarca, A.; D’Angeli, S.; Altamura, M.M.; Falasca, G. Salt stress alters root meristem definition, vascular differentiation and metabolome in Sorghum bicolor (L.) genotypes. Environ. Exp. Bot. 2024, 226, 105876. [Google Scholar] [CrossRef]
- Amjad, M.; Akhtar, J.; Murtaza, B.; Abbas, G.; Jawad, H. Differential accumulation of potassium results in varied salt-tolerance response in tomato (Solanum lycopersicum L.) cultivars. Hortic. Environ. Biotechnol. 2016, 57, 248–258. [Google Scholar] [CrossRef]
- Beyaz, R.; Kir, H. Physio-biochemical analyses in seedlings of sorghum-sudangrass hybrids that are grown under salt stress under in vitro conditions. Turk. J. Biochem.-Turk Biyokim. Derg. 2020, 45, 177–184. [Google Scholar] [CrossRef]
- Mehmood, S.; Siddiqi, E.H.; Iqbal, M.S.; Malik, M.F.; Hussain, K.; Nawaz, K.; Akbar, M.; Fatima, S.; Bilal, M.; Mukhtar, E. Salt-induced variation of inorganic nutrients, antioxidant enzymes, leaf proline and malondialdehyde (MDA) content in canola (Brassica napus L.). Appl. Ecol. Environ. Res. 2018, 16, 4299–4309. [Google Scholar] [CrossRef]
- Jiang, X.W.; Zhang, C.R.; Wang, W.H.; Xu, G.H.; Zhang, H.Y. Seed Priming Improves Seed Germination and Seedling Growth of Isatis indigotica Fort. under Salt Stress. Hortscience 2020, 55, 647–650. [Google Scholar] [CrossRef]
- Perveen, S.; Shahbaz, M.; Ashraf, M. Triacontanol-induced changes in growth, yield, leaf water relations, oxidative defense system, minerals, and some key osmoprotectants in Triticum aestivum under saline conditions. Turk. J. Bot. 2014, 38, 896–913. [Google Scholar] [CrossRef]
- Li, W.J.; Meng, R.; Liu, Y.; Chen, S.M.; Jiang, J.F.; Wang, L.K.; Zhao, S.; Wang, Z.X.; Fang, W.M.; Chen, F.D.; et al. Heterografted chrysanthemums enhance salt stress tolerance by integrating reactive oxygen species, soluble sugar, and proline. Hortic. Res. 2022, 9, uhac073. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.; Farhadi, N.; Panjtandoust, M.; Ghanati, F. Seed germination, antioxidant enzymes activity and proline content in medicinal plant Tagetes minuta under salinity stress. Plant Biosyst. 2020, 154, 835–842. [Google Scholar] [CrossRef]
- Perveen, S.; Hussain, S.A. Methionine-induced changes in growth, glycinebetaine, ascorbic acid, total soluble proteins and anthocyanin contents of two zea mays l. varieties under salt stress. J. Anim. Plant Sci. 2021, 31, 131–142. [Google Scholar] [CrossRef]
- Swarcewicz, B.; Sawikowska, A.; Marczak, L.; Luczak, M.; Ciesiolka, D.; Krystkowiak, K.; Kuczynska, A.; Pislewska-Bednarek, M.; Krajewski, P.; Stobiecki, M. Effect of drought stress on metabolite contents in barley recombinant inbred line population revealed by untargeted GC-MS profiling. Acta Physiol. Plant. 2017, 39, 1–16. [Google Scholar] [CrossRef]
- Wang, N.N.; Qi, F.; Wang, F.; Lin, Y.J.; Xiaoyang, C.; Peng, Z.W.; Zhang, B.; Qi, X.; Deyholos, M.K.; Zhang, J. Evaluation of Differentially Expressed Genes in Leaves vs. Roots Subjected to Drought Stress in Flax (Linum usitatissimum L.). Int. J. Mol. Sci. 2023, 24, 12019. [Google Scholar] [CrossRef]
- Chen, G.; Fan, P.S.; Feng, W.M.; Guan, A.Q.; Lu, Y.Y.; Wan, Y.L. Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Russ. J. Plant Physiol. 2017, 64, 116–123. [Google Scholar] [CrossRef]
- Gomes do O, L.M.; Cova, A.M.W.; Neto, A.D.D.; da Silva, N.D.; Santos, A.L.; Silva, P.C.C.; Gheyi, H.R.; da Silva, L.L. Osmotic adjustment, production, and post-harvest quality of mini watermelon genotypes differing in salt tolerance. Sci. Hortic. 2022, 306, 111463. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.H.; Elango, D.; Liu, H.X.; Jin, D.D.; Wang, X.Y.; Wu, Y. Metabolome and transcriptome analysis reveals molecular mechanisms of watermelon under salt stress. Environ. Exp. Bot. 2023, 206, 105200. [Google Scholar] [CrossRef]
- Alfaro-Quezada, J.F.; Martínez, J.P.; Molinett, S.; Valenzuela, M.; Montenegro, I.; Ramírez, I.; Dorta, F.; Ávila-Valdés, A.; Gharbi, E.; Zhou, M.; et al. Rootstock increases the physiological defence of tomato plants against Pseudomonas syringae pv. tomato infection. J. Exp. Bot. 2023, 74, 2891–2911. [Google Scholar] [CrossRef] [PubMed]
Treatment | Parameter | Germination Potential | Germination Rate | Germination Index | Radicle Length (cm) | Fresh Weight (g) | Vitality Index |
---|---|---|---|---|---|---|---|
Control | Min. | 0.21 | 0.32 | 21.88 | 1.53 | 0.10 | 2.37 |
Max. | 1.00 | 1.00 | 169.25 | 14.06 | 1.89 | 171.05 | |
Average | 0.92 | 0.94 | 103.6 | 10.26 | 0.40 | 42.66 | |
SD | 0.13 | 0.11 | 29.35 | 2.25 | 0.16 | 21.62 | |
CV | 0.14 | 0.12 | 0.28 | 0.22 | 0.4 | 0.51 | |
200 mM NaCl treatment | Min. | 0.00 | 0.23 | 0.00 | 0.00 | 0.04 | 0.00 |
Max. | 1.00 | 1.00 | 96.25 | 3.68 | 0.34 | 31.11 | |
Average | 0.58 | 0.37 | 34.12 | 1.36 | 0.15 | 5.79 | |
SD | 0.31 | 0.32 | 26.57 | 0.89 | 0.06 | 5.58 | |
CV | 0.53 | 0.86 | 0.78 | 0.65 | 0.37 | 0.96 | |
Comparison with control | Min. | 0.00 | 0.00 | 0.02 | 0.03 | 0.30 | 0.27 |
Max. | 0.97 | 0.99 | 0.71 | 0.29 | 0.57 | 0.51 | |
Average | 0.44 | 0.63 | 0.38 | 0.18 | 0.43 | 0.37 | |
SD | 0.44 | 0.38 | 0.26 | 0.10 | 0.08 | 0.08 | |
CV | 0.99 | 0.60 | 0.70 | 0.53 | 0.19 | 0.21 |
Germination Potential | Germination Rate | Germination Index | Radicle Length | Fresh Weight | Vitality Index | |
---|---|---|---|---|---|---|
Huangmengcui | 0.14 | 0.80 | 0.27 | 0.18 | 0.37 | 0.34 |
Wanmei 9 | 0.00 | 0.85 | 0.06 | 0.04 | 0.30 | 0.27 |
Baicuimei | 0.09 | 0.50 | 0.13 | 0.14 | 0.57 | 0.51 |
Zhongtian 5 | 0.07 | 0.85 | 0.23 | 0.20 | 0.45 | 0.41 |
Jinyuliuxing | 0.89 | 0.90 | 0.71 | 0.29 | 0.47 | 0.42 |
Jintiancui | 0.38 | 0.23 | 0.69 | 0.12 | 0.40 | 0.32 |
Tianhongyu | 0.91 | 0.75 | 0.54 | 0.29 | 0.45 | 0.40 |
Huaxiami | 0.00 | 0.25 | 0.02 | 0.03 | 0.39 | 0.28 |
Xindongfangmi | 0.95 | 1.00 | 0.55 | 0.28 | 0.51 | 0.43 |
M135 | 0.97 | 0.59 | 0.55 | 0.24 | 0.37 | 0.31 |
RGP | RGR | RGI | RRL | RFW | RVI | |
---|---|---|---|---|---|---|
RGP | 1 | 0.796 ** | 0.858 ** | 0.691 ** | 0.253 ** | 0.719 ** |
RGR | 1 | 0.972 ** | 0.857 ** | 0.518 ** | 0.908 ** | |
RGI | 1 | 0.848 ** | 0.464 ** | 0.924 ** | ||
RRL | 1 | 0.684 ** | 0.870 ** | |||
RFW | 1 | 0.684 ** | ||||
RVI | 1 |
Variable | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
RGP | 0.443 | −0.231 | −0.271 | 0.111 | 0.020 | 0.800 |
RGR | 0.442 | 0.106 | −0.283 | 0.345 | −0.697 | −0.327 |
RGI | 0.440 | −0.139 | −0.415 | 0.029 | 0.653 | −0.427 |
RRL | 0.427 | 0.160 | 0.109 | −0.867 | −0.167 | −0.027 |
RFW | 0.378 | −0.502 | 0.742 | 0.188 | 0.016 | −0.127 |
RVI | 0.299 | 0.798 | 0.332 | 0.284 | 0.255 | 0.127 |
Characteristic value | 4.753 | 0.843 | 0.186 | 0.142 | 0.063 | 0.012 |
Contribution rate | 79.225 | 14.057 | 3.094 | 2.375 | 1.057 | 0.193 |
Cumulative contribution rate | 79.225 | 93.282 | 96.376 | 98.751 | 99.807 | 100 |
Varieties | Average Membership Function | Comprehensive Membership Function | Ranks |
---|---|---|---|
Xindongfangmi | 0.951 | 1.000 | 1 |
Tianhongyu | 0.912 | 0.958 | 2 |
Jinyuliuxing | 0.909 | 0.955 | 3 |
Jintiancui | 0.497 | 0.518 | 4 |
Huangmengcui | 0.370 | 0.387 | 5 |
Zhongtian 5 | 0.342 | 0.359 | 6 |
Wanmei 9 | 0.214 | 0.216 | 7 |
M135 | 0.186 | 0.178 | 8 |
Baicuimei | 0.148 | 0.135 | 9 |
Huaxiami | 0.025 | 0.000 | 10 |
Treatment | Parameter | Plant Height | Stem Diameter | Maximum Root Length | Aboveground Fresh Weight | Underground Fresh Weight | Aboveground Dry Weight | Underground Dry Weight | Seedling Index |
---|---|---|---|---|---|---|---|---|---|
Control | Average value | 11.97 | 3.71 | 13.54 | 11.23 | 1.4 | 1.25 | 0.11 | 0.47 |
Minimum value | 5.33 | 3.27 | 10.4 | 7.38 | 1.13 | 0.88 | 0.1 | 0.239 | |
Maximum value | 17.69 | 4.24 | 17.82 | 15.22 | 2.33 | 1.79 | 0.18 | 0.702 | |
Standard deviation | 4.35 | 0.29 | 2.18 | 2.64 | 0.35 | 0.29 | 0.03 | 0.15 | |
CV | 0.36 | 0.08 | 0.16 | 0.23 | 0.25 | 0.23 | 0.23 | 0.31 | |
200 mM NaCl treatment | Average value | 10.1 | 3.28 | 11.4 | 7.14 | 0.69 | 0.85 | 0.08 | 0.33 |
Minimum value | 5 | 2.81 | 7.72 | 4.4 | 0.48 | 0.57 | 0.06 | 0.22 | |
Maximum value | 15.91 | 3.71 | 16.81 | 9.9 | 0.89 | 1.15 | 0.1 | 0.54 | |
Standard deviation | 3.86 | 0.27 | 3.01 | 1.83 | 0.16 | 0.18 | 0.01 | 0.09 | |
CV | 0.38 | 0.08 | 0.26 | 0.26 | 0.23 | 0.21 | 0.18 | 0.28 | |
Comparison with control | Average value | 0.85 | 0.89 | 0.83 | 0.64 | 0.51 | 0.69 | 0.72 | 0.72 |
Minimum value | 0.68 | 0.75 | 0.70 | 0.48 | 0.35 | 0.55 | 0.47 | 0.58 | |
Maximum value | 0.94 | 1.00 | 1.03 | 0.81 | 0.79 | 0.91 | 0.95 | 0.94 | |
Standard deviation | 0.08 | 0.07 | 0.10 | 0.09 | 0.15 | 0.11 | 0.17 | 0.11 | |
CV | 0.09 | 0.08 | 0.12 | 0.15 | 0.30 | 0.16 | 0.23 | 0.15 |
Treatment | Parameter | Chlorophyll Content | Root Activity | MDA Content | POD Activity | CAT Activity | SOD Activity | Soluble Protein Content | Proline Content |
---|---|---|---|---|---|---|---|---|---|
Control | Average value | 1.71 | 996.54 | 2.07 | 1340.66 | 1279.86 | 873.55 | 2.55 | 15.86 |
Minimum value | 1.42 | 559.92 | 1.64 | 533.33 | 1266.31 | 852.7 | 2.16 | 8.03 | |
Maximum value | 1.95 | 2055.08 | 2.64 | 3905.21 | 12.95.56 | 899.01 | 3.18 | 24.05 | |
Standard deviation | 0.19 | 487.49 | 0.4 | 1021.63 | 8.76 | 14.29 | 0.28 | 6.6 | |
CV | 0.11 | 0.49 | 0.19 | 0.76 | 0.01 | 0.02 | 0.11 | 0.42 | |
200 mM NaCl treatment | Average value | 1.37 | 610.83 | 2.45 | 3105.21 | 1291.92 | 916.39 | 1.49 | 27.24 |
Minimum value | 1.05 | 284.6 | 1.68 | 1347.92 | 1261.08 | 889.97 | 1.23 | 17.97 | |
Maximum value | 1.81 | 980 | 3.71 | 4260.42 | 1313.22 | 942.9 | 1.89 | 39.27 | |
Standard deviation | 0.27 | 206.21 | 0.72 | 812.54 | 16.32 | 14.99 | 0.19 | 7.13 | |
CV | 0.2 | 0.34 | 0.3 | 0.26 | 0.01 | 0.02 | 0.13 | 0.26 | |
Comparison with control | Average value | 0.79 | 0.68 | 1.19 | 0.59 | 4.52 | 3.20 | 1.01 | 1.02 |
Minimum value | 0.59 | 0.39 | 0.70 | 0.44 | 0.77 | 1.29 | 0.98 | 1.00 | |
Maximum value | 0.93 | 1.05 | 1.70 | 0.72 | 27.22 | 6.35 | 1.03 | 1.05 | |
Standard deviation | 0.11 | 0.24 | 0.28 | 0.09 | 8.04 | 1.70 | 0.01 | 0.01 | |
CV | 0.14 | 0.36 | 0.23 | 0.15 | 1.78 | 0.53 | 0.01 | 0.01 |
Plant Height | Stem Diameter | Maximum Root Length | Aboveground Fresh Weight | Underground Fresh Weight | Aboveground Dry Weight | Underground Dry Weight | Seedling Index | |
---|---|---|---|---|---|---|---|---|
Huangmengcui | 0.86 | 0.90 | 0.83 | 0.56 | 0.53 | 0.91 | 0.88 | 0.94 |
Wanmei 9 | 0.83 | 0.84 | 0.78 | 0.59 | 0.44 | 0.80 | 0.71 | 0.80 |
Baicuimei | 0.91 | 1.00 | 0.77 | 0.73 | 0.49 | 0.74 | 0.73 | 0.83 |
Zhongtian 5 | 0.85 | 0.92 | 0.74 | 0.70 | 0.35 | 0.64 | 0.57 | 0.67 |
Jinyuliuxing | 0.94 | 0.98 | 1.03 | 0.81 | 0.67 | 0.70 | 0.94 | 0.77 |
Jintiancui | 0.84 | 0.85 | 0.85 | 0.65 | 0.36 | 0.65 | 0.47 | 0.63 |
Tianhongyu | 0.80 | 0.84 | 0.77 | 0.57 | 0.40 | 0.56 | 0.56 | 0.58 |
Huaxiami | 0.94 | 0.93 | 0.94 | 0.66 | 0.79 | 0.71 | 0.95 | 0.73 |
Xindongfangmi | 0.79 | 0.87 | 0.91 | 0.64 | 0.68 | 0.60 | 0.78 | 0.65 |
M135 | 0.68 | 0.75 | 0.70 | 0.48 | 0.40 | 0.55 | 0.60 | 0.62 |
Chlorophyll Content | Root Activity | MDA Content | POD Activity | CAT Activity | SOD Activity | Soluble Protein Content | Proline Content | |
---|---|---|---|---|---|---|---|---|
Huangmengcui | 0.93 | 0.98 | 1.04 | 0.63 | 1.73 | 2.76 | 1.02 | 1.01 |
Wanmei 9 | 0.72 | 1.05 | 1.24 | 0.67 | 2.53 | 2.98 | 1.03 | 1.03 |
Baicuimei | 0.90 | 0.42 | 1.43 | 0.63 | 3.41 | 2.25 | 1.02 | 1.05 |
Zhongtian 5 | 0.85 | 0.77 | 1.17 | 0.52 | 1.92 | 3.69 | 1.01 | 1.03 |
Jinyuliuxing | 0.85 | 0.71 | 1.31 | 0.66 | 1.41 | 1.96 | 1.01 | 1.01 |
Jintiancui | 0.59 | 0.53 | 1.07 | 0.50 | 0.77 | 3.62 | 1.02 | 1.03 |
Tianhongyu | 0.73 | 0.48 | 0.93 | 0.51 | 4.02 | 1.42 | 1.01 | 1.00 |
Huaxiami | 0.71 | 0.51 | 1.31 | 0.60 | 27.22 | 1.29 | 0.98 | 1.02 |
Xindongfangmi | 0.76 | 0.39 | 0.70 | 0.44 | 0.84 | 6.35 | 1.03 | 1.01 |
M135 | 0.90 | 0.93 | 1.70 | 0.72 | 1.39 | 5.66 | 1.00 | 1.04 |
RPH | RSD | RMRL | RAFW | RUFW | RADW | RUDW | RSI | RCHl | RRA | RMDA | RPOD | RCAT | RSOD | RSP | RPRO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RPH | 1 | 0.687 * | −0.352 | 0.765 ** | −0.328 | 0.809 ** | −0.194 | −0.743 * | 0.525 | 0.569 | −0.561 | −0.248 | 0.626 | 0.252 | −0.311 | −0.108 |
RSD | 1 | −0.131 | 0.924 ** | −0.001 | 0.790 ** | −0.094 | −0.171 | 0.27 | 0.232 | −0.725 * | −0.673 * | 0.244 | 0.256 | −0.341 | −0.137 | |
RRL | 1 | −0.249 | 0.871 ** | −0.228 | 0.858 ** | 0.616 | 0.114 | −0.395 | 0.11 | −0.038 | −0.67 9 * | −0.153 | 0.592 | 0.135 | ||
RAFW | 1 | 0.005 | 0.916 ** | −0.058 | −0.28 | 0.211 | 0.431 | −0.770 ** | −0.533 | 0.486 | 0.309 | −0.403 | −0.318 | |||
RUFW | 1 | −0.027 | 0.918 ** | 0.667 * | −0.084 | −0.249 | −0.009 | −0.113 | −0.549 | 0.033 | 0.439 | −0.115 | ||||
RADW | 1 | −0.03 | −0.322 | 0.211 | 0.564 | −0.699 * | −0.429 | 0.519 | 0.138 | −0.376 | −0.271 | |||||
RUDW | 1 | 0.524 | 0.236 | −0.107 | −0.003 | 0.017 | −0.497 | 0.121 | 0.641 * | 0.000 | ||||||
RSI | 1 | −0.262 | −0.418 | 0.094 | −0.195 | −0.697 * | −0.140 | 0.445 | 0.107 | |||||||
RCHl | 1 | 0.231 | −0.365 | −0.087 | 0.125 | 0.280 | 0.459 | 0.365 | ||||||||
RRA | 1 | −0.044 | −0.400 | 0.493 | 0.623 | 0.120 | 0.142 | |||||||||
RMDA | 1 | 0.148 | −0.478 | 0.081 | 0.304 | 0.475 | ||||||||||
RPOD | 1 | 0.129 | −0.508 | −0.112 | −0.398 | |||||||||||
RCAT | 1 | 0.055 | −0.501 | −0.344 | ||||||||||||
RSOD | 1 | 0.392 | 0.181 | |||||||||||||
RSP | 1 | 0.477 | ||||||||||||||
RPRO | 1 |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | |
---|---|---|---|---|---|---|---|---|---|
RPH | 0.3617 | 0.1119 | 0.0640 | 0.2294 | −0.0763 | 0.2922 | −0.1955 | −0.1252 | −0.1321 |
RSD | 0.3409 | 0.2418 | −0.1586 | −0.1171 | 0.0362 | −0.0286 | −0.0676 | 0.0904 | 0.2175 |
RRL | 0.3352 | 0.2132 | −0.1388 | −0.0238 | 0.0696 | 0.3013 | 0.2702 | −0.3014 | 0.1486 |
RAFW | 0.3226 | −0.1713 | −0.0064 | 0.2130 | 0.1964 | −0.0831 | 0.3522 | 0.7118 | −0.1156 |
RUFW | 0.2944 | 0.2705 | −0.1375 | −0.2179 | −0.2508 | −0.0636 | −0.2472 | −0.0232 | −0.0633 |
RADW | −0.2802 | 0.2153 | −0.1733 | −0.2851 | −0.0410 | −0.3168 | 0.4557 | −0.1298 | 0.1817 |
RUDW | −0.2667 | 0.3293 | −0.1477 | 0.1483 | −0.0772 | 0.2896 | −0.0776 | 0.1855 | −0.5147 |
RSI | −0.2586 | −0.1766 | 0.3294 | −0.1712 | 0.1955 | 0.4246 | −0.2415 | −0.0255 | 0.0716 |
RCHL | 0.2329 | 0.1124 | 0.3594 | −0.0131 | 0.4310 | 0.1935 | 0.3924 | −0.2435 | −0.0853 |
RRA | −0.2276 | 0.2800 | 0.3211 | 0.2269 | 0.0620 | −0.2480 | 0.1912 | −0.1530 | −0.3743 |
RMDA | −0.1974 | 0.3908 | −0.1062 | 0.2736 | 0.2212 | 0.1480 | −0.0259 | 0.0348 | 0.3496 |
RPOD | −0.2072 | 0.3723 | −0.2424 | 0.0180 | 0.2422 | 0.1701 | −0.0690 | 0.3037 | 0.1569 |
RCAT | −0.1052 | 0.0848 | 0.4739 | −0.1229 | −0.4577 | 0.2857 | 0.2041 | 0.3176 | 0.3743 |
RSOD | 0.0979 | 0.2264 | 0.3882 | −0.1221 | 0.3966 | −0.4129 | −0.4298 | 0.1275 | 0.1431 |
RSP | −0.1215 | −0.3182 | −0.1765 | 0.5366 | 0.1506 | −0.0182 | −0.0532 | −0.1600 | 0.3413 |
RPRO | 0.1015 | 0.2307 | 0.2520 | 0.5128 | −0.3928 | −0.2143 | −0.0273 | −0.0719 | 0.1514 |
Characteristic value | 6.013 | 3.556 | 2.445 | 1.49 | 1.1 | 0.593 | 0.484 | 0.186 | 0.132 |
Contribution rate | 37.583 | 22.227 | 15.279 | 9.313 | 6.877 | 3.705 | 3.024 | 1.163 | 0.828 |
Cumulative contribution rate | 37.583 | 59.810 | 75.089 | 84.402 | 91.28 | 94.985 | 98.009 | 99.172 | 100 |
Varieties | Average Membership Function | Comprehensive Membership Function | Ranks |
---|---|---|---|
Xindongfangmi | 0.749 | 0.820 | 1 |
Jinyuliuxing | 0.665 | 0.625 | 2 |
Huaxiami | 0.516 | 0.598 | 3 |
Huangmengcui | 0.382 | 0.573 | 4 |
Tianhongyu | 0.496 | 0.568 | 5 |
Jintiancui | 0.512 | 0.452 | 6 |
M135 | 0.365 | 0.452 | 7 |
Zhongtian 5 | 0.286 | 0.360 | 8 |
Baicuimei | 0.363 | 0.321 | 9 |
Wanmei 9 | 0.233 | 0.208 | 10 |
GAMF | GCMF | SAMF | SCMF | |
---|---|---|---|---|
GAMF | 1 | 0.892 * | 0.719 * | 0.711 * |
GCMF | 1 | 0.834 * | 0.829 * | |
SAMF | 1 | 0.792 * | ||
SCMF | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Gao, C.; Gao, Y.; Wang, C.; Jiao, Z.; Xu, A.; Dong, Y.; Sun, J. Investigating Salt Tolerance in Melon During Germination and Early Seedling Stages. Horticulturae 2025, 11, 397. https://doi.org/10.3390/horticulturae11040397
Liu P, Gao C, Gao Y, Wang C, Jiao Z, Xu A, Dong Y, Sun J. Investigating Salt Tolerance in Melon During Germination and Early Seedling Stages. Horticulturae. 2025; 11(4):397. https://doi.org/10.3390/horticulturae11040397
Chicago/Turabian StyleLiu, Peng, Chao Gao, Yinan Gao, Chongqi Wang, Zigao Jiao, Aolin Xu, Yumei Dong, and Jianlei Sun. 2025. "Investigating Salt Tolerance in Melon During Germination and Early Seedling Stages" Horticulturae 11, no. 4: 397. https://doi.org/10.3390/horticulturae11040397
APA StyleLiu, P., Gao, C., Gao, Y., Wang, C., Jiao, Z., Xu, A., Dong, Y., & Sun, J. (2025). Investigating Salt Tolerance in Melon During Germination and Early Seedling Stages. Horticulturae, 11(4), 397. https://doi.org/10.3390/horticulturae11040397