Screening Reference Genes for Wine Grapes for Cultivation Under Low-Temperature Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Low-Temperature Treatments
2.3. RNA Extraction and cDNA Synthesis
2.4. Primer Specificity Validation
2.5. qRT-PCR Analysis
2.6. Data Analysis
3. Results
3.1. RNA Quality Analysis
3.2. Specificity Validation of Primers for Candidate RG
3.3. Analysis of Ct Values of Candidate RGs
3.4. Candidate Reference Gene Stability Evaluation Using the ΔCq Method
3.5. Stability Assessment of Candidate RG Using the geNorm Algorithm
3.6. Stability Evaluation of Candidate RG Using the NormFinder Algorithm
3.7. Stability Assessment of Candidate RG Using the BestKeeper Program
3.8. Stability Ranking of Candidate RG Using RefFinder
3.9. Validation in Selected RGs Using Target Gene Expression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RG | Reference gene |
M | Average expression stability measure |
V | Pairwise variation coefficient |
p | Probability value |
r | Correlation coefficient |
SD | Standard deviation |
CV | Coefficient of variation |
SV | Stability measure |
qPCR | Quantitative real-time PCR |
Ct/Cq | Cycle threshold |
Std Dev | Standard deviation |
CBFs | C-repeat binding factors |
References
- Duan, X.; Zhang, X.; Zhang, L.; Liu, J.; Nan, X.; Li, N.; Li, H. General situation of research and development on antifreeze technology for wine grape overwintering. Agric. Eng. 2022, 12, 133–138. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Wu, D.; Hui, M.; Wang, Y.; Han, X.; Yao, F.; Cao, X.; Li, Y.-H.; Li, H.; Wang, H. Screening of cold hardiness-related indexes and establishment of a comprehensive evaluation method for grapevines (V. vinifera). Front. Plant Sci. 2022, 13, 1014330. [Google Scholar] [CrossRef]
- Wang, Y.; Xin, H.; Fan, P.; Zhang, J.; Liu, Y.; Dong, Y.; Wang, Z.; Yang, Y.; Zhang, Q.; Ming, R.; et al. The genome of Shanputao (Vitis amurensis) provides a new insight into cold tolerance of grapevine. Plant J. 2021, 105, 1495–1506. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Henke, M.; Carbonell-Bejerano, P.; Wang, Z.; Bert, P.F.; Wang, Y.; Li, H.; Kong, J.; Fan, P.; et al. Integrating dense genotyping with high-throughput phenotyping empowers the genetic dissection of berry quality and resilience traits in grapevine. Adv. Sci. 2025, 12, e2412587. [Google Scholar] [CrossRef]
- Lv, K.; Xie, Y.; Yu, Q.; Zhang, N.; Zheng, Q.; Wu, J.; Zhang, J.; Li, J.; Zhao, H.; Xu, W. Amur grape VaMYB4a-VaERF054-Like module regulates cold tolerance through a regulatory feedback loop. Plant Cell Environ. 2025, 48, 1130–1148. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Nolan, T.; Hands, R.E.; Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006, 1, 1559–1582. [Google Scholar] [CrossRef]
- Joshi, C.J.; Ke, W.; Drangowska-Way, A.; O’Rourke, E.J.; Lewis, N.E. What are housekeeping genes? PLoS Comput. Biol. 2022, 18, e1010295. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Ahmed, R.; Haque, M.S.; Alam, M.M.; Islam, M.S. Identification and validation of reference genes for real-time quantitative RT-PCR analysis in jute. BMC Mol. Biol. 2019, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, J.; Deng, Y.; Sun, H.; Li, Y. Selection of reference genes for normalization of cranberry (Vaccinium macrocarpon Ait.) gene expression under different experimental conditions. PLoS ONE 2019, 14, e0224798. [Google Scholar] [CrossRef] [PubMed]
- dMIQE Group; Huggett, J.F. The digital MIQE guidelines update: Minimum information for publication of quantitative digital PCR experiments for 2020. Clin. Chem. 2020, 66, 1012–1029. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.0031. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Xie, F.; Wang, J.; Zhang, B. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes. Funct. Integr. Genom. 2023, 23, 125. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-D.; Wang, B.; Li, Y.-P.; Zeng, M.-J.; Liu, J.-T.; Ye, X.-R.; Zhu, H.-S.; Wen, Q.-F. Reference gene selection for qRT-PCR analyses of luffa (Luffa cylindrica) plants under abiotic stress conditions. Sci. Rep. 2021, 11, 3161. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, A.; Gharanjik, S.; Azadvari, E.; Rashidi-Monfared, S. Characterizing reference genes for high-fidelity gene expression analysis under different abiotic stresses and elicitor treatments in fenugreek leaves. Plant Meth. 2024, 20, 40. [Google Scholar] [CrossRef]
- Sun, H.; Li, C.; Li, S.; Ma, J.; Li, S.; Li, X.; Gao, C.; Yang, R.; Ma, N.; Yang, J.; et al. Identification and validation of stable reference genes for RT-qPCR analyses of Kobresia littledalei seedlings. BMC Plant Biol. 2024, 24, 389. [Google Scholar] [CrossRef]
- Mao, J.; Li, J.; Wang, Y.; Zhang, Z. Selection and validation of reference genes for qRT-PCR in cultivated octoploid strawberry. Fruit Res. 2024, 4, e010. [Google Scholar] [CrossRef]
- Zong, J.; Chen, J.; Li, L.; Li, J.; Li, D.; Wang, J.; Liu, J.; Liu, J. Reference gene selection for quantitative RT-PCR in Miscanthus sacchariflorus under abiotic stress conditions. Mol. Biol. Rep. 2022, 49, 907–915. [Google Scholar] [CrossRef]
- Wang, G.; Guo, Z.; Wang, X.; Guan, S.L.; Gao, H.; Qi, K.; Gu, C.; Zhang, S. Identification and testing of reference genes for qRT-PCR analysis during pear fruit development. Biologia 2022, 77, 2763–2777. [Google Scholar] [CrossRef]
- Dong, W.; Chen, Q.; He, F. Transcriptome-based identification and validation of reference genes for corm growth stages, different tissues, and drought stress in Taro (Colocasia esculenta). BMC Plant Biol. 2024, 24, 478. [Google Scholar] [CrossRef]
- Dong, Y.; Duan, S.; Xia, Q.; Liang, Z.; Dong, X.; Margaryan, K.; Musayev, M.; Goryslavets, S.; Zdunić, G.; Bert, P.F.; et al. Dual domestications and origin of traits in grapevine evolution. Science 2023, 379, 892–901. [Google Scholar] [CrossRef]
- Grassi, F.; De Lorenzis, G. Back to the origins: Background and perspectives of grapevine domestication. Int. J. Mol. Sci. 2021, 22, 4518. [Google Scholar] [CrossRef]
- Chavan, S.; Khatal, A.; Phalake, S.; Tetali, S.; Patil, R. Identification and validation of new reference genes for normalization of gene expression in flower and berry developmental stages of interspecific grape hybrid (L.) × (L.). J. Hortic. Res. 2024, 32, 33–42. [Google Scholar] [CrossRef]
- Ferreira, M.J.; Silva, J.; Pinto, S.C.; Coimbra, S. I choose you: Selecting accurate reference genes for qPCR expression analysis in reproductive tissues in Arabidopsis thaliana. Biomolecules 2023, 13, 463. [Google Scholar] [CrossRef]
- Mo, Z.; Chen, Y.; Lou, W.; Jia, X.; Zhai, M.; Xuan, J.; Guo, Z.; Li, Y. Identification of suitable reference genes for normalization of real-time quantitative PCR data in pecan (Carya illinoinensis). Trees 2020, 34, 1233–1241. [Google Scholar] [CrossRef]
- Wang, B.; Duan, H.; Chong, P.; Su, S.; Shan, L.; Yi, D.; Wang, L.; Li, Y. Systematic selection and validation of suitable reference genes for quantitative real-time PCR normalization studies of gene expression in Nitraria tangutorum. Sci. Rep. 2020, 10, 15891. [Google Scholar] [CrossRef] [PubMed]
- Lalitha, S. Primer premier 5. Biotech Softw. Internet Rep. 2000, 5, 270–272. [Google Scholar] [CrossRef]
- Chai, F.; Liu, W.; Xiang, Y.; Meng, X.; Sun, X.; Cheng, C.; Liu, G.; Duan, L.; Xin, H.; Li, S. Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation. Hortic. Res. 2019, 6, 8. [Google Scholar] [CrossRef]
- Yu, M.; Luobu, Z.; Zhuoga, D.; Wei, X.; Tang, Y. Physiological and broadly targeted metabolomic analyses of barley (Hordeum vulgare L.) in response to low-temperature stress. BMC Genom. 2025, 26, 618. [Google Scholar] [CrossRef]
- Wei, X.; Liu, S.; Sun, C.; Xie, G.; Wang, L. Convergence and divergence: Signal perception and transduction mechanisms of cold stress in Arabidopsis and rice. Plants 2021, 10, 1864. [Google Scholar] [CrossRef]
- Hu, A.; Yang, X.; Zhu, J.; Wang, X.; Liu, J.; Wang, J.; Wu, H.; Zhang, H.; Zhang, H. Selection and validation of appropriate reference genes for RT–qPCR analysis of Nitraria sibirica under various abiotic stresses. BMC Plant Biol. 2022, 22, 592. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, G.; Tang, L. Selection and validation of reference genes for qRT-PCR normalization in dayflower (Commelina communis) based on the transcriptome profiling. BMC Plant Biol. 2024, 24, 1131. [Google Scholar] [CrossRef]
- Saito, K.; Ito, K. Evolution of Elongation Factor 1 Alpha; Springer: New York, NY, USA, 2013; pp. 678–682. [Google Scholar] [CrossRef]
- Li, X.; Dan, X.; Liu, J.; Lv, Q.; Li, X. Translation elongation factor-1α is pivotal for plant heat tolerance despite its pronounced heat-induced aggregation. Plant Physiol. Biochem. 2024, 210, 108649. [Google Scholar] [CrossRef]
- Wang, J.; Qian, D.; Fan, T.; Jia, H.; An, L.; Xiang, Y. Arabidopsis actin capping protein (AtCP) subunits have different expression patterns, and downregulation of AtCPB confers increased thermotolerance of Arabidopsis after heat shock stress. Plant Sci. 2012, 193–194, 110–119. [Google Scholar] [CrossRef]
- Renganathan, V.G.; Renuka, R.; Vanniarajan, C.; Raveendran, M.; Elangovan, A. Selection and validation of reliable reference genes for quantitative real-time PCR in Barnyard millet (Echinochloa spp.) under varied abiotic stress conditions. Sci. Rep. 2023, 13, 15573. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, G.; Chen, Y.; Bai, Q.; Gao, C.; Zeng, L.; Li, Z.; Cheng, Y.; Chen, J.; Sun, X.; et al. Selection of reference genes for qPCR analyses of gene expression in ramie leaves and roots across eleven abiotic/biotic treatments. Sci. Rep. 2019, 9, 20004. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.; Kuang, Z.; Li, B.; Lu, X.; Cao, X.; Kang, J. Selection of suitable reference genes for qRT-PCR expression analysis of Codonopsis pilosula under different experimental conditions. Mol. Biol. Rep. 2020, 47, 4169–4181. [Google Scholar] [CrossRef]
- Chen, X.; Ding, Y.; Yang, Y.; Song, C.; Wang, B.; Yang, S.; Guo, Y.; Gong, Z. Protein kinases in plant responses to drought, salt, and cold stress. J. Integr. Plant Biol. 2021, 63, 53–78. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, X.; Li, M.; Yang, H.; Fu, D.; Lv, J.; Ding, Y.; Gong, Z.; Shi, Y.; Yang, S. The direct targets of CBFs: In cold stress response and beyond. J. Integr. Plant Biol. 2021, 63, 1874–1887. [Google Scholar] [CrossRef] [PubMed]
4 °C | −15 °C | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gene | Std Dev | CV (%) | r | p-Value | Gene | Std Dev | CV (%) | r | p-Value |
EF1α-1 | 0.388 | 1.770 | 0.940 | 0.001 | GAPDH | 0.356 | 1.665 | 0.947 | 0.001 |
GAPDH | 0.524 | 2.303 | 0.940 | 0.001 | Actin | 0.504 | 2.238 | 0.937 | 0.001 |
MDH | 0.522 | 2.208 | 0.979 | 0.001 | EF1α-2 | 0.578 | 2.514 | 0.923 | 0.001 |
EF1α-2 | 0.554 | 2.541 | 0.900 | 0.002 | Tubulin | 0.679 | 2.812 | 0.944 | 0.001 |
UBQ-3 | 0.643 | 2.713 | 0.874 | 0.005 | 18S | 0.612 | 4.711 | 0.973 | 0.001 |
Actin | 0.642 | 2.814 | 0.863 | 0.006 | UBQ-1 | 0.973 | 4.155 | 0.954 | 0.001 |
UBQ-1 | 0.733 | 3.008 | 0.832 | 0.010 | UBQ-3 | 0.892 | 3.978 | 0.983 | 0.001 |
EF1α-3 | 0.701 | 2.491 | 0.790 | 0.020 | MDH | 0.845 | 3.398 | 0.973 | 0.001 |
SAND | 0.589 | 2.246 | 0.736 | 0.038 | EF1α-1 | 0.281 | 1.241 | 0.912 | 0.002 |
18S | 0.679 | 5.384 | 0.720 | 0.044 | UBQ-2 | 0.599 | 2.614 | 0.906 | 0.002 |
TIP41 | 0.481 | 1.934 | −0.514 | 0.192 | TIP41 | 0.452 | 1.711 | 0.904 | 0.002 |
Tubulin | 0.536 | 2.289 | 0.490 | 0.217 | PP2A | 0.628 | 2.304 | 0.892 | 0.003 |
UBC | 0.535 | 2.172 | 0.350 | 0.393 | SAND | 0.359 | 1.350 | 0.855 | 0.007 |
PP2A | 0.414 | 1.523 | −0.286 | 0.493 | EF1γ | 0.691 | 2.741 | 0.806 | 0.016 |
Tubulin-2 | 0.219 | 0.842 | 0.262 | 0.528 | UBC | 0.516 | 2.216 | 0.758 | 0.029 |
EF1γ | 0.336 | 1.371 | 0.098 | 0.818 | Tubulin-2 | 0.386 | 1.303 | 0.732 | 0.039 |
UBQ-2 | 0.885 | 3.805 | 0.040 | 0.924 | EF1α-3 | 0.477 | 1.747 | 0.386 | 0.347 |
4 °C | −15 °C | |||
---|---|---|---|---|
Rank | Genes | Geomean of Ranking Values | Genes | Geomean of Ranking Values |
1 | EF1α-1 | 1.97 | GAPDH | 2.21 |
2 | EF1α-2 | 2.78 | Actin | 2.74 |
3 | MDH | 3.22 | TIP41 | 2.99 |
4 | Tubulin-2 | 4.05 | EF1α-1 | 3.34 |
5 | Actin | 4.12 | EF1α-2 | 3.95 |
6 | GAPDH | 5.38 | Tubulin-2 | 4.90 |
7 | EF1γ | 6.16 | SAND | 6.24 |
8 | EF1α-3 | 7.36 | UBQ-2 | 7.84 |
9 | UBC | 9.12 | 18S | 8.44 |
10 | Tubulin | 9.21 | PP2A | 9.12 |
11 | PP2A | 10.03 | Tubulin | 10.68 |
12 | UBQ-3 | 10.70 | MDH | 12.15 |
13 | SAND | 11.00 | EF1α-3 | 13.10 |
14 | TIP41 | 11.96 | UBC | 13.24 |
15 | UBQ-1 | 14.21 | UBQ-3 | 13.95 |
16 | 18S | 14.49 | EF1γ | 13.98 |
17 | UBQ-2 | 17.00 | UBQ-1 | 15.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, P.; Zhao, X.; Wang, N.; Wang, B.; Liang, J.; Zou, Y.; Zhou, M.; Yan, M.; Miao, J.; Hou, M.; et al. Screening Reference Genes for Wine Grapes for Cultivation Under Low-Temperature Stress. Horticulturae 2025, 11, 1035. https://doi.org/10.3390/horticulturae11091035
Song P, Zhao X, Wang N, Wang B, Liang J, Zou Y, Zhou M, Yan M, Miao J, Hou M, et al. Screening Reference Genes for Wine Grapes for Cultivation Under Low-Temperature Stress. Horticulturae. 2025; 11(9):1035. https://doi.org/10.3390/horticulturae11091035
Chicago/Turabian StyleSong, Pingli, Xindie Zhao, Na Wang, Baotian Wang, Jiayi Liang, Yuxin Zou, Mo Zhou, Menghan Yan, Jiani Miao, Manmei Hou, and et al. 2025. "Screening Reference Genes for Wine Grapes for Cultivation Under Low-Temperature Stress" Horticulturae 11, no. 9: 1035. https://doi.org/10.3390/horticulturae11091035
APA StyleSong, P., Zhao, X., Wang, N., Wang, B., Liang, J., Zou, Y., Zhou, M., Yan, M., Miao, J., Hou, M., & Qin, Z. (2025). Screening Reference Genes for Wine Grapes for Cultivation Under Low-Temperature Stress. Horticulturae, 11(9), 1035. https://doi.org/10.3390/horticulturae11091035