Interpretable and Robust Ensemble Deep Learning Framework for Tea Leaf Disease Classification
Abstract
:1. Introduction
2. Related Works
3. Material and Methods
3.1. Dataset
3.2. Data Preprocessing
3.3. Models
3.3.1. ResNet50
3.3.2. MobileNet
3.3.3. DenseNet121
3.3.4. EfficientNetB0
3.3.5. Proposed Ensemble Architecture
3.3.6. Implementation Detail
3.3.7. Evaluation Metrics
- Precision, or positive predictive value, quantifies the accuracy of the positive predictions made by the model. It is defined as the ratio of true positive predictions to the total number of predicted positives, as seen in Equation (2).Here, TP, FP, and FN are True Positives, False Positives, and False Negatives, respectively.
- Recall, also known as the sensitivity or true positive rate, measures the model’s ability to identify all relevant instances within a dataset. It is the ratio of true positive predictions to the total number of actual positives, as seen in Equation (3).
- F1-score is the harmonic mean of precision and recall, balancing the two metrics, especially in cases of uneven class distribution or when the costs of false positives and false negatives differ. The F1-score ranges from 0 to 1, with 1 indicating the best performance. The F1-Score is calculated in Equation (4).
4. Results
Understanding Model Decisions for Tea Leaf Disease Classification
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amin, H.; Darwish, A.; Hassanien, A.E.; Soliman, M. End-to-End Deep Learning Model for Corn Leaf Disease Classification. IEEE Access 2022, 10, 31103–31115. [Google Scholar] [CrossRef]
- Albattah, W.; Nawaz, M.; Javed, A.; Masood, M.; Albahli, S. A novel deep learning method for detection and classification of plant diseases. Complex Intell. Syst. 2022, 8, 507–524. [Google Scholar] [CrossRef]
- Andrew, J.; Eunice, J.; Popescu, D.E.; Chowdary, M.K.; Hemanth, J. Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications. Agronomy 2022, 12, 2395. [Google Scholar] [CrossRef]
- Umamageswari, A.; Deepa, S.; Raja, K. An enhanced approach for leaf disease identification and classification using deep learning techniques. Meas. Sens. 2022, 24, 100568. [Google Scholar] [CrossRef]
- Gautam, V.; Trivedi, N.K.; Singh, A.; Mohamed, H.G.; Noya, I.D.; Kaur, P.; Goyal, N. A Transfer Learning-Based Artificial Intelligence Model for Leaf Disease Assessment. Sustainability 2022, 14, 13610. [Google Scholar] [CrossRef]
- Lamba, S.; Saini, P.; Kaur, J.; Kukreja, V. Optimized classification model for plant diseases using generative adversarial networks. Innov. Syst. Softw. Eng. 2023, 19, 103–115. [Google Scholar] [CrossRef]
- Mzoughi, O.; Yahiaoui, I. Deep learning-based segmentation for disease identification. Ecol. Inform. 2023, 75, 102000. [Google Scholar] [CrossRef]
- Hazarika, L.K.; Bhuyan, M.; Hazarika, B.N. Insect pests of tea and their management. Annu. Rev. Entomol. 2009, 54, 267–284. [Google Scholar] [CrossRef]
- Hu, G.; Fang, M. Using a multi-convolutional neural network to automatically identify small-sample tea leaf diseases. Sustain. Comput. Inform. Syst. 2022, 35, 100696. [Google Scholar] [CrossRef]
- Bao, W.; Fan, T.; Hu, G.; Liang, D.; Li, H. Detection and identification of tea leaf diseases based on AX-RetinaNet. Sci. Rep. 2022, 12, 2183. [Google Scholar] [CrossRef]
- Lanjewar, M.G.; Panchbhai, K.G. Convolutional neural network based tea leaf disease prediction system on smart phone using paas cloud. Neural Comput. Appl. 2023, 35, 2755–2771. [Google Scholar] [CrossRef]
- Pal, A.; Kumar, V. AgriDet: Plant Leaf Disease severity classification using agriculture detection framework. Eng. Appl. Artif. Intell. 2023, 119, 105754. [Google Scholar] [CrossRef]
- Attallah, O. Tomato Leaf Disease Classification via Compact Convolutional Neural Networks with Transfer Learning and Feature Selection. Horticulturae 2023, 9, 149. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, H.; Zhu, H.; Deng, Y.; Han, X. Tomato Disease Classification and Identification Method Based on Multimodal Fusion Deep Learning. Agriculture 2022, 12, 2014. [Google Scholar] [CrossRef]
- Reddy, B.S.; Neeraja, S. Plant leaf disease classification and damage detection system using deep learning models. Multimed. Tools Appl. 2022, 81, 24021–24040. [Google Scholar] [CrossRef]
- Haridasan, A.; Thomas, J.; Raj, E.D. Deep learning system for paddy plant disease detection and classification. Environ. Monit. Assess. 2023, 195, 120. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.J.; Riza, D.F.A.; Nugroho, H. Comparative study on the performance of deep learning implementation in the edge computing: Case study on the plant leaf disease identification. J. Agric. Food Res. 2022, 10, 100389. [Google Scholar] [CrossRef]
- Russel, N.S.; Selvaraj, A. Leaf species and disease classification using multiscale parallel deep CNN architecture. Neural Comput. Appl. 2022, 34, 19217–19237. [Google Scholar] [CrossRef]
- Paul, S.G.; Biswas, A.A.; Saha, A.; Zulfiker, M.S.; Ritu, N.A.; Zahan, I.; Rahman, M.; Islam, M.A. A real-time application-based convolutional neural network approach for tomato leaf disease classification. Array 2023, 19, 100313. [Google Scholar] [CrossRef]
- Sharma, S.; Guleria, K.; Tiwari, S.; Kumar, S. A deep learning based convolutional neural network model with VGG16 feature extractor for the detection of Alzheimer Disease using MRI scans. Meas. Sens. 2022, 24, 100506. [Google Scholar] [CrossRef]
- Marwa, E.G.; Moustafa, H.E.D.; Khalifa, F.; Khater, H.; AbdElhalim, E. An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alex. Eng. J. 2023, 63, 211–221. [Google Scholar]
- Jamshidi, M.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; La Spada, L.; Mirmozafari, M.; Dehghani, M.; et al. Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access 2020, 8, 109581–109595. [Google Scholar] [CrossRef] [PubMed]
- Aslani, S.; Jacob, J. Utilisation of deep learning for COVID-19 diagnosis. Clin. Radiol. 2023, 78, 150–157. [Google Scholar] [CrossRef]
- Sarica, B.; Seker, D.Z. New MS lesion segmentation with deep residual attention gate U-Net utilizing 2D slices of 3D MR images. Front. Neurosci. 2022, 16, 912000. [Google Scholar] [CrossRef] [PubMed]
- Sarica, B.; Seker, D.Z.; Bayram, B. A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images. Int. J. Med. Inform. 2023, 170, 104965. [Google Scholar] [CrossRef]
- Ghosal, P.; Roy, A.; Agarwal, R.; Purkayastha, K.; Sharma, A.L.; Kumar, A. Compound attention embedded dual channel encoder-decoder for ms lesion segmentation from brain MRI. Multimed. Tools Appl. 2024, 1–33. [Google Scholar] [CrossRef]
- Yücel, N.; Yıldırım, M. Classification of tea leaves diseases by developed CNN, feature fusion, and classifier based model. Int. J. Appl. Math. Electron. Comput. 2023, 11, 30–36. [Google Scholar] [CrossRef]
- Shoaib, M.; Hussain, T.; Shah, B.; Ullah, I.; Shah, S.M.; Ali, F.; Park, S.H. Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Plant Sci. 2022, 13, 1031748. [Google Scholar] [CrossRef]
- Chakraborty, K.K.; Mukherjee, R.; Chakroborty, C.; Bora, K. Automated recognition of optical image based potato leaf blight diseases using deep learning. Physiol. Mol. Plant Pathol. 2022, 117, 101781. [Google Scholar] [CrossRef]
- Tassis, L.M.; Krohling, R.A. Few-shot learning for biotic stress classification of coffee leaves. Artif. Intell. Agric. 2022, 6, 55–67. [Google Scholar] [CrossRef]
- Wei, K.; Chen, B.; Zhang, J.; Fan, S.; Wu, K.; Liu, G.; Chen, D. Explainable Deep Learning Study for Leaf Disease Classification. Agronomy 2022, 12, 1035. [Google Scholar] [CrossRef]
- Turkoglu, M.; Yanikoğlu, B.; Hanbay, D. PlantDiseaseNet: Convolutional neural network ensemble for plant disease and pest detection. Signal, Image Video Process. 2022, 16, 301–309. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Sistla, V.; Kolli, V.K.K. Transfer learning-based deep ensemble neural network for plant leaf disease detection. J. Plant Dis. Prot. 2022, 129, 545–558. [Google Scholar] [CrossRef]
- Abuhayi, B.M.; Mossa, A.A. Coffee disease classification using Convolutional Neural Network based on feature concatenation. Inform. Med. Unlocked 2023, 39, 101245. [Google Scholar] [CrossRef]
- Lehmann-Danzinger, H. Diseases and pests of tea: Overview and possibilities of integrated pest and disease management. J. Agric. Trop. Subtrop. 2000, 101, 13–38. [Google Scholar]
- Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; Volume 34, pp. 770–778. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization. arXiv 2016, arXiv:1610.02391. [Google Scholar]
- Hughes, D.P.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics through machine learning and crowdsourcing. arXiv 2015, arXiv:1511.08060. [Google Scholar]
- Hu, G.; Wu, H.; Zhang, Y.; Wan, M. A low shot learning method for tea leaf’s disease identification. Comput. Electron. Agric. 2019, 163, 104852. [Google Scholar] [CrossRef]
- Hu, G.; Yang, X.; Zhang, Y.; Wan, M. Identification of tea leaf diseases by using an improved deep convolutional neural network. Sustain. Comput. Inform. Syst. 2019, 24, 100353. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Q.; Gao, L. Visual Tea Leaf Disease Recognition Using a Convolutional Neural Network Model. Symmetry 2019, 11, 343. [Google Scholar] [CrossRef]
- Datta, S.; Gupta, N. A Novel Approach For the Detection of Tea Leaf Disease Using Deep Neural Network. Procedia Comput. Sci. 2023, 218, 2273–2286. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Bhuyan, P.; Singh, P.K.; Das, S.K. Res4net-CBAM: A deep cnn with convolution block attention module for tea leaf disease diagnosis. Multimed. Tools Appl. 2023, 83, 48925–48947. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521. [Google Scholar]
- Heng, Q.; Yu, S.; Zhang, Y. A new AI-based approach for automatic identification of tea leaf disease using deep neural network based on hybrid pooling. Heliyon 2024, 10, e26465. [Google Scholar] [CrossRef]
- Hu, G.; Wang, H.; Zhang, Y.; Wan, M. Detection and severity analysis of tea leaf blight based on deep learning. Comput. Electr. Eng. 2021, 90, 107023. [Google Scholar] [CrossRef]
- Hu, G.; Wei, K.; Zhang, Y.; Bao, W.; Liang, D. Estimation of tea leaf blight severity in natural scene images. Precis. Agric. 2021, 22, 1239–1262. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, L.; Wan, M.; Hu, G.; Zhang, Y. Detection method for tea leaf blight in natural scene images based on lightweight and efficient LC3Net model. J. Plant Dis. Prot. 2024, 131, 209–225. [Google Scholar] [CrossRef]
- Bao, W.; Zhu, Z.; Hu, G.; Zhou, X.; Zhang, D.; Yang, X. UAV remote sensing detection of tea leaf blight based on DDMA-YOLO. Comput. Electron. Agric. 2023, 205, 107637. [Google Scholar] [CrossRef]
- Lin, J.; Bai, D.; Xu, R.; Lin, H. TSBA-YOLO: An Improved Tea Diseases Detection Model Based on Attention Mechanisms and Feature Fusion. Forests 2023, 14, 619. [Google Scholar] [CrossRef]
- Xue, Z.; Xu, R.; Bai, D.; Lin, H. YOLO-Tea: A Tea Disease Detection Model Improved by YOLOv5. Forests 2023, 14, 415. [Google Scholar] [CrossRef]
- Soeb, M.J.A.; Jubayer, M.F.; Tarin, T.A.; Mamun, M.R.A.; Ruhad, F.M.; Parven, A.; Mubarak, N.M.; Karri, S.L.; Meftaul, I.M. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T). Sci. Rep. 2023, 13, 6078. [Google Scholar] [CrossRef]
- Elaraby, A.; Hamdy, W.; Alanazi, S. Classification of Citrus Diseases Using Optimization Deep Learning Approach. Comput. Intell. Neurosci. 2022, 2022, 9153207. [Google Scholar] [CrossRef]
- Gangwar, A.; Dhaka, V.S.; Rani, G.; Shrey. Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied Backgrounds. Comput. Mater. Contin. 2024, 79, 117–142. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Saud Univ. - Comput. Inf. Sci. 2023, 35, 757–774. [Google Scholar] [CrossRef]
- Khan, M.A.; Alam, S.; Ahmed, W. Enhanced Skin Cancer Diagnosis via Deep Convolutional Neural Networks with Ensemble Learning. SN Comput. Sci. 2025, 6, 124. [Google Scholar] [CrossRef]
- Ali, A.H.; Youssef, A.; Abdelal, M.; Raja, M.A. An ensemble of deep learning architectures for accurate plant disease classification. Ecol. Inform. 2024, 81, 102618. [Google Scholar] [CrossRef]
- Jha, P.; Dembla, D.; Dubey, W. Deep learning models for enhancing potato leaf disease prediction: Implementation of transfer learning based stacking ensemble model. Multimed. Tools Appl. 2024, 83, 37839–37858. [Google Scholar] [CrossRef]
- Pandiyaraju, V.; Kumar, A.M.S.; Praveen, J.I.R.; Venkatraman, S.; Kumar, S.P.; Aravintakshan, S.A.; Abeshek, A.; Kannan, A. Improved tomato leaf disease classification through adaptive ensemble models with exponential moving average fusion and enhanced weighted gradient optimization. Front. Plant Sci. 2024, 15, 1382416. [Google Scholar] [CrossRef]
- Bezabh, Y.A.; Ayalew, A.M.; Abuhayi, B.M.; Demlie, T.N.; Awoke, E.A.; Mengistu, T.E. Classification of mango disease using ensemble convolutional neural network. Smart Agric. Technol. 2024, 8, 100476. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, D.; Wei, Y.; Zhang, X.; Li, L. Combining Transfer Learning and Ensemble Algorithms for Improved Citrus Leaf Disease Classification. Agriculture 2024, 14, 1549. [Google Scholar] [CrossRef]
- Yao, X.; Lin, H.; Bai, D.; Zhou, H. A Small Target Tea Leaf Disease Detection Model Combined with Transfer Learning. Forests 2024, 15, 591. [Google Scholar] [CrossRef]
- Kimutai, G.; Förster, A. Tea sickness dataset. Mendeley Data 2022, 2. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Keith, L.; Ko, W.H.; Sato, D.M. Identification Guide for Diseases of Tea (Camellia sinensis); Plant Disease; University of Hawaii: Honolulu, HI, USA, 2006. [Google Scholar]
- Pandey, A.K.; Sinniah, G.D.; Babu, A.; Tanti, A. How the Global Tea Industry Copes With Fungal Diseases—Challenges and Opportunities. Plant Dis. 2021, 105, 1868–1879. [Google Scholar] [CrossRef] [PubMed]
- Sinniah, G.D.; Mahadevan, N. Disease Diagnosis in Tea (Camellia sinensis (L.) Kuntze): Challenges and the Way Forward. In Challenges in Plant Disease Detection and Recent Advancements; IntechOpen: London, UK, 2024. [Google Scholar]
- Bhuyan, P.; Singh, P.K. Evaluating Deep CNNs and Vision Transformers for Plant Leaf Disease Classification. In Proceedings of the Distributed Computing and Intelligent Technology; Springer: Cham, Switzerland, 2024; pp. 293–306. [Google Scholar]
- Krisnandi, D.; Pardede, H.F.; Yuwana, R.S.; Zilvan, V.; Heryana, A.; Fauziah, F.; Rahadi, V.P. Diseases Classification for Tea Plant Using Concatenated Convolution Neural Network. CommIT (Communication Inf. Technol.) J. 2019, 13, 67–77. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Z.; Zhang, L.; Dong, W.; Rao, Y. SLIC_SVM based leaf diseases saliency map extraction of tea plant. Comput. Electron. Agric. 2019, 157, 102–109. [Google Scholar] [CrossRef]
Classes | Total Images | Split in a 90:10 Ratio | Images with Stratified 5-Fold Split | Augmented Images with Stratified 5-Fold Split | |||
---|---|---|---|---|---|---|---|
Train | Test | Train | Validation | Train | Validation | ||
Algal Leaf Spot | 113 | 102 | 11 | 81 | 21 | 324 | 21 |
Anthracnose | 100 | 90 | 10 | 72 | 18 | 288 | 18 |
Bird’s Eye Spot | 100 | 90 | 10 | 72 | 18 | 288 | 18 |
Brown Blight | 113 | 102 | 11 | 82 | 20 | 328 | 20 |
Gray Blight | 100 | 90 | 10 | 72 | 18 | 288 | 18 |
Red Leaf Spot | 143 | 128 | 15 | 102 | 26 | 408 | 26 |
White Spot | 142 | 128 | 14 | 102 | 26 | 408 | 26 |
Healthy | 74 | 66 | 8 | 53 | 13 | 212 | 13 |
Total | 885 | 796 | 89 | 636 | 160 | 2544 | 160 |
Fold Number | Metrics | Model | ||||
---|---|---|---|---|---|---|
Densenet121 | EfficientNetB0 | MobileNetV2 | ResNet50 | Ensemble | ||
Fold 1 | Precision | 0.60 | 0.78 | 0.60 | 0.79 | 0.89 |
Recall | 0.66 | 0.71 | 0.51 | 0.76 | 0.88 | |
F1-Score | 0.62 | 0.68 | 0.47 | 0.76 | 0.87 | |
Fold 2 | Precision | 0.63 | 0.82 | 0.62 | 0.91 | 0.94 |
Recall | 0.66 | 0.80 | 0.63 | 0.90 | 0.93 | |
F1-Score | 0.63 | 0.80 | 0.58 | 0.90 | 0.93 | |
Fold 3 | Precision | 0.59 | 0.87 | 0.60 | 0.87 | 0.90 |
Recall | 0.61 | 0.85 | 0.53 | 0.87 | 0.89 | |
F1-Score | 0.56 | 0.85 | 0.47 | 0.86 | 0.88 | |
Fold 4 | Precision | 0.79 | 0.86 | 0.69 | 0.89 | 0.95 |
Recall | 0.69 | 0.82 | 0.62 | 0.88 | 0.94 | |
F1-Score | 0.67 | 0.81 | 0.58 | 0.88 | 0.94 | |
Fold 5 | Precision | 0.74 | 0.81 | 0.60 | 0.88 | 0.92 |
Recall | 0.69 | 0.74 | 0.52 | 0.85 | 0.91 | |
F1-Score | 0.64 | 0.71 | 0.45 | 0.83 | 0.91 | |
Average | Precision | 0.67 ± 0.09 | 0.83 ± 0.04 | 0.62 ± 0.04 | 0.87 ± 0.05 | 0.92 ± 0.03 |
Recall | 0.66 ± 0.03 | 0.78 ± 0.06 | 0.56 ± 0.06 | 0.85 ± 0.05 | 0.91 ± 0.03 | |
F1-Score | 0.62 ± 0.04 | 0.77 ± 0.07 | 0.51 ± 0.06 | 0.85 ± 0.05 | 0.91 ± 0.03 |
Fold Number | Metrics | Model | ||||
---|---|---|---|---|---|---|
DenseNet121 | EfficientNetB0 | MobileNetV2 | ResNet50 | Ensemble | ||
Fold 1 | Precision | 0.80 | 0.92 | 0.76 | 0.94 | 0.96 |
Recall | 0.76 | 0.91 | 0.67 | 0.93 | 0.96 | |
F1-Score | 0.76 | 0.90 | 0.65 | 0.93 | 0.95 | |
Fold 2 | Precision | 0.81 | 0.91 | 0.75 | 0.91 | 0.92 |
Recall | 0.73 | 0.91 | 0.69 | 0.90 | 0.91 | |
F1-Score | 0.71 | 0.91 | 0.67 | 0.90 | 0.91 | |
Fold 3 | Precision | 0.80 | 0.92 | 0.50 | 0.92 | 0.94 |
Recall | 0.78 | 0.91 | 0.62 | 0.90 | 0.92 | |
F1-Score | 0.77 | 0.91 | 0.53 | 0.90 | 0.92 | |
Fold 4 | Precision | 0.83 | 0.92 | 0.71 | 0.93 | 0.96 |
Recall | 0.74 | 0.91 | 0.66 | 0.93 | 0.96 | |
F1-Score | 0.71 | 0.91 | 0.65 | 0.93 | 0.96 | |
Fold 5 | Precision | 0.73 | 0.90 | 0.74 | 0.90 | 0.95 |
Recall | 0.74 | 0.88 | 0.67 | 0.90 | 0.94 | |
F1-Score | 0.68 | 0.88 | 0.67 | 0.90 | 0.94 | |
Average | Precision | 0.79 ± 0.04 | 0.91 ± 0.01 | 0.69 ± 0.11 | 0.92 ± 0.02 | 0.95 ± 0.02 |
Recall | 0.75 ± 0.02 | 0.90 ± 0.01 | 0.66 ± 0.03 | 0.91 ± 0.02 | 0.94 ± 0.02 | |
F1-Score | 0.73 ± 0.04 | 0.90 ± 0.01 | 0.63 ± 0.06 | 0.91 ± 0.02 | 0.94 ± 0.02 |
Leaf Class | Prediction Metrics | ||
---|---|---|---|
Precision | Recall | F1-Score | |
Anthracnose | 0.82 | 0.90 | 0.86 |
Gray Blight | 1.00 | 0.90 | 0.95 |
Algal Leaf Spot | 1.00 | 1.00 | 1.00 |
Healthy | 1.00 | 1.00 | 1.00 |
Bird’s Eye Spot | 0.90 | 0.90 | 0.90 |
Brown Blight | 1.00 | 0.91 | 0.95 |
Red Leaf Spot | 1.00 | 1.00 | 1.00 |
White Spot | 0.93 | 1.00 | 0.97 |
Weighted Average | 0.96 | 0.95 | 0.95 |
Overall Accuracy | 0.96 |
Study | Model | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
Bhuyan and Singh [73] | Swin Transformer | 0.67 | 0.67 | 0.67 | 0.67 |
Yücel and Yıldırım [27] | Hybrid Model | - | - | 0.91 | 0.91 |
Heng et al. [49] | Combination of CNN and Weighted Random Forest (WRF) | 0.92 | 0.92 | 0.92 | 0.92 |
Our study | Ensemble (Augmented-Fold 4) | 0.96 | 0.96 | 0.95 | 0.96 |
Study | Leaf Class | |||||||
---|---|---|---|---|---|---|---|---|
Healthy | Algal Leaf Spot | Anthracnose | Bird’s Eye Spot | Brown Blight | Gray Blight | Red Leaf Spot | White Spot | |
Hu et al. [42] | X | |||||||
Hu et al. [43] | X | |||||||
Krisnandi et al. [74] | X | |||||||
Chen et al. [44] | X | X | X | X | X | X | X | |
Sun et al. [75] | X | X | ||||||
Bhuyan et al. [47] | X | X | X | |||||
Lanjewar and Panchbhai [11] | X | |||||||
Soeb et al. [56] | X | |||||||
Datta and Gupta [45] | X | X | X | X | X | |||
Our study | X | X | X | X | X | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, O.; Sarica, B.; Seker, D.Z. Interpretable and Robust Ensemble Deep Learning Framework for Tea Leaf Disease Classification. Horticulturae 2025, 11, 437. https://doi.org/10.3390/horticulturae11040437
Ozturk O, Sarica B, Seker DZ. Interpretable and Robust Ensemble Deep Learning Framework for Tea Leaf Disease Classification. Horticulturae. 2025; 11(4):437. https://doi.org/10.3390/horticulturae11040437
Chicago/Turabian StyleOzturk, Ozan, Beytullah Sarica, and Dursun Zafer Seker. 2025. "Interpretable and Robust Ensemble Deep Learning Framework for Tea Leaf Disease Classification" Horticulturae 11, no. 4: 437. https://doi.org/10.3390/horticulturae11040437
APA StyleOzturk, O., Sarica, B., & Seker, D. Z. (2025). Interpretable and Robust Ensemble Deep Learning Framework for Tea Leaf Disease Classification. Horticulturae, 11(4), 437. https://doi.org/10.3390/horticulturae11040437