Innovative and Sustainable Management Practices and Tools for Enhanced Salinity Tolerance of Vegetable Crops
Abstract
1. Introduction
2. Fertilization Management in Soil Crops
3. Nutrient Solution Adjustments in Soilless Culture Systems for Managing Salinity Stress
4. Salinity Management Through Irrigation Strategies
5. Grafting for Enhanced Salinity Tolerance
5.1. Rootstock-Mediated Responses to Salinity Stress
5.2. Grafting Limitations
5.3. Landraces and Crop Wild Relatives as Rootstocks for Salinity Tolerance
6. Biofortification Strategies and Salinity Tolerance
7. Biostimulants for Enhanced Salinity Tolerance
7.1. Microbial Biostimulants
7.1.1. Plant Growth-Promoting Rhizobacteria (PGPRs)
7.1.2. Arbuscular Mycorrhizal Fungi (AMF)
7.2. Non-Microbial Biostimulants
7.2.1. Seaweed Extract Applications
7.2.2. Use of Microalgae-Based Products to Enhance Crop Growth and Salt Stress Mitigation
7.2.3. Protein Hydrolysates and Other Organic Compounds
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vijai, C.; Worakamol, W.; Elayaraja, M. Climate Change and Its Impact on Agriculture. Int. J. Agric. Sci. Vet. Med. 2023, 11, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, S.; Liu, C.; Gao, W.; Liang, X.Z. A Bibliometric Analysis of Research for Climate Impact on Agriculture. Front. Sustain. Food Syst. 2023, 7, 1191305. [Google Scholar] [CrossRef]
- Lam, D. The Next 2 Billion: Can the World Support 10 Billion People? Popul. Dev. Rev. 2025, 51, 63–102. [Google Scholar] [CrossRef]
- Roy, S.J.; Negrão, S.; Tester, M. Salt Resistant Crop Plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Soil Salinity: A Global Threat to Sustainable Development. Soil Use Manag. 2021, 38, 39–67. [Google Scholar] [CrossRef]
- Warrence, N.J.; Bauder, J.W.; Pearson, K.E. Basics of Salinity and Sodicity Effects on Physical Properties. Mont. State Univ. 2003, 129, 1–29. [Google Scholar]
- Savvas, D.; Giannothanasis, E.; Ntanasi, T.; Karavidas, I.; Ntatsi, G. State of the Art and New Technologies to Recycle the Fertigation Effluents in Closed Soilless Cropping Systems Aiming to Maximise Water and Nutrient Use Efficiency in Greenhouse Crops. Agronomy 2024, 14, 61. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Fricke, W. Salt Stress—Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. Int. J. Mol. Sci. 2023, 24, 8070. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Zhang, Y.; Mu, Y.; Li, Y.; Nie, L. Regulation of 2-Acetyl-1-Pyrroline (2-AP) Biosynthesis and Grain Quality in Fragrant Rice under Salt Stress. F. Crops Res. 2025, 322, 109747. [Google Scholar] [CrossRef]
- Ahmed, M.; Tóth, Z.; Decsi, K. The Impact of Salinity on Crop Yields and the Confrontational Behavior of Transcriptional Regulators, Nanoparticles, and Antioxidant Defensive Mechanisms under Stressful Conditions: A Review. Int. J. Mol. Sci. 2024, 25, 2654. [Google Scholar] [CrossRef] [PubMed]
- Shabala, S.; Cuin, T.A. Potassium Transport and Plant Salt Tolerance. Physiol. Plant. 2008, 133, 651–669. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Giraldo, J.P.; Shabala, S. It Is Not All about Sodium: Revealing Tissue Specificity and Signalling Roles of Potassium in Plant Responses to Salt Stress. Plant Soil 2018, 431, 1–17. [Google Scholar] [CrossRef]
- Atta, K.; Mondal, S.; Gorai, S.; Singh, A.P.; Kumari, A.; Ghosh, T.; Roy, A.; Hembram, S.; Gaikwad, D.J.; Mondal, S.; et al. Impacts of Salinity Stress on Crop Plants: Improving Salt Tolerance through Genetic and Molecular Dissection. Front. Plant Sci. 2023, 14, 1241736. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genomics 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Khalid, M.F.; Huda, S.; Yong, M.; Li, L.; Li, L.; Chen, Z.H.; Ahmed, T. Alleviation of Drought and Salt Stress in Vegetables: Crop Responses and Mitigation Strategies. Plant Growth Regul. 2022, 99, 177–194. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Liang, X.; Gao, Y.; Zhang, X.; Tian, Y.; Zhang, Z.; Gao, L. Effect of Optimal Daily Fertigation on Migration of Water and Salt in Soil, Root Growth and Fruit Yield of Cucumber (Cucumis sativus L.) in Solar-Greenhouse. PLoS ONE 2014, 9, e86975. [Google Scholar] [CrossRef] [PubMed]
- Van Tan, L.; Thanh, T. The Effects of Salinity on Changes in Characteristics of Soils Collected in a Saline Region of the Mekong Delta, Vietnam. Open Chem. 2021, 19, 471–480. [Google Scholar] [CrossRef]
- Grattan, S.; Grieve, C. Mineral Nutrient Acquisition and Response by Plants Grown in Saline Environments. In Handbook of Plant and Crop Stress, 2nd ed; Pessarakli, M., Ed.; Marcel Dekker: New York, NY, USA, 1999; pp. 203–229. [Google Scholar]
- Hu, Y.; Schmidhalter, U. Drought and Salinity: A Comparison of Their Effects on Mineral Nutrition of Plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Loudari, A.; Mayane, A.; Zeroual, Y.; Colinet, G.; Oukarroum, A. Photosynthetic Performance and Nutrient Uptake under Salt Stress: Differential Responses of Wheat Plants to Contrasting Phosphorus Forms and Rates. Front. Plant Sci. 2022, 13, 1038672. [Google Scholar] [CrossRef]
- Urrea-López, R.; de la Garza, R.I.D.; Valiente-Banuet, J.I. Effects of Substrate Salinity and Nutrient Levels on Physiological Response, Yield, and Fruit Quality of Habanero Pepper. HortScience 2014, 49, 812–818. [Google Scholar] [CrossRef]
- Rubio, J.S.; García-Sánchez, F.; Rubio, F.; García, A.L.; Martínez, V. The Importance of K+ in Ameliorating the Negative Effects of Salt Stress on the Growth of Pepper Plants. Eur. J. Hortic. Sci. 2010, 75, 33–41. [Google Scholar] [CrossRef]
- Attaoui, S.; Oulahraoui, M.; Choukr-Allah, R.; Fallah, M.; Khalid, A. The Effect of Phosphorus Fertilization on Pepper Growth and Production Under Saline Conditions. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (2nd Edition), Proceedings of the 2nd Euro-Mediterranean Conference for Environmental Integration (EMCEI-2), Sousse, Tunisia, 10–13 Octorber 2019; Springer Nature: Berlin/Heidelberg, Germany, 2021; pp. 1201–1205. [Google Scholar] [CrossRef]
- Cheruth, A.J.; Ramadhan, K.I.M.; Kurup, S.S. Calcium Supplementation Ameliorates Salinity Stress in Lactuca sativa Plants. J. Appl. Hortic. 2016, 18, 138–140. [Google Scholar] [CrossRef]
- Kaya, C.; Higgs, D.; Sakar, E. Response of Two Leafy Vegetables Grown at High Salinity to Supplementary Potassium and Phosphorus during Different Growth Stages. J. Plant Nutr. 2002, 25, 2663–2676. [Google Scholar] [CrossRef]
- Savci, S. An Agricultural Pollutant: Chemical Fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73–80. [Google Scholar] [CrossRef]
- Ju, X.T.; Kou, C.L.; Christie, P.; Dou, Z.X.; Zhang, F.S. Changes in the Soil Environment from Excessive Application of Fertilizers and Manures to Two Contrasting Intensive Cropping Systems on the North China Plain. Environ. Pollut. 2007, 145, 497–506. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Naz, T.; Mazhar Iqbal, M.; Tahir, M.; Hassan, M.M.; Rehmani, M.I.A.; Zafar, M.I.; Ghafoor, U.; Qazi, M.A.; El Sabagh, A.; Sakran, M.I. Foliar Application of Potassium Mitigates Salinity Stress Conditions in Spinach (Spinacia oleracea L.) through Reducing Nacl Toxicity and Enhancing the Activity of Antioxidant Enzymes. Horticulturae 2021, 7, 566. [Google Scholar] [CrossRef]
- Ntanasi, T.; Ntatsi, G.; Karavidas, I.; Ziogas, I.; Karaolani, M.; Fortis, D.; Zioviris, G.; Fotopoulos, V.; Schubert, A.; Guillaume, M.; et al. Impact of Salinity Stress on Fruit Quality of Different Mediterranean Cherry-Type Tomato Landraces. Acta Hortic. 2023, 1372, 301–307. [Google Scholar] [CrossRef]
- Ntanasi, T.; Savvas, D.; Karavidas, I.; Papadopoulou, E.A.; Mazahrirh, N.; Fotopoulos, V.; Aliferis, K.A.; Sabatino, L.; Ntatsi, G. Assessing Salinity Tolerance and Fruit Quality of Pepper Landraces. Agronomy 2024, 14, 309. [Google Scholar] [CrossRef]
- Kaya, C.; Kirnak, H.; Higgs, D. Enhancement of Growth and Normal Growth Parameters by Foliar Application of Potassium and Phosphorus in Tomato Cultivars Grown at High (NaCl) Salinity. J. Plant Nutr. 2001, 24, 357–367. [Google Scholar] [CrossRef]
- Sassine, Y.N.; Alturki, S.M.; Germanos, M.; Shaban, N.; Sattar, M.N.; Sajyan, T.K. Mitigation of Salt Stress on Tomato Crop by Using Foliar Spraying or Fertigation of Various Products. J. Plant Nutr. 2020, 43, 2493–2507. [Google Scholar] [CrossRef]
- Hussein, M.M.; El-Faham, S.Y.; Alva, A.K. Pepper Plants Growth, Yield, Photosynthetic Pigments, and Total Phenols as Affected by Foliar Application of Potassium under Different Salinity Irrigation Water. Agric. Sci. 2012, 3, 241–248. [Google Scholar] [CrossRef]
- Kaya, G. Ameliorative Effects of Foliar Potassium Nitrate on the Growth, Physiological, and Stomatal Properties of Lettuce Plants under Salinity Stress. J. Plant Nutr. 2023, 46, 2882–2892. [Google Scholar] [CrossRef]
- Irin, I.J.; Hasanuzzaman, M. Organic Amendments: Enhancing Plant Tolerance to Salinity and Metal Stress for Improved Agricultural Productivity. Stresses 2024, 4, 185–209. [Google Scholar] [CrossRef]
- Savy, D.; Cozzolino, V.; Vinci, G.; Verrillo, M.; Aliberti, A.; Maggio, A.; Barone, A.; Piccolo, A. Fertilisation with Compost Mitigates Salt Stress in Tomato by Affecting Plant Metabolomics and Nutritional Profiles. Chem. Biol. Technol. Agric. 2022, 9, 104. [Google Scholar] [CrossRef]
- Murtaza, G.; Usman, M.; Iqbal, J.; Tahir, M.N.; Elshikh, M.S.; Alkahtani, J.; Toleikienė, M.; Iqbal, R.; Akram, M.I.; Gruda, N.S. The Impact of Biochar Addition on Morpho-Physiological Characteristics, Yield and Water Use Efficiency of Tomato Plants under Drought and Salinity Stress. BMC Plant Biol. 2024, 24, 356. [Google Scholar] [CrossRef]
- Leogrande, R.; Lopedota, O.; Vitti, C.; Ventrella, D.; Montemurro, F. Saline Water and Municipal Solid Waste Compost Application on Tomato Crop: Effects on Plant and Soil. J. Plant Nutr. 2016, 39, 491–501. [Google Scholar] [CrossRef]
- Yan, S.; Gao, Y.; Tian, M.; Tian, Y.; Li, J. Comprehensive Evaluation of Effects of Various Carbon-Rich Amendments on Tomato Production under Continuous Saline Water Irrigation: Overall Soil Quality, Plant Nutrient Uptake, Crop Yields and Fruit Quality. Agric. Water Manag. 2021, 255, 106995. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, Y.; Li, J.; Tian, Y. Straw Composts, Gypsum and Their Mixtures Enhance Tomato Yields under Continuous Saline Water Irrigation. Agric. Water Manag. 2019, 223, 105721. [Google Scholar] [CrossRef]
- Saifullah; Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar Application for the Remediation of Salt-Affected Soils: Challenges and Opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar] [CrossRef]
- Qian, S.; Zhou, X.; Fu, Y.; Song, B.; Yan, H.; Chen, Z.; Sun, Q.; Ye, H.; Qin, L.; Lai, C. Biochar-Compost as a New Option for Soil Improvement: Application in Various Problem Soils. Sci. Total Environ. 2023, 870, 162024. [Google Scholar] [CrossRef]
- Ud Din, M.M.; Khan, M.I.; Azam, M.; Ali, M.H.; Qadri, R.; Naveed, M.; Nasir, A. Effect of Biochar and Compost Addition on Mitigating Salinity Stress and Improving Fruit Quality of Tomato. Agronomy 2023, 13, 2197. [Google Scholar] [CrossRef]
- Papadopoulos, I.; Rendig, V.V. Interactive Effects of Salinity and Nitrogen on Growth and Yield of Tomato Plants. Plant Soil 1983, 73, 47–57. [Google Scholar] [CrossRef]
- Cerda, A.; Martinez, V. Nitrogen Fertilization under Saline Conditions in Tomato and Cucumber Plants. J. Hortic. Sci. 1988, 63, 451–458. [Google Scholar] [CrossRef]
- Singh, M.; Singh, V.P.; Prasad, S.M. Responses of Photosynthesis, Nitrogen and Proline Metabolism to Salinity Stress in Solanum lycopersicum under Different Levels of Nitrogen Supplementation. Plant Physiol. Biochem. 2016, 109, 72–83. [Google Scholar] [CrossRef]
- Shabani, E.; Tabatabaei, S.J.; Bolandnazar, S.; Ghasemi, K. Vegetative Growth and Nutrient Uptake of Salinity Stressed Cherry Tomato in Different Calcium and Potassium Level. Int. Res. J. Appl. Basic Sci. 2012, 3, 1845–1853. [Google Scholar]
- Amjad, M.; Akhtar, J.; Anwar-Ul-Haq, M.; Imran, S.; Jacobsen, S.E. Soil and Foliar Application of Potassium Enhances Fruit Yield and Quality of Tomato under Salinity. Turkish J. Biol. 2014, 38, 208–218. [Google Scholar] [CrossRef]
- Islam, M.M.; Jahan, K.; Sen, A.; Urmi, T.A.; Haque, M.M.; Ali, H.M.; Siddiqui, M.H.; Murata, Y. Exogenous Application of Calcium Ameliorates Salinity Stress Tolerance of Tomato (Solanum lycopersicum L.) and Enhances Fruit Quality. Antioxidants 2023, 12, 558. [Google Scholar] [CrossRef]
- Capula-Rodríguez, R.; Valdez-Aguilar, L.A.; Cartmill, D.L.; Cartmill, A.D.; Alia-Tejacal, I. Supplementary Calcium and Potassium Improve the Response of Tomato (Solanum lycopersicum L.) to Simultaneous Alkalinity, Salinity, and Boron Stress. Commun. Soil Sci. Plant Anal. 2016, 47, 505–511. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Abd El-Mageed, T.A.; Mohamed, I.A.A.; Semida, W.M.; Al-Elwany, O.A.A.I.; Ibrahim, I.M.; Hemida, K.A.; El-Saadony, M.T.; AbuQamar, S.F.; El-Tarabily, K.A.; et al. Soil Application of Effective Microorganisms and Nitrogen Alleviates Salt Stress in Hot Pepper (Capsicum annum L.) Plants. Front. Plant Sci. 2023, 13, 1079260. [Google Scholar] [CrossRef]
- Kaya, C.; Kirnak, H.; Higgs, D. Effects of Supplementary Potassium and Phosphorus on Physiological Development and Mineral Nutrition of Cucumber and Pepper Cultivars Grown at High Salinity (NaCl). J. Plant Nutr. 2001, 24, 1457–1471. [Google Scholar] [CrossRef]
- Akladious, S.A.; Mohamed, H.I. Ameliorative Effects of Calcium Nitrate and Humic Acid on the Growth, Yield Component and Biochemical Attribute of Pepper (Capsicum annuum) Plants Grown under Salt Stress. Sci. Hortic. 2018, 236, 244–250. [Google Scholar] [CrossRef]
- Contreras, J.I.; Plaza, B.M.; Lao, M.T.; Segura, M.L. Growth and Nutritional Response of Melon to Water Quality and Nitrogen Potassium Fertigation Levels under Greenhouse Mediterranean Conditions. Commun. Soil Sci. Plant Anal. 2012, 43, 434–444. [Google Scholar] [CrossRef]
- Ahmad, W.; Ayyub, C.M.; Shehzad, M.A.; Ziaf, K.; Ijaz, M.; Sher, A.; Abbas, T.; Shaf, J. Supplemental Potassium Mediates Antioxidant Metabolism, Physiological Processes, and Osmoregulation to Confer Salt Stress Tolerance in Cabbage (Brassica oleracea L.). Hortic. Environ. Biotechnol. 2019, 60, 853–869. [Google Scholar] [CrossRef]
- Piñero, M.C.; Pérez-Jiménez, M.; López-Marín, J.; del Amor, F.M. Fruit Quality of Sweet Pepper as Affected by Foliar Ca Applications to Mitigate the Supply of Saline Water under a Climate Change Scenario. J. Sci. Food Agric. 2018, 98, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Rab, A.; Sajid, M.; Ahmad, N.; Nawab, K.; Ali, S.G. Foliar Calcium Application Ameliorates Salinity-Induced Changes of Tomato Crop Grown in Saline Conditions. Sarhad J. Agric. 2017, 33, 540–548. [Google Scholar] [CrossRef]
- Tartoura, K.A.H.; Youssef, S.A.; Tartoura, E.S.A.A. Compost Alleviates the Negative Effects of Salinity via Up-Regulation of Antioxidants in Solanum lycopersicum L. Plants. Plant Growth Regul. 2014, 74, 299–310. [Google Scholar] [CrossRef]
- Gunes, H.; Demir, S.; Erdinc, C.; Furan, M.A. Effects of Arbuscular Mycorrhizal Fungi (AMF) and Biochar On the Growth of Pepper (Capsicum annuum L.) Under Salt Stress. Gesunde Pflanz. 2023, 75, 2669–2681. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Rady, M.M.; Taha, R.S.; Abd El Azeam, S.; Simpson, C.R.; Semida, W.M. Effects of Integrated Use of Residual Sulfur-Enhanced Biochar with Effective Microorganisms on Soil Properties, Plant Growth and Short-Term Productivity of Capsicum annuum under Salt Stress. Sci. Hortic. 2020, 261, 108930. [Google Scholar] [CrossRef]
- Ikan, C.; Nilahyane, A.; Ouhaddou, R.; Soussani, F.E.; Sbbar, N.; Salah-Eddine, H.; Kouisni, L.; Hafidi, M.; Meddich, A. Interactive Effects of Arbuscular Mycorrhizal Fungi, Plant Growth-Promoting Rhizobacteria, and Compost on Durum Wheat Resilience, Productivity, and Soil Health in Drought-Stressed Environment. Plant Soil 2025. [Google Scholar] [CrossRef]
- Parkash, V.; Singh, S. Potential of Biochar Application to Mitigate Salinity Stress in Eggplant. HortScience 2020, 55, 1946–1955. [Google Scholar] [CrossRef]
- Hannachi, S.; Signore, A.; Mechi, L. Alleviation of Associated Drought and Salinity Stress’ Detrimental Impacts on an Eggplant Cultivar (‘Bonica F1’) by Adding Biochar. Plants 2023, 12, 1399. [Google Scholar] [CrossRef]
- Mahmoud, A.W.M.; Samy, M.M.; Sany, H.; Eid, R.R.; Rashad, H.M.; Abdeldaym, E.A. Nanopotassium, Nanosilicon, and Biochar Applications Improve Potato Salt Tolerance by Modulating Photosynthesis, Water Status, and Biochemical Constituents. Sustain. 2022, 14, 723. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Biochar Mitigates Salinity Stress in Potato. J. Agron. Crop Sci. 2015, 201, 368–378. [Google Scholar] [CrossRef]
- Al-Toobi, M.; Janke, R.R.; Khan, M.M.; Ahmed, M.; Al-Busaidi, W.M.; Rehman, A. Silica and Biochar Amendments Improve Cucumber Growth under Saline Conditions. Soil Syst. 2023, 7, 26. [Google Scholar] [CrossRef]
- Elbashier, M.M.A.; Xiaohou, S.; Ali, A.A.S.; Mohmmed, A. Effect of Digestate and Biochar Amendments on Photosynthesis Rate, Growth Parameters, Water Use Efficiency and Yield of Chinese Melon (Cucumis melo L.) under Saline Irrigation. Agronomy 2018, 8, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Q.; Zhang, F.; Wang, W.; Wu, C. Effects of Biochar on the Yield of Melon and the Diversity of Rhizosphere Soil Microbial Communities Under Saline–Alkali Stress. Plants 2025, 14, 1423. [Google Scholar] [CrossRef]
- Fedeli, R.; Vannini, A.; Djatouf, N.; Celletti, S.; Loppi, S. Can Lettuce Plants Grow in Saline Soils Supplemented with Biochar? Heliyon 2024, 10, e26526. [Google Scholar] [CrossRef] [PubMed]
- Sahin, O.; Gunes, A.; Yagcıoglu, K.D.; Kadioglu, Y.K. Mitigating Combined Boron and Salt Stress in Lettuce (Lactuca sativa L. Semental) through Salicylic Acid-Modified Rice Husk Biochar. J. Soil Sci. Plant Nutr. 2024, 24, 5220–5234. [Google Scholar] [CrossRef]
- Kul, R.; Arjumend, T.; Ekinci, M.; Yildirim, E.; Turan, M.; Argin, S. Biochar as an Organic Soil Conditioner for Mitigating Salinity Stress in Tomato. Soil Sci. Plant Nutr. 2021, 67, 693–706. [Google Scholar] [CrossRef]
- Kamal, M.Z.U.; Sarker, U.; Roy, S.K.; Alam, M.S.; Azam, M.G.; Miah, M.Y.; Hossain, N.; Ercisli, S.; Alamri, S. Manure-Biochar Compost Mitigates the Soil Salinity Stress in Tomato Plants by Modulating the Osmoregulatory Mechanism, Photosynthetic Pigments, and Ionic Homeostasis. Sci. Rep. 2024, 14, 21929. [Google Scholar] [CrossRef] [PubMed]
- She, D.; Sun, X.; Gamareldawla, A.H.D.; Nazar, E.A.; Hu, W.; Edith, K.; Yu, S. Benefits of Soil Biochar Amendments to Tomato Growth under Saline Water Irrigation. Sci. Rep. 2018, 8, 14743. [Google Scholar] [CrossRef] [PubMed]
- Zonayet, M.; Paul, A.K.; Faisal-E-Alam, M.; Syfullah, K.; Castanho, R.A.; Meyer, D. Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato. Sustainability 2023, 15, 4832. [Google Scholar] [CrossRef]
- Blok, C.; Voogt, W.; Barbagli, T. Reducing Nutrient Imbalance in Recirculating Drainage Solution of Stone Wool Grown Tomato. Agric. Water Manag. 2023, 285, 108360. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, W.M.; Martínez, V.; Nieves, M.; Simón, I.; Lidón, V.; Fernandez-Zapata, J.C.; Martinez-Nicolas, J.J.; Cámara-Zapata, J.M.; García-Sánchez, F. Agricultural and Physiological Responses of Tomato Plants Grown in Different Soilless Culture Systems with Saline Water under Greenhouse Conditions. Sci. Rep. 2019, 9, 6733. [Google Scholar] [CrossRef]
- Cedeño, J.; Magán, J.J.; Thompson, R.B.; Fernández, M.D.; Gallardo, M. Reducing Nutrient Loss in Drainage from Tomato Grown in Free-Draining Substrate in Greenhouses Using Dynamic Nutrient Management. Agric. Water Manag. 2023, 287, 108418. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Carmassi, G.; Campiotti, C.A.; Pardossi, A. Strategies to Decrease Water Drainage and Nitrate Emission from Soilless Cultures of Greenhouse Tomato. Agric. Water Manag. 2010, 97, 971–980. [Google Scholar] [CrossRef]
- van der Salm, C.; Voogt, W.; Beerling, E.; van Ruijven, J.; van Os, E. Minimising Emissions to Water Bodies from NW European Greenhouses; with Focus on Dutch Vegetable Cultivation. Agric. Water Manag. 2020, 242, 106398. [Google Scholar] [CrossRef]
- Magán, J.J.; Casas, E.; Gallardo, M.; Thompson, R.B.; Lorenzo, P. Uptake Concentrations of a Tomato Crop in Different Salinity Conditions. Acta Hortic. 2005, 697, 365–369. [Google Scholar] [CrossRef]
- Neocleous, D.; Savvas, D. Simulating NaCl Accumulation in a Closed Hydroponic Crop of Zucchini: Impact on Macronutrient Uptake, Growth, Yield, and Photosynthesis. J. Plant Nutr. Soil Sci. 2017, 180, 283–293. [Google Scholar] [CrossRef]
- Savvas, D.; Pappa, V.A.; Kotsiras, A.; Gizas, G. NaCl Accumulation in a Cucumber Crop Grown in a Completely Closed Hydroponic System as Influenced by NaCI Concentration in Irrigation Water. Eur. J. Hortic. Sci. 2005, 70, 217–223. [Google Scholar] [CrossRef]
- Varlagas, H.; Savvas, D.; Mouzakis, G.; Liotsos, C.; Karapanos, I.; Sigrimis, N. Modelling Uptake of Na+ and Cl- by Tomato in Closed-Cycle Cultivation Systems as Influenced by Irrigation Water Salinity. Agric. Water Manag. 2010, 97, 1242–1250. [Google Scholar] [CrossRef]
- Voogt, W.; Van Os, E.A. Strategies to Manage Chemical Water Quality Related Problems in Closed Hydroponic Systems. Acta Hortic. 2012, 927, 949–956. [Google Scholar] [CrossRef]
- Karatsivou, E.; Elvanidi, A.; Faliagka, S.; Naounoulis, I.; Katsoulas, N. Performance Evaluation of a Cascade Cropping System. Horticulturae 2023, 9, 802. [Google Scholar] [CrossRef]
- Naounoulis, I.; Faliagka, S.; Levizou, E.; Katsoulas, N. Cascade Hydroponics Enhanced Water and Nutrients Use Efficiency in a Greenhouse Cucumber-Melon Crop Combination. Sci. Hortic. 2024, 338, 113822. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Bibbiani, C.; Carmassi, G.; Malorgio, F.; Pardossi, A. Simulation of Crop Water and Mineral Relations in Greenhouse Soilless Culture. Environ. Model. Softw. 2011, 26, 711–722. [Google Scholar] [CrossRef]
- Carmassi, G.; Incrocci, L.; Maggini, R.; Malorgio, F.; Tognoni, F.; Pardossi, A. Modeling Salinity Build-up in Recirculating Nutrient Solution Culture. J. Plant Nutr. 2005, 28, 431–445. [Google Scholar] [CrossRef]
- Katsoulas, N.; Savvas, D.; Kitta, E.; Bartzanas, T.; Kittas, C. Extension and Evaluation of a Model for Automatic Drainage Solution Management in Tomato Crops Grown in Semi-Closed Hydroponic Systems. Comput. Electron. Agric. 2015, 113, 61–71. [Google Scholar] [CrossRef]
- Neocleous, D.; Savvas, D. NaCl Accumulation and Macronutrient Uptake by a Melon Crop in a Closed Hydroponic System in Relation to Water Uptake. Agric. Water Manag. 2016, 165, 22–32. [Google Scholar] [CrossRef]
- Sodini, M.; Cacini, S.; Navarro, A.; Traversari, S.; Massa, D. Estimation of Pore-Water Electrical Conductivity in Soilless Tomatoes Cultivation Using an Interpretable Machine Learning Model. Comput. Electron. Agric. 2024, 218, 108746. [Google Scholar] [CrossRef]
- Sonneveld, C.; Burg, A.M.M. van der Sodium Chloride Salinity in Fruit Vegetable Crops in Soilless Culture. Netherlands J. Agric. Sci. 1991, 39, 115–122. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Plant Nutritions of Greenhouse Crop; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9788578110796. [Google Scholar]
- Voogt, W.; Ismael, A.D.; Oud, N.; Leyh, R. Dealing with Na Accumulation in Soilless Systems with Recirculation of Drainwater: A Case Study with Sweet Pepper (Capsicum annuum). Acta Hortic. 2021, 1321, 141–148. [Google Scholar] [CrossRef]
- Voogt, W.; Barbagli, T.; Oud, N.; Andrea, D.; Bo, L. Effect of Sodium Concentrations in the Root Environment on Yield and Fruit Quality of Soilless Grown Tomato with Closed-Loop Irrigation System. Acta Hortic. 2023, 1377, 623–629. [Google Scholar] [CrossRef]
- Kempkes, F.; Stanghellini, C. Modelling Salt Accumulation in a Closed System: A Tool for Management with Irrigation Water of Poor Quality. Acta Hortic. 2003, 614, 143–148. [Google Scholar] [CrossRef]
- Giannothanasis, E.; Spanoudaki, E.; Kinnas, S.; Ntatsi, G.; Voogt, W.; Savvas, D. Development and Validation of an Innovative Algorithm for Sodium Accumulation Management in Closed-Loop Soilless Culture Systems. Agric. Water Manag. 2024, 301, 108968. [Google Scholar] [CrossRef]
- Savvas, D.; Adamidis, K. Automated Management of Nutrient Solutions Based on Target Electrical Conductivity, PH, and Nutrient Concentration Ratios. J. Plant Nutr. 1999, 22, 1415–1432. [Google Scholar] [CrossRef]
- Savvas, D.; Adamidis, K. Erratum. J. Plant Nutr. 2000, 23, 1371. [Google Scholar] [CrossRef]
- Seema; Dahiya, R.; Prakash, R.; Sheoran, H.S.; Roohi. Drip Irrigation as a Potential Alternative to Traditional Irrigation Method for Saline Water Usage in Vegetable Crops—A Review. Int. J. Econ. Plants 2022, 9, 115–120. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Wen, W.; Sun, J.; Shu, S.; Guo, S. Transcriptome and Proteome Analysis Identifies Salt Stress Response Genes in Bottle Gourd Rootstock-Grafted Watermelon Seedlings. Agronomy 2023, 13, 618. [Google Scholar] [CrossRef]
- Alshami, A.K.; El-Shafei, A.; Al-Omran, A.M.; Alghamdi, A.G.; Louki, I.; Alkhasha, A. Responses of Tomato Crop and Water Productivity to Deficit Irrigation Strategies and Salinity Stress in Greenhouse. Agronomy 2023, 13, 3016. [Google Scholar] [CrossRef]
- El Mokh, F.; Nagaz, K.; Masmoudi, M.M. Long-Term Potato Response to Different Irrigation Scheduling Methods Using Saline Water in an Arid Environment. Front. Agron. 2024, 6, 1426034. [Google Scholar] [CrossRef]
- Sabah, S.H.; Karim, T.H.; Tahir, H.T. Interactive Effect of Deficit Irrigation and Water Quality on Yield and Water Use Efficiency of Red Cabbage (Brassica oleracea Var. Capitate L.) under Drip Irrigation. IOP Conf. Ser. Earth Environ. Sci. 2023, 1262, 082005. [Google Scholar] [CrossRef]
- Nagaz, K.; Ben Mechlia, N.; Belkheiri, O.; Ghiglieri, G. Water and Land Security in Drylands; Springer Nature: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, S.; Huo, Z.; Zhao, Z.; Jia, B. Application of the SWAP Model to Simulate Water-Salt Transport under Deficit Irrigation with Saline Water. Math. Comput. Model. 2011, 54, 902–911. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Alshami, A.K.; El-Shafei, A.; Al-Omran, A.M.; Alkhasha, A.; Aly, A.A.; Alharbi, A.R. Evaluating Tomato Performance: A Novel Approach of Combining Full and Deficit Irrigation with Saline Water. Agronomy 2024, 14, 559. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Du, T. Study of Regulated Deficit Irrigation Regime Based on Individual Fruit Weight and Quality Response to Water Deficit Duration: A Case Study in Tomato. Agric. Water Manag. 2025, 307, 109232. [Google Scholar] [CrossRef]
- Raviv, M.; Wallach, R.; Silber, A.; Bar-Tal, A.; Raviv, M.; Wallach, R.; Silber, A.; Bar-Tal, A. Substrates and Their Analysis. Hydroponic Prod. Vegtables Ornam. 2002, 25–101. [Google Scholar]
- Bajwa, M.S.; Josan, A.S.; Choudhary, O.P. Effect of Frequency of Sodic and Saline-Sodic Irrigations and Gypsum on the Buildup of Sodium in Soil and Crop Yields. Irrig. Sci. 1993, 14, 21–26. [Google Scholar] [CrossRef]
- de Carvalho, J.F.; Montenegro, A.A.A.; Soares, T.M.; Silva, Ê.F.D.F.E.; Montenegro, S.M.G.L. Produtividade Do Repolho Utilizando Cobertura Morta e Diferentes Intervalos de Irrigação Com Água Moderadamente Salina. Rev. Bras. Eng. Agrícola Ambient. 2011, 15, 256–263. [Google Scholar] [CrossRef]
- Rahil, M.; Hajjeh, H.; Qanadillo, A. Effect of Saline Water Application through Different Irrigation Intervals on Tomato Yield and Soil Properties. Open J. Soil Sci. 2013, 3, 143–147. [Google Scholar] [CrossRef]
- Savvas, D.; Stamati, E.; Tsirogiannis, I.L.; Mantzos, N.; Barouchas, P.E.; Katsoulas, N.; Kittas, C. Interactions between Salinity and Irrigation Frequency in Greenhouse Pepper Grown in Closed-Cycle Hydroponic Systems. Agric. Water Manag. 2007, 91, 102–111. [Google Scholar] [CrossRef]
- Mahmoodi-Eshkaftaki, M.; Rafiee, M.R. Optimization of Irrigation Management: A Multi-Objective Approach Based on Crop Yield, Growth, Evapotranspiration, Water Use Efficiency and Soil Salinity. J. Clean. Prod. 2020, 252, 119901. [Google Scholar] [CrossRef]
- Rafiee, M.R.; Mahmoodi-Eshkaftaki, M. Optimization of Irrigation Management and Environmental Assessment Using the Water Cycle Algorithm. Soil Use Manag. 2023, 39, 917–932. [Google Scholar] [CrossRef]
- Visconti, F.; Salvador, A.; Navarro, P.; de Paz, J.M. Effects of Three Irrigation Systems on ‘Piel de Sapo’ Melon Yield and Quality under Salinity Conditions. Agric. Water Manag. 2019, 226, 105829. [Google Scholar] [CrossRef]
- Alomran, A.M.; Al-Harbi, A.A.R.; Wahb-Allah, M.A.; Alwabel, M.A.; Nadeem, M.E.A.; Al-Eter, A. Management of Irrigation Water Salinity in Greenhouse Tomato Production under Calcareous Sandy Soil and Drip Irrigation. J. Agric. Sci. Technol. 2012, 14, 939–950. [Google Scholar]
- Hanson, B.; May, D. Effect of Subsurface Drip Irrigation on Processing Tomato Yield, Water Table Depth, Soil Salinity, and Profitability. Agric. Water Manag. 2004, 68, 1–17. [Google Scholar] [CrossRef]
- Pasternak, D.; De Malach, Y. Irrigation with Brackish Water under Desert Conditions X. Irrigation Management of Tomatoes (Lycopersicon esculentum Mills) on Desert Sand Dunes. Agric. Water Manag. 1995, 28, 121–132. [Google Scholar] [CrossRef]
- Arriero, S.S.; de Almeida, W.F.; Paz, V.P.D.S.; Damasceno, L.F. Yield of Eggplant Using Low Quality Water and Pulse Drip Irrigation. Rev. Bras. Eng. Agric. E Ambient. 2020, 24, 822–826. [Google Scholar] [CrossRef]
- Damasceno, L.F.; Cova, A.M.W.; Gheyi, H.R.; de Almeida, W.F.; Leite Dias, J.A.A.; Ribeiro, V.D.S. Production and Water Consumption of Eggplant Under Salt Stress and Continuous Drip and Pulse Drip Irrigation1. Rev. Caatinga 2022, 35, 450–459. [Google Scholar] [CrossRef]
- Assouline, S.; Möller, M.; Cohen, S.; Ben-Hur, M.; Grava, A.; Narkis, K.; Silber, A. Soil-Plant System Response to Pulsed Drip Irrigation and Salinity. Soil Sci. Soc. Am. J. 2006, 70, 1556–1568. [Google Scholar] [CrossRef]
- de Almeida, W.F.; Paz, V.P.d.S.; de Jesus, A.P.C.; da Silva, J.S.; Gonçalves, K.S.; de Oliveira, A.S. Yield of Green Beans Subjected to Continuous and Pulse Drip Irrigation with Saline Water. Rev. Bras. Eng. Agric. Ambient. 2018, 22, 476–481. [Google Scholar] [CrossRef]
- Eba, T. The Impact of Alternate Furrow Irrigation on Water Productivity and Yield of Potato at Small Scale Irrigation, Ejere District, West Shoa. Ethiop. J. Plant Sci. Agric. Res. 2018, 2, 16. [Google Scholar]
- Okasha, A.M.; Deraz, N.; Elmetwalli, A.H.; Elsayed, S.; Falah, M.W.; Farooque, A.A.; Yaseen, Z.M. Effects of Irrigation Method and Water Flow Rate on Irrigation Performance, Soil Salinity, Yield, and Water Productivity of Cauliflower. Agriculture 2022, 12, 1164. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Ghuman, B.S.; Dhaliwal, M.S.; Chawla, N. Yield and Quality of Two Tomato (Solanum lycopersicum L.) Cultivars as Influenced by Drip and Furrow Irrigation Using Waters Having High Residual Sodium Carbonate. Irrig. Sci. 2010, 28, 513–523. [Google Scholar] [CrossRef]
- Malash, N.M.; Flowers, T.J.; Ragab, R. Effect of Irrigation Methods, Management and Salinity of Irrigation Water on Tomato Yield, Soil Moisture and Salinity Distribution. Irrig. Sci. 2008, 26, 313–323. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Hartman, S.; Chiarelli, D.D.; Rulli, M.C.; D’Odorico, P. The Tradeoff between Water Savings and Salinization Prevention in Dryland Irrigation. Adv. Water Resour. 2024, 183, 104604. [Google Scholar] [CrossRef]
- Bonachela, S.; Fernández, M.D.; Cabrera-Corral, F.J.; Granados, M.R. Salt and Irrigation Management of Soil-Grown Mediterranean Greenhouse Tomato Crops Drip-Irrigated with Moderately Saline Water. Agric. Water Manag. 2022, 262, 107433. [Google Scholar] [CrossRef]
- Libutti, A.; Monteleone, M. Soil vs. Groundwater: The Quality Dilemma. Managing Nitrogen Leaching and Salinity Control under Irrigated Agriculture in Mediterranean Conditions. Agric. Water Manag. 2017, 186, 40–50. [Google Scholar] [CrossRef]
- Contreras, J.I.; Alonso, F.; Cánovas, G.; Baeza, R. Irrigation Management of Greenhouse Zucchini with Different Soil Matric Potential Level. Agronomic and Environmental Effects. Agric. Water Manag. 2017, 183, 26–34. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable Grafting as a Tool to Improve Drought Resistance and Water Use Efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef]
- Niu, M.; Sun, S.; Nawaz, M.A.; Sun, J.; Cao, H.; Lu, J.; Huang, Y.; Bie, Z. Grafting Cucumber Onto Pumpkin Induced Early Stomatal Closure by Increasing ABA Sensitivity Under Salinity Conditions. Front. Plant Sci. 2019, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, J.; Wang, C.; Li, N.; Pu, K.; Wang, T.; Zhang, M.; Zhang, L.; Li, J.; Xie, J. Comprehensively Assessing the Effects of Exogenous Proline on Nutritional and Flavour Quality of Celery (Apium graveolens L.) under Salt Stress. Sci. Hortic. 2025, 339, 113847. [Google Scholar] [CrossRef]
- Balliu, A.; Babaj, I.; Sallaku, G. Root Morphology Parameters and Nutrient Acquisition Capabilities of Grafted Tomato Plants in Root-Restricted Conditions Are Subject to Salinity and Rootstock Characteristics. Int. J. Veg. Sci. 2024, 30, 503–526. [Google Scholar] [CrossRef]
- Aydin, A. Effects of Grafting with Wild Tomato (Solanum pimpinellifolium and Solanum habrochaites) Rootstocks on Growth and Leaf Mineral Accumulation in Salt Stress. Hortic. Environ. Biotechnol. 2024, 65, 785–801. [Google Scholar] [CrossRef]
- Fu, S.; Chen, J.; Wu, X.; Gao, H.; Lü, G. Comprehensive Evaluation of Low Temperature and Salt Tolerance in Grafted and Rootstock Seedlings Combined with Yield and Quality of Grafted Tomato. Horticulturae 2022, 8, 595. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, P.; Kumar, A.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Grafting Tomato as a Tool to Improve Salt Tolerance. Agronomy 2020, 10, 263. [Google Scholar] [CrossRef]
- Parthasarathi, T.; Ephrath, J.E.; Lazarovitch, N. Grafting of Tomato (Solanum lycopersicum L.) onto Potato (Solanum Tuberosum L.) to Improve Salinity Tolerance. Sci. Hortic. 2021, 282, 110050. [Google Scholar] [CrossRef]
- Behera, T.K.; Krishna, R.; Ansari, W.A.; Aamir, M.; Kumar, P.; Kashyap, S.P.; Pandey, S.; Kole, C. Approaches Involved in the Vegetable Crops Salt Stress Tolerance Improvement: Present Status and Way Ahead. Front. Plant Sci. 2022, 12, 787292. [Google Scholar] [CrossRef]
- Miao, C.; Zhang, Y.; Cui, J.; Zhang, H.; Wang, H.; Jin, H.; Lu, P.; He, L.; Zhou, Q.; Yu, J.; et al. An Enhanced Interaction of Graft and Exogenous SA on Photosynthesis, Phytohormone, and Transcriptome Analysis in Tomato under Salinity Stress. Int. J. Mol. Sci. 2024, 25, 10799. [Google Scholar] [CrossRef]
- Borromeo, I.; Domenici, F.; Del Gallo, M.; Forni, C. Role of Polyamines in the Response to Salt Stress of Tomato. Plants 2023, 12, 1855. [Google Scholar] [CrossRef]
- Vissenberg, K.; Claeijs, N.; Balcerowicz, D.; Schoenaers, S. Hormonal Regulation of Root Hair Growth and Responses to the Environment in Arabidopsis. J. Exp. Bot. 2020, 71, 2412–2427. [Google Scholar] [CrossRef]
- Chen, C.; Yu, W.; Xu, X.; Wang, Y.; Wang, B.; Xu, S.; Lan, Q.; Wang, Y. Research Advancements in Salt Tolerance of Cucurbitaceae: From Salt Response to Molecular Mechanisms. Int. J. Mol. Sci. 2024, 25, 9051. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, C.; Ning, S.; Cao, C.; Li, K.; Dang, H.; Wu, Y.; Zhang, J. Impacts of Long-Term Saline Water Irrigation on Soil Properties and Crop Yields under Maize-Wheat Crop Rotation. Agric. Water Manag. 2023, 286, 108383. [Google Scholar] [CrossRef]
- Lewis, M.; Kubota, C. Scenario-Based Cost Analysis for Vegetable Grafting Nurseries of Different Technologies and Sizes. HortScience 2014, 49, 917–930. [Google Scholar] [CrossRef]
- Pina, A.; Errea, P. A Review of New Advances in Mechanism of Graft Compatibility- Incompatibility. Sci. Hortic. 2005, 106, 1–11. [Google Scholar] [CrossRef]
- Guo, Z.; Qin, Y.; Lv, J.; Wang, X.; Dong, H.; Dong, X.; Zhang, T.; Du, N.; Piao, F. Luffa Rootstock Enhances Salt Tolerance and Improves Yield and Quality of Grafted Cucumber Plants by Reducing Sodium Transport to the Shoot. Environ. Pollut. 2023, 316, 120521. [Google Scholar] [CrossRef] [PubMed]
- YAN, Y.; WANG, S.; WEI, M.; GONG, B.; SHI, Q. Effect of Different Rootstocks on the Salt Stress Tolerance in Watermelon Seedlings. Hortic. Plant J. 2018, 4, 239–249. [Google Scholar] [CrossRef]
- Abdeldym, E.A.; El-Mogy, M.M.; Abdellateaf, H.R.L.; Atia, M.A.M. Genetic Characterization, Agro-Morphological and Physiological Evaluation of Grafted Tomato under Salinity Stress Conditions. Agronomy 2020, 10, 1948. [Google Scholar] [CrossRef]
- Elsheery, N.I.; Helaly, M.N.; Omar, S.A.; John, S.V.S.; Zabochnicka-Swiątek, M.; Kalaji, H.M.; Rastogi, A. Physiological and Molecular Mechanisms of Salinity Tolerance in Grafted Cucumber. S. Afr. J. Bot. 2020, 130, 90–102. [Google Scholar] [CrossRef]
- López-Serrano, L.; Canet-Sanchis, G.; Selak, G.V.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, Á. Physiological Characterization of a Pepper Hybrid Rootstock Designed to Cope with Salinity Stress. Plant Physiol. Biochem. 2020, 148, 207–219. [Google Scholar] [CrossRef]
- Coban, A.; Akhoundnejad, Y.; Dere, S.; Dasgan, H.Y. Impact of Salt-Tolerant Rootstock on the Enhancement of Sensitive Tomato Plant Responses to Salinity. HortScience 2020, 55, 35–39. [Google Scholar] [CrossRef]
- Ulas, F.; Aydın, A.; Ulas, A.; Yetisir, H. Grafting for Sustainable Growth Performance of Melon (Cucumis melo) Under Salt Stressed Hydroponic Condition. Eur. J. Sustain. Dev. 2019, 8, 201–210. [Google Scholar] [CrossRef]
- Kuşvuran, Ş.; Kaya, E.; Ellialtıoğlu, Ş. Role of Grafting in Tolerance to Salt Stress in Melon (Cucumis melo L.) Plants: Ion Regulation and Antioxidant Defense Systems. Biotech Stud. 2021, 30, 22–32. [Google Scholar] [CrossRef]
- Lazaridi, E.; Kapazoglou, A.; Gerakari, M.; Kleftogianni, K.; Passa, K.; Sarri, E.; Papasotiropoulos, V.; Tani, E.; Bebeli, P.J. Crop Landraces and Indigenous Varieties: A Valuable Source of Genes for Plant Breeding. Plants 2024, 13, 758. [Google Scholar] [CrossRef]
- De Jonge, B.; Noriega, I.L.; Otieno, G.; Cadima, X.; Terrazas, F.; Hpommalath, S.; van Oudenhoven, F.; Shrestha, S.; Pudasaini, N.; Shrestha, D.S.; et al. Advances in the Registration of Farmers’ Varieties: Four Cases from the Global South. Agronomy 2021, 11, 2282. [Google Scholar] [CrossRef]
- Singh, S.; Selvakumar, R.; Mangal, M.; Kalia, P. Breeding and Genomic Investigations for Quality and Nutraceutical Traits in Vegetable Crops-a Review. Indian J. Hortic. 2020, 77, 1–40. [Google Scholar] [CrossRef]
- Fullana-Pericàs, M.; Conesa, M.; Ribas-Carbó, M.; Galmés, J. The Use of a Tomato Landrace as Rootstock Improves the Response of Commercial Tomato under Water Deficit Conditions. Agronomy 2020, 10, 748. [Google Scholar] [CrossRef]
- Asins, M.J.; Bolarín, M.C.; Pérez-Alfocea, F.; Estañ, M.T.; Martínez-Andújar, C.; Albacete, A.; Villalta, I.; Bernet, G.P.; Dodd, I.C.; Carbonell, E.A. Genetic Analysis of Physiological Components of Salt Tolerance Conferred by Solanum Rootstocks. What Is the Rootstock Doing for the Scion? Theor. Appl. Genet. 2010, 121, 105–115. [Google Scholar] [CrossRef]
- Asins, M.J.; Raga, V.; Roca, D.; Belver, A.; Carbonell, E.A. Genetic Dissection of Tomato Rootstock Effects on Scion Traits under Moderate Salinity. Theor. Appl. Genet. 2015, 128, 667–679. [Google Scholar] [CrossRef]
- Kadoglidou, K.; Xanthopoulou, A.; Kalyvas, A.; Mellidou, I. Utilization of Tomato Landraces to Improve Seedling Performance under Salt Stress. Stresses 2021, 1, 238–252. [Google Scholar] [CrossRef]
- Sanwal, S.K.; Mann, A.; Kumar, A.; Kesh, H.; Kaur, G.; Rai, A.K.; Kumar, R.; Sharma, P.C.; Kumar, A.; Bahadur, A.; et al. Salt Tolerant Eggplant Rootstocks Modulate Sodium Partitioning in Tomato Scion and Improve Performance under Saline Conditions. Agriculture 2022, 12, 183. [Google Scholar] [CrossRef]
- Abbas, F.; Faried, H.N.; Akhtar, G.; Ullah, S.; Javed, T.; Shehzad, M.A.; Ziaf, K.; Razzaq, K.; Amin, M.; Wattoo, F.M.; et al. Cucumber Grafting on Indigenous Cucurbit Landraces Confers Salt Tolerance and Improves Fruit Yield by Enhancing Morpho-Physio-Biochemical and Ionic Attributes. Sci. Rep. 2023, 13, 21697. [Google Scholar] [CrossRef]
- Usanmaz, S.; Abak, K. Plant Growth and Yield of Cucumber Plants Grafted on Different Commercial and Local Rootstocks Grown under Salinity Stress. Saudi J. Biol. Sci. 2019, 26, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Uygur, V.; Yetisir, H. Effects of Rootstocks on Some Growth Parameters, Phosphorous and Nitrogen Uptake Watermelon under Salt Stress. J. Plant Nutr. 2009, 32, 629–643. [Google Scholar] [CrossRef]
- Yetisir, H.; Uygur, V. Responses of Grafted Watermelon onto Different Gourd Species to Salinity Stress. J. Plant Nutr. 2010, 33, 315–327. [Google Scholar] [CrossRef]
- Mazahrih, N.; Talhouni, M.; Hamdan, H.; Ayed, B.; Saadeh, J.; Hiary, M.; Awamleh, N. Influence of Grafting on Crop Productivity and Performance Using Pepper Landrace Rootstocks Under Salinity Conditions. Curr. Appl. Sci. Technol. 2025, 25, e0260115. [Google Scholar] [CrossRef]
- Qiu, Q.S.; Melino, V.J.; Zhao, Z.; Qi, Z.; Sweetman, C.; Roessner, U. Editorial: Salinity Tolerance: From Model or Wild Plants to Adapted Crops. Front. Plant Sci. 2022, 13, 985057. [Google Scholar] [CrossRef]
- Kapazoglou, A.; Gerakari, M.; Lazaridi, E.; Kleftogianni, K.; Sarri, E.; Tani, E.; Bebeli, P.J. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. Plants 2023, 12, 328. [Google Scholar] [CrossRef]
- Abdul Aziz, M.; Masmoudi, K. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms. Int. J. Mol. Sci. 2023, 24, 9813. [Google Scholar] [CrossRef]
- Wei, G.P.; Yang, L.F.; Zhu, Y.L.; Chen, G. Changes in Oxidative Damage, Antioxidant Enzyme Activities and Polyamine Contents in Leaves of Grafted and Non-Grafted Eggplant Seedlings under Stress by Excess of Calcium Nitrate. Sci. Hortic. 2009, 120, 443–451. [Google Scholar] [CrossRef]
- Mozafarian, M.; Hawrylak-Nowak, B.; Kappel, N. Effect of Different Rootstocks on the Salt Stress Tolerance and Fruit Quality of Grafted Eggplants (Solanum melongena L.). Plants 2023, 12, 3631. [Google Scholar] [CrossRef]
- Fullana-Pericàs, M.; Conesa, M.; Douthe, C.; El Aou-ouad, H.; Ribas-Carbó, M.; Galmés, J. Tomato Landraces as a Source to Minimize Yield Losses and Improve Fruit Quality under Water Deficit Conditions. Agric. Water Manag. 2019, 223, 105722. [Google Scholar] [CrossRef]
- Fullana-Pericàs, M.; Ponce, J.; Conesa, M.; Juan, A.; Ribas-Carbó, M.; Galmés, J. Changes in Yield, Growth and Photosynthesis in a Drought-Adapted Mediterranean Tomato Landrace (Solanum lycopersicum ‘Ramellet’) When Grafted onto Commercial Rootstocks and Solanum pimpinellifolium. Sci. Hortic. 2018, 233, 70–77. [Google Scholar] [CrossRef]
- Amerian, M.; Palangi, A.; Gohari, G.; Georgia, N. Humic Acid and Grafting as Sustainable Agronomic Practices for Increased Growth and Secondary Metabolism in Cucumber Subjected to Salt Stress. Sci. Rep. 2024, 14, 15883. [Google Scholar] [CrossRef]
- Diao, M.; Ma, L.; Wang, J.; Cui, J.; Fu, A.; Liu, H. ying Selenium Promotes the Growth and Photosynthesis of Tomato Seedlings Under Salt Stress by Enhancing Chloroplast Antioxidant Defense System. J. Plant Growth Regul. 2014, 33, 671–682. [Google Scholar] [CrossRef]
- Wu, H.; Fan, S.; Gong, H.; Guo, J. Roles of Salicylic Acid in Selenium-Enhanced Salt Tolerance in Tomato Plants. Plant Soil 2023, 484, 569–588. [Google Scholar] [CrossRef]
- Blasco, B.; Leyva, R.; Romero, L.; Ruiz, J.M. Iodine Effects on Phenolic Metabolism in Lettuce Plants under Salt Stress. J. Agric. Food Chem. 2013, 61, 2591–2596. [Google Scholar] [CrossRef] [PubMed]
- Medrano Macías, J.; Caltzontzit, G.L.; Mart, M.; Nohemi Rivas Martínez, E.; Alfredo Narváez Ortiz, W.; Benavides Mendoza, A.; Martínez Lagunes, P. Enhancement to Salt Stress Tolerance in Strawberry Plants by Iodine Products Application. Agronomy 2021, 11, 602. [Google Scholar] [CrossRef]
- Fuentes, J.E.G.; Castellanos, B.F.H.; Martínez, E.N.R.; Ortiz, W.A.N.; Mendoza, A.B.; Macías, J.M. Outcomes of Foliar Iodine Application on Growth, Minerals and Antioxidants in Tomato Plants under Salt Stress. Folia Hortic. 2022, 34, 27–37. [Google Scholar] [CrossRef]
- Bouzid, S.; Rahmoune, C. Enhancement of Saline Water for Irrigation of Phaseolus Vulgaris L. Species in Presence of Molybdenum. Procedia Eng. 2012, 33, 168–173. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, C.; Sun, X.; Zhao, X.; Tan, Q.; Zhang, Y.; Li, N. Molybdenum Affects Photosynthesis and Ionic Homeostasis of Chinese Cabbage under Salinity Stress. Commun. Soil Sci. Plant Anal. 2014, 45, 2660–2672. [Google Scholar] [CrossRef]
- Hung, C.Y.; Holliday, B.M.; Kaur, H.; Yadav, R.; Kittur, F.S.; Xie, J. Identification and Characterization of Selenate- and Selenite-Responsive Genes in a Se-Hyperaccumulator Astragalus Racemosus. Mol. Biol. Rep. 2012, 39, 7635–7646. [Google Scholar] [CrossRef]
- LeDuc, D.L.; AbdelSamie, M.; Móntes-Bayon, M.; Wu, C.P.; Reisinger, S.J.; Terry, N. Overexpressing Both ATP Sulfurylase and Selenocysteine Methyltransferase Enhances Selenium Phytoremediation Traits in Indian Mustard. Environ. Pollut. 2006, 144, 70–76. [Google Scholar] [CrossRef]
- Ricachenevsky, F.K.; Menguer, P.K.; Sperotto, R.A.; Williams, L.E.; Fett, J.P. Roles of Plant Metal Tolerance Proteins (MTP) in Metal Storage and Potential Use in Biofortification Strategies. Front. Plant Sci. 2013, 4, 144. [Google Scholar] [CrossRef]
- Xu, J.; Qin, X.; Ni, Z.; Chen, F.; Fu, X.; Yu, F. Identification of Zinc Efficiency-Associated Loci (ZEALs) and Candidate Genes for Zn Deficiency Tolerance of Two Recombination Inbred Line Populations in Maize. Int. J. Mol. Sci. 2022, 23, 4852. [Google Scholar] [CrossRef]
- DalCorso, G.; Martini, F.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. Enhancement of Zn Tolerance and Accumulation in Plants Mediated by the Expression of Saccharomyces cerevisiae Vacuolar Transporter ZRC1. Planta 2021, 253, 117. [Google Scholar] [CrossRef]
- Tabassum, B.; Khan, A.; Tariq, M.; Ramzan, M.; Iqbal Khan, M.S.; Shahid, N.; Aaliya, K. Bottlenecks in Commercialisation and Future Prospects of PGPR. Appl. Soil Ecol. 2017, 121, 102–117. [Google Scholar] [CrossRef]
- Ha-tran, D.M.; Nguyen, T.T.M.; Hung, S.H.; Huang, E.; Huang, C.C. Roles of Plant Growth-promoting Rhizobacteria (Pgpr) in Stimulating Salinity Stress Defense in Plants: A Review. Int. J. Mol. Sci. 2021, 22, 3154. [Google Scholar] [CrossRef] [PubMed]
- Consentino, B.B.; Aprile, S.; Rouphael, Y.; Ntatsi, G.; De Pasquale, C.; Iapichino, G.; Alibrandi, P.; Sabatino, L. Application of PGPB Combined with Variable N Doses Affects Growth, Yield-Related Traits, N-Fertilizer Efficiency and Nutritional Status of Lettuce Grown under Controlled Condition. Agronomy 2022, 12, 236. [Google Scholar] [CrossRef]
- Kumar Arora, N.; Fatima, T.; Mishra, J.; Mishra, I.; Verma, S.; Verma, R.; Verma, M.; Bhattacharya, A.; Verma, P.; Mishra, P.; et al. Halo-Tolerant Plant Growth Promoting Rhizobacteria for Improving Productivity and Remediation of Saline Soils. J. Adv. Res. 2020, 26, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Hasnain, S.; Berge, O.; Mahmood, T. Inoculating Wheat Seedlings with Exopolysaccharide-Producing Bacteria Restricts Sodium Uptake and Stimulates Plant Growth under Salt Stress. Biol. Fertil. Soils 2004, 40, 157–162. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, J.S.; Singh, D.P. Exoploysaccharide Producing Plant Growth Promoting Rhizobacteria under Exopolysaccharide-Producing Plant Growth-Promoting Rhizobacteria Under Salinity Condition. Pedosphere 2011, 21, 214–222. [Google Scholar] [CrossRef]
- Talebi Atouei, M.; Pourbabaee, A.A.; Shorafa, M. Alleviation of Salinity Stress on Some Growth Parameters of Wheat by Exopolysaccharide-Producing Bacteria. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2725–2733. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.D.; Eid, A.M.; El-Din Ewais, E. The Interaction Between Plants and Bacterial Endophytes Under Salinity Stress. In Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2019; pp. 591–607. [Google Scholar] [CrossRef]
- Lata, R.; Chowdhury, S.; Gond, S.K.; White, J.F. Induction of Abiotic Stress Tolerance in Plants by Endophytic Microbes. Lett. Appl. Microbiol. 2018, 66, 268–276. [Google Scholar] [CrossRef]
- Cheng, Z.; Woody, O.Z.; McConkey, B.J.; Glick, B.R. Combined Effects of the Plant Growth-Promoting Bacterium Pseudomonas Putida UW4 and Salinity Stress on the Brassica Napus Proteome. Appl. Soil Ecol. 2012, 61, 255–263. [Google Scholar] [CrossRef]
- Fuertes-Mendizábal, T.; Bastías, E.I.; González-Murua, C.; González-Moro, M.B. Nitrogen Assimilation in the Highly Salt- and Boron-Tolerant Ecotype Zea mays L. Amylacea. Plants 2020, 9, 322. [Google Scholar] [CrossRef]
- Albdaiwi, R.N.; Khyami-Horani, H.; Ayad, J.Y.; Alananbeh, K.M.; Al-Sayaydeh, R. Isolation and Characterization of Halotolerant Plant Growth Promoting Rhizobacteria from Durum Wheat (Triticum turgidum subsp. durum) Cultivated in Saline Areas of the Dead Sea Region. Oxid. Med. Cell. Longev. 2020, 10, 1639. [Google Scholar] [CrossRef]
- Kumawat, K.C.; Sharma, P.; Nagpal, S.; Gupta, R.K.; Sirari, A.; Nair, R.M.; Bindumadhava, H.; Singh, S. Dual Microbial Inoculation, a Game Changer?—Bacterial Biostimulants With Multifunctional Growth Promoting Traits to Mitigate Salinity Stress in Spring Mungbean. Front. Microbiol. 2021, 11, 600576. [Google Scholar] [CrossRef]
- GOSWAMI, M.; DEKA, S. Plant Growth-Promoting Rhizobacteria—Alleviators of Abiotic Stresses in Soil: A Review. Pedosphere 2020, 30, 40–61. [Google Scholar] [CrossRef]
- Islam, F.; Yasmeen, T.; Arif, M.S.; Ali, S.; Ali, B.; Hameed, S.; Zhou, W. Plant Growth Promoting Bacteria Confer Salt Tolerance in Vigna Radiata by Up-Regulating Antioxidant Defense and Biological Soil Fertility. Plant Growth Regul. 2016, 80, 23–36. [Google Scholar] [CrossRef]
- Misra, S.; Chauhan, P.S. ACC Deaminase-Producing Rhizosphere Competent Bacillus Spp. Mitigate Salt Stress and Promote Zea mays Growth by Modulating Ethylene Metabolism. 3 Biotech 2020, 10, 119. [Google Scholar] [CrossRef]
- Mukherjee, P.; Mitra, A.; Roy, M. Halomonas Rhizobacteria of Avicennia Marina of Indian Sundarbans Promote Rice Growth under Saline and Heavy Metal Stresses through Exopolysaccharide Production. Front. Microbiol. 2019, 10, 1207. [Google Scholar] [CrossRef]
- Zerrouk, I.Z.; Benchabane, M.; Khelifi, L.; Yokawa, K.; Ludwig-Müller, J.; Baluska, F. A Pseudomonas Strain Isolated from Date-Palm Rhizospheres Improves Root Growth and Promotes Root Formation in Maize Exposed to Salt and Aluminum Stress. J. Plant Physiol. 2016, 191, 111–119. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, H.; Leng, J.; Niu, H.; Chen, X.; Liu, D.; Chen, Y.; Gao, N.; Ying, H. Isolation and Characterization of Plant Growth-Promoting Rhizobacteria and Their Effects on the Growth of Medicago sativa L. under Salinity Conditions. Antonie Van Leeuwenhoek 2020, 113, 1263–1278. [Google Scholar] [CrossRef]
- Shahid, M.; Ameen, F.; Maheshwari, H.S.; Ahmed, B.; AlNadhari, S.; Khan, M.S. Colonization of Vigna Radiata by a Halotolerant Bacterium Kosakonia Sacchari Improves the Ionic Balance, Stressor Metabolites, Antioxidant Status and Yield under NaCl Stress. Appl. Soil Ecol. 2021, 158, 103809. [Google Scholar] [CrossRef]
- Bennett, A.E.; Groten, K. The Costs and Benefits of Plant-Arbuscular Mycorrhizal Fungal Interactions. Annu. Rev. Plant Biol. 2022, 73, 649–672. [Google Scholar] [CrossRef]
- Di Miceli, G.; Vultaggio, L.; Sabatino, L.; De Pasquale, C.; La Bella, S.; Consentino, B.B. Synergistic Effect of a Plant-Derived Protein Hydrolysate and Arbuscular Mycorrhizal Fungi on Eggplant Grown in Open Fields: A Two-Year Study. Horticulturae 2023, 9, 592. [Google Scholar] [CrossRef]
- Consentino, B.B.; Vultaggio, L.; Allevato, E.; Sabatino, L.; Ntatsi, G.; Ciriello, M.; Rouphael, Y.; Di Miceli, G. Plant Protein Hydrolysate and Arbuscular Mycorrhizal Fungi Synergistically Orchestrate Eggplant Tolerance to Iodine Supply: A Two-Year Study. Sci. Hortic. 2024, 336, 113437. [Google Scholar] [CrossRef]
- Vultaggio, L.; Allevato, E.; Sabatino, L.; Ntatsi, G.; Rouphael, Y.; Torta, L.; La Bella, S.; Consentino, B.B. Modulation of Cherry Tomato Performances in Response to Molybdenum Biofortification and Arbuscular Mycorrhizal Fungi in a Soilless System. Heliyon 2024, 10, e33498. [Google Scholar] [CrossRef]
- Consentino, B.B.; Torta, L.; Mirabile, G.; Ntatsi, G.; La Bella, S.; De Pasquale, C.; Sabatino, L. Changes in Yield and Quality Features of Sweet Pepper as Modulated by Arbuscular Mycorrhizal Fungi and Molybdenum Biofortification. In ISHS Acta Horticulturae 1375, Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Plant Nutrition, Fertilization, Soil Management, Angers, France, 14–20 August 2022; International Society for Horticultural Science: Leuven, Belgium, 2022; pp. 47–52. [Google Scholar] [CrossRef]
- Di Martino, C.; Crawford, T.W. Roles and Implications of Arbuscular Mycorrhizas in Plant Nutrition. In Handbook of Plant and Crop Physiology; CRC Press: Boca Raton, Fl, USA, 2021; pp. 321–341. [Google Scholar] [CrossRef]
- Dar, M.H.; Razvi, S.M.; Singh, N.; Mushtaq, A.; Dar, S.; Hussain, S. Arbuscular Mycorrhizal Fungi for Salinity Stress: Anti-Stress Role and Mechanisms. Pedosphere 2023, 33, 212–224. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P.P. Ecosystems under Abiotic and Biotic Stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate–Solubilizing Bacteria, and Silicon to P Uptake by Plant. Front. Plant Sci. 2021, 12, 699618. [Google Scholar] [CrossRef]
- Bhupenchandra, I.; Chongtham, S.K.; Devi, A.G.; Dutta, P.; Sahoo, M.R.; Mohanty, S.; Kumar, S.; Choudhary, A.K.; Devi, E.L.; Sinyorita, S.; et al. Unlocking the Potential of Arbuscular Mycorrhizal Fungi: Exploring Role in Plant Growth Promotion, Nutrient Uptake Mechanisms, Biotic Stress Alleviation, and Sustaining Agricultural Production Systems; Springer: New York, NY, USA, 2024; Volume 2050, ISBN 0034402411. [Google Scholar]
- Kakabouki, I.; Stavropoulos, P.; Roussis, I.; Mavroeidis, A.; Bilalis, D. Contribution of Arbuscular Mycorrhizal Fungi (AMF) in Improving the Growth and Yield Performances of Flax (Linum usitatissimum L.) to Salinity Stress. Agronomy 2023, 13, 2416. [Google Scholar] [CrossRef]
- Riseh, R.S.; Ebrahimi-Zarandi, M.; Tamanadar, E.; Pour, M.M.; Thakur, V.K. Salinity Stress: Toward Sustainable Plant Strategies and Using Plant Growth-Promoting Rhizobacteria Encapsulation for Reducing It. Sustainability 2021, 13, 12758. [Google Scholar] [CrossRef]
- McFarland, J.W.; Ruess, R.W.; Kielland, K.; Pregitzer, K.; Hendrick, R.; Allen, M. Cross-Ecosystem Comparisons of in Situ Plant Uptake of Amino Acid-N and NH4+. Ecosystems 2010, 13, 177–193. [Google Scholar] [CrossRef]
- Giri, B.; Mukerji, K.G. Mycorrhizal Inoculant Alleviates Salt Stress in Sesbania Aegyptiaca and Sesbania Grandiflora under Field Conditions: Evidence for Reduced Sodium and Improved Magnesium Uptake. Mycorrhiza 2004, 14, 307–312. [Google Scholar] [CrossRef]
- Govindarajulu, M.; Pfeffer, P.E.; Jin, H.; Abubaker, J.; Douds, D.D.; Allen, J.W.; Bücking, H.; Lammers, P.J.; Shachar-Hill, Y. Nitrogen Transfer in the Arbuscular Mycorrhizal Symbiosis. Nature 2005, 435, 819–823. [Google Scholar] [CrossRef]
- Azcón, R.; Medina, A.; Aroca, R.; Ruiz-Lozano, J.M. Abiotic Stress Remediation by the Arbuscular Mycorrhizal Symbiosis and Rhizosphere Bacteria/Yeast Interactions. In Molecular Microbial Ecology of the Rhizosphere, 1 & 2; Wiley: Hoboken, NJ, USA, 2013; Volume 1, pp. 991–1002. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Tullio, M.; Rivera, C.M.; Rea, E. Alleviation of Salt Stress by Arbuscular Mycorrhizal in Zucchini Plants Grown at Low and High Phosphorus Concentration. Biol. Fertil. Soils 2008, 44, 501–509. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.; Xie, Q.; Liu, N.; Liu, L.; Wang, D.; Zhang, X.; Yang, C.; Chen, X.; Tang, D.; et al. Plants Transfer Lipids to Sustain Colonization by Mutualistic Mycorrhizal and Parasitic Fungi. Science 2017, 356, 1172–1173. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Li, Q.S.; Ding, W.Y.; Dong, L.W.; Deng, M.; Chen, J.H.; Tian, X.; Hashem, A.; Al-Arjani, A.B.F.; Alenazi, M.M.; et al. Arbuscular Mycorrhizal Fungi Inoculation Impacts Expression of Aquaporins and Salt Overly Sensitive Genes and Enhances Tolerance of Salt Stress in Tomato. Chem. Biol. Technol. Agric. 2023, 10, 5. [Google Scholar] [CrossRef]
- Hajiboland, R.; Aliasgharzad, N.; Laiegh, S.F.; Poschenrieder, C. Colonization with Arbuscular Mycorrhizal Fungi Improves Salinity Tolerance of Tomato (Solanum lycopersicum L.) Plants. Plant Soil 2010, 331, 313–327. [Google Scholar] [CrossRef]
- Santander, C.; Sanhueza, M.; Olave, J.; Borie, F.; Valentine, A.; Cornejo, P. Arbuscular Mycorrhizal Colonization Promotes the Tolerance to Salt Stress in Lettuce Plants through an Efficient Modification of Ionic Balance. J. Soil Sci. Plant Nutr. 2019, 19, 321–331. [Google Scholar] [CrossRef]
- Cela, F.; Avio, L.; Giordani, T.; Vangelisti, A.; Cavallini, A.; Turrini, A.; Sbrana, C.; Pardossi, A.; Incrocci, L. Arbuscular Mycorrhizal Fungi Increase Nutritional Quality of Soilless Grown Lettuce While Overcoming Low Phosphorus Supply. Foods 2022, 11, 3612. [Google Scholar] [CrossRef]
- Sapre, S.; Gontia-Mishra, I.; Tiwari, S. Plant Growth-Promoting Rhizobacteria Ameliorates Salinity Stress in Pea (Pisum Sativum). J. Plant Growth Regul. 2022, 41, 647–656. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Y.; Di, Y.; Qiu, Y.; Ji, Z.; Zhou, T.; Shen, S.; Du, N.; Zhang, T.; Dong, X.; et al. Plant Growth-Promoting Rhizobacteria Pseudomonas Aeruginosa HG28-5 Improves Salt Tolerance by Regulating Na+/K+ Homeostasis and ABA Signaling Pathway in Tomato. Microbiol. Res. 2024, 283, 127707. [Google Scholar] [CrossRef]
- Kul, R. Integrated Application of Plant Growth Promoting Rhizobacteria and Biochar Improves Salt Tolerance in Eggplant Seedlings. Turkish J. Agric. For. 2022, 46, 677–702. [Google Scholar] [CrossRef]
- Redondo-Gómez, S.; Romano-Rodríguez, E.; Mesa-Marín, J.; Mateos-Naranjo, E.; Sola-Elías, C. Consortia of Plant-Growth-Promoting Rhizobacteria Isolated from Halophytes Improve the Response of Swiss Chard to Soil Salinization. Agronomy 2022, 12, 468. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Y.; Yue, T.; Huang, Y.; He, C.; Jiang, W.; Liu, H.; Zeng, H.; Wang, J. Plant Growth-Promoting Rhizobacteria Bacillus Velezensis JB0319 Promotes Lettuce Growth under Salt Stress by Modulating Plant Physiology and Changing the Rhizosphere Bacterial Community. Environ. Exp. Bot. 2023, 213, 105451. [Google Scholar] [CrossRef]
- Gassoumi, W.; Ellouzi, H.; Ben Slimene, I.; Kalai, F.Z.; Ayed, R.B.; Zorrig, W.; Debez, A.; Abdelly, C.; Oueslati, S. Plant Extracts and Plant Growth Promoting Rhizobacteria: Seed Bio-Priming Approach to Improve Tolerance of Lactuca sativa L. under Salt Stress. Euro-Mediterr. J. Environ. Integr. 2024, 10, 1901–1918. [Google Scholar] [CrossRef]
- Pal, S.C.; Hossain, M.B.; Mallick, D.; Bushra, F.; Abdullah, S.R.; Dash, P.K.; Das, D. Combined Use of Seaweed Extract and Arbuscular Mycorrhizal Fungi for Alleviating Salt Stress in Bell Pepper (Capsicum annuum L.). Sci. Hortic. 2024, 325, 112597. [Google Scholar] [CrossRef]
- Chen, G.; Yang, A.; Wang, J.; Ke, L.; Chen, S.; Li, W. Effects of the Synergistic Treatments of Arbuscular Mycorrhizal Fungi and Trehalose on Adaptability to Salt Stress in Tomato Seedlings. Microbiol. Spectr. 2024, 12, e0340423. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.M.; Li, Q.S.; Liu, M.Y.; Hashem, A.; Al-Arjani, A.B.F.; Alenazi, M.M.; Abd_Allah, E.F.; Muthuramalingam, P.; Wu, Q.S. Mycorrhizal Effects on Growth and Expressions of Stress-Responsive Genes (Aquaporins and SOSs) of Tomato under Salt Stress. J. Fungi 2022, 8, 1305. [Google Scholar] [CrossRef]
- İkiz, B.; Dasgan, H.Y.; Balik, S.; Kusvuran, S.; Gruda, N.S. The Use of Biostimulants as a Key to Sustainable Hydroponic Lettuce Farming under Saline Water Stress. BMC Plant Biol. 2024, 24, 808. [Google Scholar] [CrossRef] [PubMed]
- Oyetunji, O.J.; Oyetunji, O.S. Effects of Salinity and Arbuscular Mycorrhizal Fungi Interations on Morphology of 10 Varieties of Tomato (Solanum lycopersicum L.). Int. J. Plant Soil Sci. 2021, 33, 38–45. [Google Scholar] [CrossRef]
- Ibrahim, W.M.; Ali, R.M.; Hemida, K.A.; Sayed, M.A. Role of Ulva Lactuca Extract in Alleviation of Salinity Stress on Wheat Seedlings. Sci. World J. 2014, 2014, 847290. [Google Scholar] [CrossRef]
- Mansori, M.; Chernane, H.; Latique, S.; Benaliat, A.; Hsissou, D.; El Kaoua, M. Effect of Seaweed Extract (Ulva rigida) on the Water Deficit Tolerance of Salvia officinalis L. J. Appl. Phycol. 2016, 28, 1363–1370. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Sánchez-Hernández, C.V.; Palmeros-Suárez, P.A.; Ocampo-Alvarez, H.; Santacruz-Ruvalcaba, F.; Meza-Canales, I.D.; Becerril-Espinosa, A. Seaweed Extract Improves Growth and Productivity of Tomato Plants under Salinity Stress. Agronomy 2022, 12, 2495. [Google Scholar] [CrossRef]
- Krid, A.; Ennoury, A.; Kchikich, A.; Oumassi, F.; Oualid, J.A.; Roussi, Z.; Nhiri, M.; Aberkani, K.; El Imache, A.; Bouhcain, B.; et al. Cystoseira Tamariscifolia Aqueous Extract Mitigates Salinity Stress in Tomato Plants by Mediating Their Physiology and Biochemistry. Int. J. Environ. Res. 2024, 18, 58. [Google Scholar] [CrossRef]
- Krid, A.; El Hallabi, M.; Ennoury, A.; Nhhala, N.; Aberkani, K.; Nhiri, M.; Hassani Zerrouk, M. The Potential of Seaweed Extracts as a Biostimulant for Improving Salt Stress Tolerance of Solanum lycopersicum L. S. Afr. J. Bot. 2023, 161, 305–316. [Google Scholar] [CrossRef]
- Bahmani Jafarlou, M.; Pilehvar, B.; Modaresi, M.; Mohammadi, M. Seaweed Liquid Extract as an Alternative Biostimulant for the Amelioration of Salt-Stress Effects in Calotropis procera (Aiton) W.T. J. Plant Growth Regul. 2023, 42, 449–464. [Google Scholar] [CrossRef]
- Elansary, H.O.; Yessoufou, K.; Abdel-Hamid, A.M.E.; El-Esawi, M.A.; Ali, H.; Elshikh, M.S. Seaweed Extracts Enhance Salam Turfgrass Performance during Prolonged Irrigation Intervals and Saline Shock. Front. Plant Sci. 2017, 8, 830. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic Action of a Microbial-Based Biostimulant and a Plant Derived-Protein Hydrolysate Enhances Lettuce Tolerance to Alkalinity and Salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef]
- Ntanasi, T.; Karavidas, I.; Spyrou, G.P.; Giannothanasis, E.; Aliferis, K.A.; Saitanis, C.; Fotopoulos, V.; Sabatino, L.; Savvas, D.; Ntatsi, G. Plant Biostimulants Enhance Tomato Resilience to Salinity Stress: Insights from Two Greek Landraces. Plants 2024, 13, 1404. [Google Scholar] [CrossRef]
- Di Stasio, E.; Van Oosten, M.J.; Silletti, S.; Raimondi, G.; dell’Aversana, E.; Carillo, P.; Maggio, A. Ascophyllum nodosum-Based Algal Extracts Act as Enhancers of Growth, Fruit Quality, and Adaptation to Stress in Salinized Tomato Plants. J. Appl. Phycol. 2018, 30, 2675–2686. [Google Scholar] [CrossRef]
- Cruz, C.; Ajit, V. Utilization of Seaweed in Soil Fertilization-Salt Tolerance. In Biotechnological Applications of Seaweeds; Nova Science Publishers, Inc.: New York, NY, USA, 2017. [Google Scholar]
- Sogoni, A.; Lewis Ngcobo, B.; Olaide Jimoh, M.; Kambizi, L.; Laubscher, C.P. Seaweed-Derived Bio-Stimulant (Kelpak®) Enhanced the Morphophysiological, Biochemical, and Nutritional Quality of Salt-Stressed Spinach (Spinacia oleracea L.). Horticulturae 2024, 10, 1340. [Google Scholar] [CrossRef]
- Yildiztekin, M.; Tuna, A.L.; Kaya, C. Physiological Effects of the Brown Seaweed (Ascophyllum nodosum) and Humic Substances on Plant Growth, Enzyme Activities of Certain Pepper Plants Grown under Salt Stress. Acta Biol. Hung. 2018, 69, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Chabili, A.; Minaoui, F.; Hakkoum, Z.; Douma, M.; Meddich, A.; Loudiki, M. A Comprehensive Review of Microalgae and Cyanobacteria-Based Biostimulants for Agriculture Uses. Plants 2024, 13, 159. [Google Scholar] [CrossRef]
- González-Pérez, B.K.; Rivas-Castillo, A.M.; Valdez-Calderón, A.; Gayosso-Morales, M.A. Microalgae as Biostimulants: A New Approach in Agriculture. World J. Microbiol. Biotechnol. 2022, 38, 4. [Google Scholar] [CrossRef]
- Parmar, P.; Kumar, R.; Neha, Y.; Srivatsan, V. Microalgae as next Generation Plant Growth Additives: Functions, Applications, Challenges and Circular Bioeconomy Based Solutions. Front. Plant Sci. 2023, 14, 1073546. [Google Scholar] [CrossRef]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Front. Plant Sci. 2018, 871, 1782. [Google Scholar] [CrossRef] [PubMed]
- Vangenechten, B.; De Coninck, B.; Ceusters, J. How to Improve the Potential of Microalgal Biostimulants for Abiotic Stress Mitigation in Plants? Front. Plant Sci. 2025, 16, 1568423. [Google Scholar] [CrossRef]
- Mutale-joan, C.; Rachidi, F.; Mohamed, H.A.; El Mernissi, N.; Aasfar, A.; Barakate, M.; Mohammed, D.; Sbabou, L.; El Arroussi, H. Microalgae-Cyanobacteria–Based Biostimulant Effect on Salinity Tolerance Mechanisms, Nutrient Uptake, and Tomato Plant Growth under Salt Stress. J. Appl. Phycol. 2021, 33, 3779–3795. [Google Scholar] [CrossRef]
- EL Arroussi, H.; Benhima, R.; Elbaouchi, A.; Sijilmassi, B.; EL Mernissi, N.; Aafsar, A.; Meftah-Kadmiri, I.; Bendaou, N.; Smouni, A. Dunaliella Salina Exopolysaccharides: A Promising Biostimulant for Salt Stress Tolerance in Tomato (Solanum lycopersicum). J. Appl. Phycol. 2018, 30, 2929–2941. [Google Scholar] [CrossRef]
- Chaudhuri, R.; Balasubramanian, P. Enhancing Salt Tolerance in Leafy Vegetables Using Microalgal Exopolysaccharides. J. Crop Health 2025, 77, 70. [Google Scholar] [CrossRef]
- Nezamdoost, D.; Ghahremani, Z.; Akbari, M.B.; Barzegar, T.; Ranjbar, M.E. Can Seed Priming with Seaweed Extract Neutralize the Effects of Salinity on New Red Fire Leafy Lettuce Characteristics? Gesunde Pflanz. 2023, 75, 955–969. [Google Scholar] [CrossRef]
- Francioso, O.; Schiavon, M.; Nardi, S.; Castellani, D.; Ferrari, E.; Estrada, M.T.R.; della Lucia, M.C.; Zuffi, V.; Ertani, A. Mitigation of Salt Stress in Lactuca sativa L. Var. Gentile Rossa Using Microalgae as Priming Agents. Plants 2024, 13, 3311. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, G. Safety of Protein Hydrolysates, Fractions Thereof and Bioactive Peptides in Human Nutrition. Eur. J. Clin. Nutr. 2009, 63, 1161–1168. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Tugnoli, V.; Righi, V.; Nardi, S. Effect of Commercial Lignosulfonate-Humate on Zea mays L. Metabolism. J. Agric. Food Chem. 2011, 59, 11940–11948. [Google Scholar] [CrossRef]
- Colla, G.; Svecova, E.; Rouphael, Y.; Cardarelli, M.; Reynaud, H.; Canaguier, R.; Planques, B. Effectiveness of a Plant-Derived Protein Hydrolysate to Improve Crop Performances under Different Growing Conditions. Acta Hortic. 2012, 1009, 175–180. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The Effect of a Plant-Derived Biostimulant on Metabolic Profiling and Crop Performance of Lettuce Grown under Saline Conditions. Sci. Hortic. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Sitohy, M.Z.; Desoky, E.S.M.; Osman, A.; Rady, M.M. Pumpkin Seed Protein Hydrolysate Treatment Alleviates Salt Stress Effects on Phaseolus Vulgaris by Elevating Antioxidant Capacity and Recovering Ion Homeostasis. Sci. Hortic. 2020, 271, 109495. [Google Scholar] [CrossRef]
- Sorrentino, M.; Panzarová, K.; Spyroglou, I.; Spíchal, L.; Buffagni, V.; Ganugi, P.; Rouphael, Y.; Colla, G.; Lucini, L.; De Diego, N. Integration of Phenomics and Metabolomics Datasets Reveals Different Mode of Action of Biostimulants Based on Protein Hydrolysates in Lactuca sativa L. and Solanum lycopersicum L. Under Salinity. Front. Plant Sci. 2022, 12, 808711. [Google Scholar] [CrossRef]
- Zhou, W.; Zheng, W.; Wang, W.; Lv, H.; Liang, B.; Li, J. Exogenous Pig Blood-Derived Protein Hydrolysates as a Promising Method for Alleviation of Salt Stress in Tomato (Solanum lycopersicum L.). Sci. Hortic. 2022, 294, 110779. [Google Scholar] [CrossRef]
- Nardi, S.; Ertani, A.; Francioso, O. Soil–Root Cross-Talking: The Role of Humic Substances. J. Plant Nutr. Soil Sci. 2016, 180, 5–13. [Google Scholar] [CrossRef]
- Lasheen, F.F.; Hewidy, M.; Abdelhamid, A.N.; Thabet, R.S.; Abass, M.M.M.; Fahmy, A.A.; Saudy, H.S.; Hassan, K.M. Exogenous Application of Humic Acid Mitigates Salinity Stress on Pittosporum (Pittosporum tobira) Plant by Adjusting the Osmolytes and Nutrient Homeostasis. Gesunde Pflanz. 2023, 76, 317–325. [Google Scholar] [CrossRef]
- Çimrin, K.M.; Türkmen, Ö.; Turan, M.; Tuncer, B. Phosphorus and Humic Acid Application Alleviate Salinity Stress of Pepper Seedling. African J. Biotechnol. 2010, 9, 5845–5851. [Google Scholar]
- Amerian, M.; Palangi, A.; Gohari, G.; Ntatsi, G. Enhancing Salinity Tolerance in Cucumber through Selenium Biofortification and Grafting. BMC Plant Biol. 2024, 24, 24. [Google Scholar] [CrossRef]
- Mosaad, I.S.M.; Selim, E.M.M.; Gaafar, D.E.M.; Al-Anoos, M.A.T. Effects of Humic and Fulvic Acids on Forage Production and Grain Quality of Triticale under Various Soil Salinity Levels. Cereal Res. Commun. 2024. [Google Scholar] [CrossRef]
- Gabr, S.; Abouelsaad, I.; Brengi, S.; Gouda, A. Salt Stress Mitigation of Spinach Plants as Affected by Silicon and Fulvic Acid. J. Adv. Agric. Res. 2022, 27, 26–42. [Google Scholar] [CrossRef]
- Saddique, M.; Kausar, A.; Iqra, I.; Akhter, N.; Mujahid, N.; Parveen, A.; Zaman, Q.; Hussain, S. Amino Acids Application Alleviated Salinity Stress in Spinach (Spinacia oleracea L.) by Improving Oxidative Defense, Osmolyte Accumulation, and Nutrient Balance. Turkish J. Agric. For. 2022, 46, 875–887. [Google Scholar] [CrossRef]
- Abdelkader, M.; Voronina, L.; Shelepova, O.; Puchkov, M.; Loktionova, E.; Zhanbyrshina, N.; Yelnazarkyzy, R.; Tleppayeva, A.; Ksenofontov, A. Monitoring Role of Exogenous Amino Acids on the Proteinogenic and Ionic Responses of Lettuce Plants under Salinity Stress Conditions. Horticulturae 2023, 9, 626. [Google Scholar] [CrossRef]
Organic Amendment | Salinity | Impact | References |
---|---|---|---|
Green compost 25 t ha−1 | Saline water: 40–80 mM NaCl | Enhance plant growth up to 50% | [39] |
Compost 55 g kg−1 soil | Saline water: 50–100 mM NaCl | Compost nullified the adverse effects of salinity at 50 mM NaCl levels | [61] |
Municipal solid waste compost: 50 t ha−1 | Saline water: 6.0 dS m−1 | Enhanced yield by 10% | [41] |
Straw compost: 40 t ha−1 | Saline water: 40 mM NaCl | Enhanced growth and yield up to 100% and resulted in less BER by 50% | [43] |
Straw compost: 45.0 t ha−1 | Saline water: 3.0 mS cm−1 | Almost nullified the adverse effects of salinity on yield | [42] |
Urban waste biochar 5–10% v/v soil | Saline water: 100 mM NaCl | Enhanced growth by 75% (DB) and physiology parameters | [74] |
Compost + biochar 2% w/w soil | Soil EC: 6 dS m−1 | Enhanced biomass characteristics and quality performance | [46] |
Manure biochar compost 3 t ha−1 | Soil EC: 6.6 dS m−1 | Enhanced growth and yield and NPK fruit content up to 100% | [75] |
Wheat-straw biochar 2–8% | Saline water 1–3 dS m−1 | 8% biochar enhanced growth and yield by 40% and 50% under high saline conditions | [76] |
Biochar 1–2 t ha−1 | Saline soil EC 2.4 μS cm−1 | Enhanced yield up to 30% | [77] |
Scion | Rootstock | Salinity | Main Effects on Plants | References |
---|---|---|---|---|
Cucumis sativus cv. Jinyan no. 4, Cs | Luffa cylindrica cv. Cuixiuhua, Yutu, Xiangbaiyu, Saijiali and Helanbiyu, Lc | 50, 75, 100, 125 or 150 mM NaCl | Increase salt tolerance of cucumber, plant fresh weight, growth, photosynthetic rate, leaf number, vitamin C, soluble solids content, photochemical efficiency, K accumulation, and reduce the titratable acidity and Na uptake | [151] |
Cucumis sativus cv. Jinchun No. 2 | Cucumis sativus cv. Jinchun No. 2 or Cucurbita moschata cv. Chaojiquanwang | 75 mM NaCl | Increase in transpiration rate and stomatal conductance, reduction in abscisic acid sensitivity | [136] |
Citrullus lanatus ‘Jingxin No. 2 | Cucurbita moschata ‘Quanneng Tiejia’, ‘Kaijia No.1’, and Lagenaria siceraria ‘Hanzhen No.3’ | 200 mM NaCl | Enhancement of photosynthetic capacity, chlorophyll concentration, photochemical efficiency of Photosystem II, reduction in electrolyte leakage, SOD, CAT, and APX | [152] |
Solanum lycopersicum cv. Bark | Solanum lysopersicum cv. Bark, tomato accessions LA1995, LA2711, LA2485 and LA3845 | 100 or 200 mM | Increase in growth parameters, yield traits, vitamin C, firmness and total soluble solids, antioxidants, and proline | [153] |
Cucumis sativus cv. 1010 | Lagenaria siceraria, Cucurbita moschata, Citrullus lanatus var. Colocynthoide, Cucurbita maxima cv. Flexyl | 50 or 100 mM NaCl | Increase in photosynthetic activity, auxin, gibberellin, cytokinin, salicylic acid, and antioxidant enzyme activity | [154] |
Capsicum annuum × Capsicum annuum (Niber), Capsicum annuum (Adige) | Capsicum annuum × Capsicum annuum (Niber), Capsicum annuum (Adige) | 70 mM NaCl | Increase in nitrate reductase activity, proline, and decrease in the Na/K ratio, abscisic acid content and POD | [155] |
Solanum lycopersicum cv. Tom 174 and Tom 121 | Solanum lycopersicum cv. Tom 174 and Tom 121 | 50 mM NaCl | Increase in yield, decrease in the Na concentration, fruit size, dry matter content, vitamin C, and transpiration | [156] |
Cucumis melo cv. Citirex F1 and Kırkağaç Manisa Altinbas | Cucurbita maxima × C. moschata (Kardosa and Nun 9075) | 1 dS/m and 8 dS/m | Enhancement of growth traits, SPAD indices, and shoot fresh weight | [157] |
Cucumis melo SCP1 and SCP2 | Cucumis melo TLR1, TLR2 and Albatros | 200 mM NaCl | Enhancement of plant growth, leaf area, relative water content, chlorophyll, carotenoids, antioxidant enzymes, Ca and K uptake, and reduction in malondialdehyde, Na, and Cl uptake | [158] |
Microbial Biostimulant | Plant Species | Salt Stress | Effect on Plant Performance | Article |
---|---|---|---|---|
IG 2 (Acinetobacter bereziniae), IG 10 (Enterobacter ludwigii), and IG 27 (Alcaligenes faecalis) | Pisum sativum | 75 or 150 mM of NaCl | Increase in growth parameters, chlorophyll content, total soluble sugars and decrease in electrolyte leakage | [234] |
Pseudomonas aeruginosa HG28–5 | Solanum lycopersicum | 200 mL of 200 mM NaCl | Improvement in growth parameters, fresh and dry weight, photochemical efficiency, antioxidant enzymes activities and reduction in ROS accumulation, malondialdehyde and electrolyte leakage | [235] |
Bacillus megaterium TV-6D, Paenibacillus polymyxa KIN37, and Pantoea agglomerans RK92 | Solanum melongena | 100 mM NaCl | Mitigation of the negative effects of salinity via the reduction in Na and Cl uptake, malondialdehyde and hydrogen peroxide concentrations, as well as reduction in electrolyte leakage and increase in leaf water content | [236] |
Pseudarthrobacter oxydans SRT15 and Bacillus zhangzhouensis HPJ40 | Beta vulgaris var. Bressane | 85 mM NaCl | Increasing growth, leaf dry weight, chlorophyll and carotenoid concentrations, stomata conductance, and antioxidant capacity and reduction in electrolyte leakage and Na+ uptake | [237] |
Bacillus velezensis JB0319 | Lactuca sativa | 50, 100, or 150 mM NaCl | Promotion of shoot height, root length, shoot biomass, SOD, POD, and reduction in malondialdehyde concentration | [238] |
Bacillus subtilis | Lactuca sativa | 150 mM NaCl | Enhancement of germination rate, polyphenols, flavonoids, tannin, POD, PPO, and PAL activity | [239] |
Glomus spp. | Capsicum annuum | 4, 8 and 12 dS m–1 | Increase in marketable yield, proline, potassium, phosphorous, Brix and reduction in Na accumulation | [240] |
Claroideoglomus etunicatum | Solanum lycopersicum | 100 mM of NaCl | Upsurge of growth parameters, soluble sugars, soluble proteins, proline, SOD, POD, and CAT | [241] |
Paraglomus occultum | Solanum lycopersicum | 150 mM of NaCl | Improvement of plant growth, chlorophyll index, nitrogen balance index, modulate aquaporins expression | [242] |
Glomus intraradices, Glomus aggregatum, Glomus mosseae, Glomus clarum, Glomus monosporus, Glomus deserticola, Glomus brasilianum, Glomus etunicatum, and Gigaspora margarita | Lactuca sativa | 50 mM of NaCl | Alleviation of the salinity negative effect on plant weight, height, leaf number and leaf area. Increase in plant yield, stomatal conductance, chlorophyll content, nutrient uptake and plant water status. Decrease in malondialdehyde concentration | [243] |
Glomus mosseae | Solanum lycopersicum | 5.6 g of NaCl in 1 L of water | Enhancement of plant height, leaf area, stem diameter, number of leaves, number of flowers and highest fresh weight | [244] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntanasi, T.; Karavidas, I.; Consentino, B.B.; Spyrou, G.P.; Giannothanasis, E.; Marka, S.; Gerakari, M.; Passa, K.; Gohari, G.; Bebeli, P.J.; et al. Innovative and Sustainable Management Practices and Tools for Enhanced Salinity Tolerance of Vegetable Crops. Horticulturae 2025, 11, 1004. https://doi.org/10.3390/horticulturae11091004
Ntanasi T, Karavidas I, Consentino BB, Spyrou GP, Giannothanasis E, Marka S, Gerakari M, Passa K, Gohari G, Bebeli PJ, et al. Innovative and Sustainable Management Practices and Tools for Enhanced Salinity Tolerance of Vegetable Crops. Horticulturae. 2025; 11(9):1004. https://doi.org/10.3390/horticulturae11091004
Chicago/Turabian StyleNtanasi, Theodora, Ioannis Karavidas, Beppe Benedetto Consentino, George P. Spyrou, Evangelos Giannothanasis, Sofia Marka, Maria Gerakari, Kondylia Passa, Gholamreza Gohari, Penelope J. Bebeli, and et al. 2025. "Innovative and Sustainable Management Practices and Tools for Enhanced Salinity Tolerance of Vegetable Crops" Horticulturae 11, no. 9: 1004. https://doi.org/10.3390/horticulturae11091004
APA StyleNtanasi, T., Karavidas, I., Consentino, B. B., Spyrou, G. P., Giannothanasis, E., Marka, S., Gerakari, M., Passa, K., Gohari, G., Bebeli, P. J., Tani, E., Sabatino, L., Papasotiropoulos, V., & Ntatsi, G. (2025). Innovative and Sustainable Management Practices and Tools for Enhanced Salinity Tolerance of Vegetable Crops. Horticulturae, 11(9), 1004. https://doi.org/10.3390/horticulturae11091004