A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Materials
2.2. Experimental Design
2.3. Mushroom Cultivation
2.4. Raw Material Composition Analysis
2.5. Vegetables Growth and Yield
2.6. DNA Extraction and Metagenomic Analysis
2.7. Economic Value
2.7.1. Reduction in Substrate Cost and Sales Revenue of P. eryngii
2.7.2. Sales Revenue of G. lucidum Grown on P. eryngii SMS
2.7.3. Secondary Fruiting of G. lucidum and P. eryngii
2.7.4. Increased Yield and Income from Leafy Vegetables and Tomato
2.7.5. Integrated per Hectare Income from the Circular System
2.8. Statistical Analysis
3. Results
3.1. Mushroom Cultivation and Substrate Generation
3.1.1. Straw-Based Cultivation of P. eryngii
3.1.2. G. lucidum Cultivation and Secondary Fruiting
3.2. Vegetable Yield and Quality Enhancement
3.2.1. Increased Leafy Vegetable Yield
3.2.2. Improved Tomato Quality
3.3. Improved Soil Physicochemical Properties
3.4. Soil Microbial Community Response (Metagenomic Analysis)
3.4.1. Taxonomic Composition and Indicator Species
3.4.2. Functional Shifts in Microbial Metabolism
3.4.3. CAZy Gene Enrichment and Organic Matter Decomposition
3.5. Economic Benefit Assessment
4. Discussion
4.1. Efficient Mushroom Production Based on Straw Integration and SMS Reuse
4.2. SMS Enhances Vegetable Yield and Quality in Saline–Alkaline Soils
4.3. SMS Improves Soil Physicochemical Properties
4.4. Microbial Mechanism Underpinning Soil Recovery in a Circular Mushroom–Vegetable System
5. Conclusions
- Efficient resource utilization: Mixed straw replaced sawdust as the substrate for P. eryngii, achieving a biological efficiency of 80% and yield of 450 g per bag, reducing costs by 36.3%. The SMS was sequentially reused for G. lucidum cultivation, vegetables, and secondary mushroom fruiting, forming a full chain of Straw → P. eryngii → G. lucidum → Secondary G. lucidum → Vegetables → Secondary P. eryngii → Tomato, with 100% SMS returned to the soil, minimizing the external inputs.
- Soil ecological restoration: The SMS increased the soil organic matter from 16.55 to 162.78 g/kg (+883%), reduced the pH from 8.34 to 6.75, and raised the available phosphorus and potassium by 21–31 times and 8.8–13.1 times, respectively. Rotation enriched functional microbes, notably Actinobacteria, Hyphomicrobiales, and Burkholderiales, and upregulated key metabolic pathways for the glyoxylate cycle, nitrogen cycling, and lignin degradation, shifting the microbial network from “stress survival” to “efficient degradation–resistance–nutrient cycling”, supporting self-sustaining soil health.
- Agricultural productivity and economic returns: Vegetable yields increased by over 30%, with the tomato quality (lycopene + 179%) notably enhanced. G. lucidum achieved “one substrate, two harvests” with bioactive compounds comparable to standard cultivation. The system yielded 1,695,000–1,962,881.4 CNY/ha annually—several times higher than traditional systems—while reducing chemical fertilizer use.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perri, S.; Suweis, S.; Holmes, A.; Marpu, P.R.; Entekhabi, D.; Molini, A. River Basin Salinization as a Form of Aridity. Proc. Natl. Acad. Sci. USA 2020, 117, 17635–17642. [Google Scholar] [CrossRef] [PubMed]
- Allbed, A.; Kumar, L. Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review. Adv. Remote Sens. 2013, 2, 373–385. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Blumwald, E. Developing Salt-Tolerant Crop Plants: Challenges and Opportunities. Trends Plant Sci. 2005, 10, 615–620. [Google Scholar] [CrossRef]
- Xu, X.; Guo, L.; Wang, S.; Wang, X.; Ren, M.; Zhao, P.; Huang, Z.; Jia, H.; Wang, J.; Lin, A. Effective Strategies for Reclamation of Saline-Alkali Soil and Response Mechanisms of the Soil-Plant System. Sci. Total Environ. 2023, 905, 167179. [Google Scholar] [CrossRef]
- Cui, L.; Liu, Y.; Yan, J.; Hina, K.; Hussain, Q.; Qiu, T.; Zhu, J. Revitalizing Coastal Saline-Alkali Soil with Biochar Application for Improved Crop Growth. Ecol. Eng. 2022, 179, 106594. [Google Scholar] [CrossRef]
- Ma, S.; Liu, X.; Liu, J.; Zeng, J.; Zhou, X.; Jia, Z.; Li, C.; Leng, H.; Liu, X.; Zhang, J. Keystone Microbial Species Drive the Responses of Saline–Alkali Soil to Three-Year Amendment Measures. Forests 2023, 14, 2295. [Google Scholar] [CrossRef]
- Zhao, L.; Heng, T.; Yang, L.; Xu, X.; Feng, Y. Study on the Farmland Improvement Effect of Drainage Measures under Film Mulch with Drip Irrigation in Saline–Alkali Land in Arid Areas. Sustainability 2021, 13, 4159. [Google Scholar] [CrossRef]
- Xiao, L.; Yuan, G.; Feng, L.; Bi, D.; Wei, J. Soil Properties and the Growth of Wheat (Triticum Aestivum L.) and Maize (Zea Mays L.) in Response to Reed (Phragmites Communis) Biochar Use in a Salt-Affected Soil in the Yellow River Delta. Agric. Ecosyst. Environ. 2020, 303, 107124. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, M.; Zhang, Y.; Hou, X.; Yang, L. Waste Seaweed Compost and Rhizosphere Bacteria Pseudomonas Koreensis Promote Tomato Seedlings Growth by Benefiting Properties, Enzyme Activities and Rhizosphere Bacterial Community in Coastal Saline Soil of Yellow River Delta, China. Waste Manag. 2023, 172, 33–42. [Google Scholar] [CrossRef]
- Li, X.; Xia, J.; Zhao, X.; Chen, Y. Effects of Planting Tamarix Chinensis on Shallow Soil Water and Salt Content under Different Groundwater Depths in the Yellow River Delta. Geoderma 2019, 335, 104–111. [Google Scholar] [CrossRef]
- Gao, Y.; Shao, C.; Liu, Z.; Sun, Z.; Long, B.; Feng, P. Planning Spatial Layout of a Typical Salt Tolerant Forage of Sweet Sorghum in the Yellow River Delta via Considering Resource Constraints, Nitrogen Use Efficiency, and Economic Benefits. Plants 2023, 12, 2483. [Google Scholar] [CrossRef]
- Shan, Y.; Li, G.; Tan, S.; Su, L.; Sun, Y.; Mu, W.; Wang, Q. Optimizing the Maize Irrigation Strategy and Yield Prediction under Future Climate Scenarios in the Yellow River Delta. Agronomy 2023, 13, 960. [Google Scholar] [CrossRef]
- Tarolli, P.; Luo, J.; Park, E.; Barcaccia, G.; Masin, R. Soil Salinization in Agriculture: Mitigation and Adaptation Strategies Combining Nature-Based Solutions and Bioengineering. iScience 2024, 27, 108830. [Google Scholar] [CrossRef] [PubMed]
- Courtney, R.G.; Mullen, G.J. Soil Quality and Barley Growth as Influenced by the Land Application of Two Compost Types. Bioresour. Technol. 2008, 99, 2913–2918. [Google Scholar] [CrossRef]
- Medina, E.; Paredes, C.; Bustamante, M.A.; Moral, R.; Moreno-Caselles, J. Relationships between Soil Physico-Chemical, Chemical and Biological Properties in a Soil Amended with Spent Mushroom Substrate. Geoderma 2012, 173–174, 152–161. [Google Scholar] [CrossRef]
- Leong, Y.K.; Ma, T.-W.; Chang, J.-S.; Yang, F.-C. Recent Advances and Future Directions on the Valorization of Spent Mushroom Substrate (SMS): A Review. Bioresour. Technol. 2022, 344, 126157. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Hu, Q.; Bai, X.; Zhang, W.; Guo, H. Increasing the Value of Phragmites Australis Straw in a Sustainable Integrated Agriculture Model (SIAM) Comprising Edible Mushroom Cultivation and Spent Mushroom Substrate Compost. Sci. Total Environ. 2023, 869, 161807. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, M.; Wen, B.; Zhang, Q.; Chen, J.; Li, X.; An, Y. Reed-Mushroom-Fertilizer Ecological Agriculture in Wetlands: Harvesting Reed to Cultivate Mushroom and Returning Waste Substrates to Restore Saline-Alkaline Marshes. Sci. Total Environ. 2023, 878, 162987. [Google Scholar] [CrossRef]
- Chi, Z.; Wang, W.; Li, H.; Wu, H.; Yan, B. Soil Organic Matter and Salinity as Critical Factors Affecting the Bacterial Community and Function of Phragmites Australis Dominated Riparian and Coastal Wetlands. Sci. Total Environ. 2021, 762, 143156. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the Unknown: Disentangling the Complexities of the Soil Microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Lu, G.; Xie, B.; Cagle, G.A.; Wang, X.; Han, G.; Wang, X.; Hou, A.; Guan, B. Effects of Simulated Nitrogen Deposition on Soil Microbial Community Diversity in Coastal Wetland of the Yellow River Delta. Sci. Total Environ. 2021, 757, 143825. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Zhu, Y.; Li, H.; Wu, H.; Yan, B. Unraveling Bacterial Community Structure and Function and Their Links with Natural Salinity Gradient in the Yellow River Delta. Sci. Total Environ. 2021, 773, 145673. [Google Scholar] [CrossRef]
- Lv, X.; Ma, B.; Yu, J.; Chang, S.X.; Xu, J.; Li, Y.; Wang, G.; Han, G.; Bo, G.; Chu, X. Bacterial Community Structure and Function Shift along a Successional Series of Tidal Flats in the Yellow River Delta. Sci. Rep. 2016, 6, 36550. [Google Scholar] [CrossRef]
- Wu, T.; Li, X.; Xu, J.; Liu, L.; Ren, L.; Dong, B.; Li, W.; Xie, W.; Yao, Z.; Chen, Q.; et al. Diversity and Functional Characteristics of Endophytic Bacteria from Two Grass Species Growing on an Oil-Contaminated Site in the Yellow River Delta, China. Sci. Total Environ. 2021, 767, 144340. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Shao, P.; Sun, J.; Xu, W.; Zhang, Z. Variation in Bacterial Community Structure in Rhizosphere and Bulk Soils of Different Halophytes in the Yellow River Delta. Front. Ecol. Evol. 2022, 9, 816918. [Google Scholar] [CrossRef]
- Van, S. Use of Detergents in the Analysis of Fibrous Feeds. II. A Rapid Method for the Determination of Fiber and Lignin. J. AOAC Int. 1963, 46, 829–835. [Google Scholar] [CrossRef]
- GB 5009.5-2016; National Food Safety Standard—Determination of Protein in Foods. State Food and Drug Administration, National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- Ye, L.B.; Zhang, J.S.; Zhou, K.; Yang, Y.; Zhou, S.; Jia, W.; Hao, R.X.; Pan, Y.J. Purification, NMR Study and Immunostimulating Property of a Fucogalactan from the Fruiting Bodies of Ganoderma Lucidum. Planta Med. 2008, 74, 1730–1734. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Diao, W.; Sun, X.; Zong, J.; Qi, X.; Liang, C. Application of Miscanthus Substrates in the Cultivation of Ganoderma Lingzhi. Arch. Microbiol. 2023, 205, 384. [Google Scholar] [CrossRef]
- GB/T 38571-2020; Determination of Alkaloids as Plant Secondary Metabolites—Liquid Chromatography-Mass Spectrometry. State Administration for Market Regulation, National Standardization Administration: Beijing, China, 2020.
- GB 5009.90-2016; National Food Safety Standard—Determination of Iron in Foods. National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration: Beijing, China, 2016.
- GB 5009.93-2017; National Food Safety Standard—Determination of Selenium in Foods. State Food and Drug Administration, National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2017.
- GB 5009.86-2016; National Food Safety Standard—Determination of Vitamin C in Foods. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.3-2016; National Food Safety Standard—Determination of Moisture in Foods. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB/T 5009.10-2003; Determination of Crude Fiber in Vegetable Foods. Ministry of Health of the People’s Republic of China: Beijing, China, 2003.
- NY/T 2637-2014; Determination of Soluble Solids in Fruits and Vegetables by Refractometry. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2014.
- Yang, X.B.; Li, X.X.; Liu, R.; Zhou, G.L. Dynamic Changes of Fruit Nutrient Components during Ripening of Fresh Tomatoes. J. Huazhong Agric. Univ. 2022, 41, 191–199. [Google Scholar]
- GB/T 41133-2022; Determination of Lycopene, Lutein and Carotene in Tomato Products – Ultra Performance Liquid Chromatography (UPLC) Method. State Administration for Market Regulation, National Standardization Administration: Beijing, China, 2022.
- Chen, S. Ultrafast One-Pass FASTQ Data Preprocessing, Quality Control, and Deduplication Using Fastp. Imeta 2023, 2, e107. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.-L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
- Steinegger, M.; Söding, J. MMseqs2 Enables Sensitive Protein Sequence Searching for the Analysis of Massive Data Sets. Nat. Biotechnol. 2017, 35, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel Umeohia, U.; Adekunle Olapade, A. Quality Attributes, Physiology, and Postharvest Technologies of Tomatoes (Lycopersicum Esculentum)–A Review. AJFST 2024, 12, 42–64. [Google Scholar] [CrossRef]
- Walters, W.A.; Jin, Z.; Youngblut, N.; Wallace, J.G.; Sutter, J.; Zhang, W.; González-Peña, A.; Peiffer, J.; Koren, O.; Shi, Q.; et al. Large-Scale Replicated Field Study of Maize Rhizosphere Identifies Heritable Microbes. Proc. Natl. Acad. Sci. USA 2018, 115, 7368–7373. [Google Scholar] [CrossRef] [PubMed]
- Benítez, M.-S.; Gardener, B.B.M. Linking Sequence to Function in Soil Bacteria: Sequence-Directed Isolation of Novel Bacteria Contributing to Soilborne Plant Disease Suppression. Appl. Environ. Microbiol. 2009, 75, 915–924. [Google Scholar] [CrossRef]
- Aguirre-von-Wobeser, E.; Rocha-Estrada, J.; Shapiro, L.R.; Torre, M. de la Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales Drives Selection of Bacterial Community from Soil by Maize Roots in a Traditional Milpa Agroecosystem. PLoS ONE 2018, 13, e0208852. [Google Scholar] [CrossRef]
- Nelson, T.; Hose, G.C.; Dabovic, J.; Korbel, K.L. Salinity as a Major Influence on Groundwater Microbial Communities in Agricultural Landscapes. Mar. Freshw. Res. 2024, 75, MF23014. [Google Scholar] [CrossRef]
- Hao, H.; Yue, Y.; Wang, Q.; Xiao, T.; Zhao, Z.; Zhang, J.; Chen, H. Effects of the Rice-Mushroom Rotation Pattern on Soil Properties and Microbial Community Succession in Paddy Fields. Front. Microbiol. 2024, 15, 1449922. [Google Scholar] [CrossRef]
- Dou, T.; Zhang, K.; Shi, X.; Liu, W.; Yu, F.; Liu, D. Crop–Mushroom Rotation: A Comprehensive Review of Its Multifaceted Impacts on Soil Quality, Agricultural Sustainability, and Ecosystem Health. Agronomy 2025, 15, 563. [Google Scholar] [CrossRef]
- Arunrat, N.; Sansupa, C.; Sereenonchai, S.; Hatano, R. Short-Term Response of Soil Bacterial and Fungal Communities to Fire in Rotational Shifting Cultivation, Northern Thailand. Appl. Soil Ecol. 2024, 196, 105303. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Fadel, J.G. Oyster Mushroom Cultivation with Rice and Wheat Straw. Bioresour. Technol. 2002, 82, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D.; Wösten, H.A.B. Mushroom Cultivation in the Circular Economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef]
- Qadir, M.; Noble, A.D.; Schubert, S.; Thomas, R.J.; Arslan, A. Sodicity-Induced Land Degradation and Its Sustainable Management: Problems and Prospects. Land Degrad. Dev. 2006, 17, 661–676. [Google Scholar] [CrossRef]
- Pintarič, M.; Štuhec, A.; Tratnik, E.; Langerholc, T. Spent Mushroom Substrate Improves Microbial Quantities and Enzymatic Activity in Soils of Different Farming Systems. Microorganisms 2024, 12, 1521. [Google Scholar] [CrossRef]
- Oliveira Vieira, V.; Almeida Conceição, A.; Raisa Barbosa Cunha, J.; Enis Virginio Machado, A.; Gonzaga de Almeida, E.; Souza Dias, E.; Magalhães Alcantara, L.; Neil Gerard Miller, R.; Gonçalves de Siqueira, F. A New Circular Economy Approach for Integrated Production of Tomatoes and Mushrooms. Saudi J. Biol. Sci. 2022, 29, 2756–2765. [Google Scholar] [CrossRef]
- Rietz, D.N.; Haynes, R.J. Effects of Irrigation-Induced Salinity and Sodicity on Soil Microbial Activity. Soil Biol. Biochem. 2003, 35, 845–854. [Google Scholar] [CrossRef]
- Kumari, S.; Chhillar, H.; Chopra, P.; Khanna, R.R.; Khan, M.I.R. Potassium: A Track to Develop Salinity Tolerant Plants. Plant Physiol. Biochem. 2021, 167, 1011–1023. [Google Scholar] [CrossRef]
- Mavi, M.S.; Marschner, P. Drying and Wetting in Saline and Saline-Sodic Soils—Effects on Microbial Activity, Biomass and Dissolved Organic Carbon. Plant Soil 2012, 355, 51–62. [Google Scholar] [CrossRef]
- Montella, S.; Ventorino, V.; Lombard, V.; Henrissat, B.; Pepe, O.; Faraco, V. Discovery of Genes Coding for Carbohydrate-Active Enzyme by Metagenomic Analysis of Lignocellulosic Biomasses. Sci. Rep. 2017, 7, 42623. [Google Scholar] [CrossRef]
- Berlemont, R.; Martiny, A.C. Genomic Potential for Polysaccharide Deconstruction in Bacteria. Appl. Environ. Microbiol. 2015, 81, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
Raw Materials | Component Measurement of the Raw Materials | ||||||||
---|---|---|---|---|---|---|---|---|---|
Moisture g/100 g (H2O) | Ash g/100 g | Total Nitrogen g/100 g (N) | The Carbohydrate g/100 g | Cellulose g/100 g | Lignin % | Hemicellulose g/100 g | C/N % | pH | |
wheat straw | 4.13 ± 0.17 d | 5.80 ± 0.20 d | 1.33 ± 0.06 b | 83.49 ± 3.68 a | 20.95 ± 1.16 c | 5.28 ± 0.22 d | 8.57 ± 0.52 c | 36.30 ± 1.64 d | 7.24 ± 0.27 a |
sorghum straw | 5.31 ± 0.16 b | 6.27 ± 0.27 b | 1.18 ± 0.07 c | 79.62 ± 2.03 c | 31.63 ± 2.89 b | 5.64 ± 0.05 c | 12.66 ± 0.32 b | 68.38 ± 2.67 b | 6.08 ± 0.36 d |
corn straw | 5.05 ± 0.28 c | 7.07 ± 0.14 a | 0.75 ± 0.08 d | 83.11 ± 2.46 b | 33.58 ± 0.78 a | 6.71 ± 0.21 b | 12.97 ± 0.26 a | 98.08 ± 6.21 a | 7.23 ± 0.48 b |
peanut shell | 7.14 ± 0.11 a | 6.20 ± 0.47 c | 4.47 ± 0.03 a | 55.30 ± 0.77 d | 11.47 ± 0.13 d | 32.71 ± 1.97 a | 8.14 ± 0.02 d | 54.19 ± 3.25 c | 6.37 ± 0.08 c |
Plant Canopy Spread (cm) | Plant Height (cm) | Horizontal Diameter of the Head (cm) | Vertical Diameter of the Head (cm) | Number of Outer Leaves | Average Net Weight (kg) | Yield Per Hectare (kg) | t-Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|---|---|---|
Cauliflower | 109.55 ± 4.41 | 80.23 ± 3.50 | 18.89 ± 0.56 | 21.33 ± 1.01 | 22.91 ± 1.51 | 1.22 ± 0.072 | 39,231.6 ± 2314.29 | 23.64 | <0.0001 | *** |
Cauliflower (CK) | 97.22 ± 2.88 | 73.0 ± 2.75 | 10.67 ± 0.43 | 18.33 ± 0.91 | 19.23 ± 1.21 | 0.65 ± 0.03 | 20,892.9 ± 964.29 | |||
Cabbage | 55.87 ± 7.18 | 47.8 ± 3.98 | 18.23 ± 0.85 | 20.03 ± 1.00 | 10.4 ± 0.50 | 1.27 ± 0.06 | 71,460.3 ± 3375.0 | 9.99 | 0.0027 | ** |
Cabbage (CK) | 46.31 ± 2.02 | 37.7 ± 1.31 | 15.5 ± 0.31 | 17.8 ± 0.42 | 9.62 ± 1.51 | 0.92 ± 0.05 | 51,766.5 ± 2812.5 | |||
Celery | - | 77.39 ± 0.82 | - | - | 12.27 ± 0.67 | 0.394 ± 0.02 | 98,545.1 ± 5000 | −0.89 | 0.4376 | ns |
Celery (CK) | - | 75.5 ± 3.75 | - | - | 9 ± 0.53 | 0.393 ± 0.02 | 98.295.0 ± 5000 |
Cauliflower | Cauliflower (CK) | p-Value | Signifigance | Cabbage | Cabbage (CK) | p-Value | Signifigance | Celery | Celery (CK) | p-Value | Signifigance | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude protein, g/100 g | 1.67 ± 0.08 | 1.38 ± 0.03 | 0.0089 | ** | 1.26 ± 0.04 | 1.16 ± 0.05 | 0.052 | ns | 0.90 ± 0.01 | 0.93 ± 0.02 | 0.2412 | ns |
Vitamin C, mg/100 g | 38.0 ± 1.7 | 39.7 ± 0.49 | 0.469 | ns | 35.5 ± 1.36 | 35.1 ±1.19 | 0.525 | ns | 1.36 ± 0.07 | 2.00 ± 0.02 | 0.031 | * |
Moisture, % | 92.4 ± 1.71 | 93.4 ± 4.04 | 0.312 | ns | 93.3 ± 1.62 | 93.7 ± 1.62 | 0.657 | ns | 94.2 ± 2.92 | 95.2 ± 2.11 | 0.331 | ns |
Dry matter, % | 7.6 ± 0.16 | 6.6 ± 0.18 | 0.021 | * | 6.7 ± 0.1 | 6.3 ± 0.22 | 0.288 | ns | 5.8 ± 0.14 | 4.8 ± 0.1 | 0.008 | ** |
Crude fiber, % | 1.0 ± 0.04 | 0.9 ± 0.01 | 0.044 | * | 0.6 ± 0.02 | 0.6 ± 0.01 | 0.864 | ns | 0.7 ± 0.01 | 0.6 ± 0.02 | 0.048 | * |
Soluble total sugar, % | 2.75 ± 0.05 | 2.13 ± 0.07 | 0.028 | * | 3.17 ± 0.15 | 2.84 ± 0.04 | 0.074 | ns | 0.94 ± 0.04 | 0.52 ± 0.03 | 0.003 | ** |
Fe, mg/kg | 7.30 ± 0.1 | 3.09 ± 0.07 | <0.001 | *** | 3.84 ± 0.11 | 2.76 ± 0.1 | 0.007 | ** | 9.35 ± 0.28 | 7.26 ± 0.11 | 0.017 | * |
Ca, mg/kg | 215 ± 9.97 | 2052± 2.33 | 0.341 | ns | 366 ± 13.36 | 363 ± 7.39 | 0.839 | ns | 845 ± 26.01 | 1062 ± 23.86 | 0.001 | ** |
K, mg/kg | 327 ± 5.69 | 261 ± 8.32 | 0.025 | * | 217 ± 8.9 | 188 ± 9.17 | 0.052 | ns | 355 ± 16.26 | 305 ± 14.51 | 0.2412 | ns |
Mg, mg/kg | 146 ± 6.84 | 126 ± 4.27 | 0.057 | ** | 140 ± 2.5 | 142 ± 1.92 | 0.694 | ns | 186 ± 3.34 | 183 ± 2.16 | 0.25 | ns |
Zinc, mg/kg | 2.80 ± 0.01 | 2.09 ± 0.05 | 0.014 | ns | 1.31 ± 0.03 | 1.28 ± 0.06 | 0.409 | ns | 1.42 ± 0.05 | 1.00 ± 0.02 | 0.043 | * |
Soluble Solid Content, % | Titrable Acid (Measured in Malic Acid), % | Soluble Sugar, % | Sugar-Acid Ratio | Lycopene, mg/kg | |
---|---|---|---|---|---|
Tomato (CK) | 4.45 ± 0.11 a | 0.2 ± 0.02 a | 0.13 ± 0.01 b | 2.76 ± 0.11 a | 193.28 ± 9.17 a |
Tomato (cow dung) | 4.72 ± 0.23 a | 0.23 ± 0.02 a | 0.04 ± 0 a | 3.12 ± 0.02 b | 387.35 ± 7.14 b |
Tomato (SMS treatment) | 4.9 ± 0.19 b | 0.29 ± 0.02 b | 0.23 ± 0.01 c | 4.16 ± 0.12 c | 539.37 ± 8.37 c |
p-value | 0.0074 | 0.0061 | 0.0001 | 0.0004 | <0.0001 |
Significance | ** | ** | *** | *** | *** |
Hydrolytic Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/kg) | pH | Electric Conductivity (µS/cm) | Soil Organic Matter (g/kg) | |
---|---|---|---|---|---|---|
Slightly saline soil | 213.21 ± 5.33 c | 31.52 ± 0.39 d | 159 ± 6.88 d | 8.01 ± 0.22 b | 1132 ± 31.97 c | 14.80 ± 0.51 c |
Heavily saline–alkaline soil | 73.47 ± 3.53 e | 22.17 ± 0.90 d | 107 ± 1.98 e | 8.34 ± 0.19 a | 3840 ± 89.91 a | 9.29 ± 0.16 d |
Conventional substrate soil | 271.36 ± 10.69 b | 454.85 ± 15.49 b | 517.5 ± 8.94 c | 7.45 ± 0.26 c | 966 ± 25.92 d | 19.56 ± 0.25 b |
Cow manure-amended soil | 436.43 ± 14.92 a | 456.83 ± 17.51 b | 592.5 ± 10.27 b | 7.32 ± 0.11 cd | 644 ± 17.38 e | 27.98 ± 1.34 b |
SMS soil | 248.85 ± 4.04 b | 669.93 ± 7.25 a | 1402.5 ± 31.09 a | 7.66 ± 0.17 bc | 1789 ± 60.28 b | 16.55 ± 0.8 c |
post-cropped SMS-amended soil | 100.98 ± 1.64 d | 502.38 ± 24.51 b | 1275 ± 39.51 a | 6.75 ± 0.23 e | 3711 ± 44.01 a | 162.78 ± 6.89 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, F.; Wang, Y.; Ren, H.; Wan, L.; Guo, H.; Jia, Y.; Liu, X.; Ning, F.; Shi, G.; Ren, P. A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns. Horticulturae 2025, 11, 730. https://doi.org/10.3390/horticulturae11070730
Bian F, Wang Y, Ren H, Wan L, Guo H, Jia Y, Liu X, Ning F, Shi G, Ren P. A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns. Horticulturae. 2025; 11(7):730. https://doi.org/10.3390/horticulturae11070730
Chicago/Turabian StyleBian, Fei, Yonghui Wang, Haixia Ren, Luzhang Wan, Huidong Guo, Yuxue Jia, Xia Liu, Fanhua Ning, Guojun Shi, and Pengfei Ren. 2025. "A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns" Horticulturae 11, no. 7: 730. https://doi.org/10.3390/horticulturae11070730
APA StyleBian, F., Wang, Y., Ren, H., Wan, L., Guo, H., Jia, Y., Liu, X., Ning, F., Shi, G., & Ren, P. (2025). A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns. Horticulturae, 11(7), 730. https://doi.org/10.3390/horticulturae11070730