Plant Extract Treatments Induce Resistance to Bacterial Spot by Tomato Plants for a Sustainable System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seeds, Growth of Seedlings and Bacterial Isolates
2.2. Preparation of Leaf Extracts
2.3. Effect of Plant Extracts on Pathogen Growth In Vitro
2.4. Effect of Plant Extracts on Disease Severity and Pathogen Population
2.4.1. Preparation of Inoculum and Inoculation Methods
2.4.2. Determination of Pathogen Population on Tomato Leaves
2.4.3. Determination of Fresh and Dry Weight
2.5. Determination of Total Phenols and Salicylic Acid Contents
2.5.1. Preparation of Samples
2.5.2. Total Phenol Content
2.5.3. Salicylic Acid Content
2.6. Enzymatic Activities
2.6.1. Peroxidase Activity (PO)
2.6.2. Polyphenol Oxidase (PPO) Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Plant Extracts on Pathogen Growth In Vitro
3.2. Determination of Pathogen Population on the Tomato Leaves
3.3. Effect of Plant Extracts on Disease Severity and Dry Weight of Shoots
3.4. Effect of Plant Extracts on Total Phenol and Salicylic Acid Contents
3.5. Effect of Plant Extracts on Peroxidase (PO)
3.6. Effect of Plant Extract on Polyphenol Oxidase (PPO)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 25 March 2020).
- El-Hendawy, H.H.; Osman, M.E.; Sorour, N.M. Biological control of bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis. Microbiol. Res. 2005, 160, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Abo-Elyousr, K.A.M.; El-Hendawy, H.H. Integration of Pseudomonas fluorescens and acibenzolar-S-methyl to control bacterial spot disease of tomato. Crop Prot. 2008, 27, 1118–1124. [Google Scholar] [CrossRef]
- Vallad, G.E.; Pernezny, K.L.; Balogh, B.; Wen, A.; Figueiredo, J.F.L.; Jones, J.B.; Momol, T.; Muchovej, R.; Havranek, N.; Abdallah, N.; et al. Comparison of kasugamycin to traditional bactericides for the management of bacterial spot on tomato. Hortscience 2010, 45, 1834–1840. [Google Scholar] [CrossRef]
- Janse, J. Prevention and control of bacterial pathogens and diseases. In Phytobacteriol Principles Practice; CABI Publishing: Wallingford, UK, 2005; p. 360. [Google Scholar]
- Youssef, K.; Hashim, A.F.; Margarita, R.; Alghuthaymi, M.A.; Abd-Elsalam, K.A. Fungicidal efficacy of chemically-produced copper nanoparticles against Penicillium digitatum and Fusarium solani on citrus fruit. Philipp. Agric. Sci. 2017, 100, 69–78. [Google Scholar]
- Hussien, A.; Ahmed, Y.; Al-Essawy, A.; Youssef, K. Evaluation of different salt-amended electrolysed water to control postharvest moulds of citrus. Trop. Plant Pathol. 2018, 43, 10–20. [Google Scholar] [CrossRef]
- Youssef, K.; de Oliveira, A.G.; Tischer, C.A.; Hussain, I.; Roberto, S.R. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Int. J. Biol. Macromol. 2019, 141, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Kagale, S.T.; Marimuthu, T.; Thaynmanavan, P.; Nandakumar, P.; Samiyappan, R. Antimicrobial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xanthomona soryzae pv. oryzae. Physiol. Mol. Plant Pathol. 2004, 65, 91–100. [Google Scholar] [CrossRef]
- Balestra, G.M.; Heydari, A.D.; Ceccarelli, E.O.; Quattrucci, A. Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Prot. 2009, 28, 807–811. [Google Scholar] [CrossRef]
- Hassan, M.A.E.; Bereika, M.F.F.; Abo-Elnaga, H.I.G.; Sallam, M.A.A. Management of potato bacterial wilt using plant extracts, essential oils, antagonistic bacteria and resistance chemical inducers. Assiut J. Agric. Sci. 2008, 39, 141–159. [Google Scholar]
- Abo-Elyousr, K.A.M.; Asran, M.R. Antibacterial activity of certain plant extracts against bacterial wilt of tomato. Arch. Phytopathol. Plant Prot. 2009, 42, 573–578. [Google Scholar] [CrossRef]
- Hostettmann, K.; Wolfender, J.L. The search for biologically active secondary metabolites. Pestic. Sci. 1997, 51, 471–482. [Google Scholar] [CrossRef]
- Mohana, D.C.; Raveesha, K.A. Anti-bacterial activity of Caesalpinia coriaria (Jacq.) Willd. against plantpathogenic Xanthomonas pathovars: An eco-friendly approach. J. Agric. Technol. 2006, 2, 317–327. [Google Scholar]
- Bagy, H.M.M.; Abo-Elyousr, K.A.M. Antibacterial activity of some essential oils on bacterial spot disease of tomato plant caused by Xanthomonas axonopodis pv. vesicatoria. Int. J. Phytopathol. 2019, 8, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Joseph, B.M.; Darand, A.; Kumar, V. Bioefficacy of plant extracts to control Fusarium solani f.sp. melangenae incitant of brinjal wilt. Glob. J. Biotechnol. Biochem. 2008, 3, 56–59. [Google Scholar]
- Khan, R.; Barira, I.; Mohd, A.; Shazi, S.; Anis, A.; Manazir, A.; Mashiatullah, S.; Asad, U.K. Antimicrobial activity of five herbal extracts against multidrug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 2009, 14, 586–597. [Google Scholar] [CrossRef]
- Salem, E.A.; Youssef, K.; Sanzani, S.M. Evaluation of alternative means to control postharvest Rhizopus rot of peaches. Sci. Hortic. 2016, 198, 86–90. [Google Scholar] [CrossRef]
- Gurjar, S.M.; Shahid, A.; Masood, A.; Kangabam, S.S. Efficacy of plant extracts in plant disease management. Agric. Sci. 2012, 3, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Zahid, N.Z.; Abbasi, N.A.; Hafiz, A.I.; Hussain, A.; Ahmad, Z. Antifungal activity of localfennel (Foeniculum vulgare Mill) extracts to growth responses of some soil diseases. Afr. J. Microbiol. Res. 2012, 6, 46–51. [Google Scholar]
- Kuc, J. Induced immunity to plant diseases. Bioscience 1982, 32, 854–860. [Google Scholar]
- Fallanaj, F.; Sanzani, S.M.; Youssef, K.; Zavanella, C.; Salerno, M.G.; Ippolito, A. A new perspective in controlling postharvest citrus rots: The use of electrolyzed water. Acta Hortic. 2015, 1065, 1599–1606. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, V.P.; Kumar, R.; Srivastava, M.; Sinha, A.; Simon, S. In vitro evaluation of Carbendazim 50% WP, antagonists and botanicals against Fusarium oxysporum f.sp. psidii associated with rhizosphere soil of guava. Asian J. Plant Pathol. 2011, 5, 46–53. [Google Scholar] [CrossRef]
- Geetha, H.M.; Shetty, H.S. Induction of resistance in pearl millet against mildew disease caused by Sclerospora graminicola using benzothiadiazole, calcium chloride and hydrogen peroxide—A comparative evaluation. Crop Prot. 2002, 21, 601–610. [Google Scholar] [CrossRef]
- Hassan, M.E.M.; Abd-El-Rahman, S.S.; El-Abbasi, I.H.; Mikhail, M.S. Change in peroxidase activity due to resistance induced against faba bean chocolate spot disease. Egypt. J. Phytopathol. 2007, 35, 35–48. [Google Scholar]
- Khan, W.; Prithiviraj, B.; Smith, D.L. Phytosynthetic response of corn and soybean to foliar application of salicylates. Plant Physiol. 2003, 160, 485–493. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ferreira, A.C.S.; de Freitas, V.; Silva, A.M. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Abd-Rabboh, M.S.; El Shennawy, M.Z. Effect of some plant extracts on sugar beet powdery mildew. Egypt. J. Phytopathol. 2016, 44, 49–56. [Google Scholar]
- Hassan, M.A.E.; Abo-Elyours, K.A.M. Activation of tomato plant defence responses against bacterial wilt caused by Ralstonia solanacearum using DL-3-aminobutyricacid (BABA). Eur. J. Plant Pathol. 2013, 146, 145–157. [Google Scholar] [CrossRef]
- Abbasi, P.A.; Al-Dahmani, J.; Sahin, F.; Hoitink, H.A.J.; Miller, S.A. Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Dis. 2002, 86, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Rapp, A.; Ziegler, A. Bestimmungder Phenolcarbonsaurein Rebblattern Weintraubeund Weinmittels Polamyid-Dunnschicht Chromatographie. Vitis 1973, 12, 226–236. [Google Scholar]
- Sahin, F.; Gulluce, M.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, M.; Agar, G.; Ozer, H. Biological activities of the essential oils and methanol extract of Origanum vulgares sp. vulgare in the Eastern Anatolia region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar] [CrossRef]
- Dat, J.F.; Foyer, C.H.; Scott, I.M. Changes in salicylic acid and antioxidants during induced thermo tolerance in mustard seedling. Plant Physiol. 1998, 118, 1455–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, M. A rapid and sensitive method for the quantitation of Microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 72, 248–250. [Google Scholar] [CrossRef]
- Putter, J. Peroxidase. In Methoden der Enzymatischen Analyses; Bergmeyer, H.U., Ed.; Verlag Chemie: Weinheim, Germany, 1974; p. 725. [Google Scholar]
- Batra, G.K.; Kuhn, C.W. Polyphenoloxidase and peroxidase activities associated with acquired resistance and it inhibition by 2-thiouracilin virus infected soybean. Physiol. Plant Pathol. 1975, 5, 239–248. [Google Scholar] [CrossRef]
- Hashim, A.F.; Youssef, K.; Abd-Elsalam, K.A. Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. Eur. J. Plant Pathol. 2019, 154, 377–388. [Google Scholar] [CrossRef]
- Rahman, M.M.; Gray, A.I. A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemstry 2005, 66, 1601–1606. [Google Scholar] [CrossRef]
- Draz, I.S.; Amal, A.E.; Abdelnaser, A.E.; Hassan, M.E.; Abdel-Wahab, A.I. Application of plant extracts as inducers to challenge leaf rust of wheat. Egypt. J. Biol. Pest Control 2019, 29, 6. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.E.; Bereika, M.F.F.; Abo-Elnaga, H.I.G.; Sallam, M.A.A. Direct Antimicrobial Activity and Induction of systemic resistance in potato plants against bacterial wilt disease by plant extracts. Plant Pathol. J. 2009, 24, 352–360. [Google Scholar] [CrossRef]
- Abo-Elyousr, K.A.M.; Hussein, M.A.M.; Allam, A.; Hassan, M. Enhanced onion resistance against stemphylium leaf blight disease, caused by Stemphylium vesicarium, by di-potassium phosphate and benzothiadiazole treatments. Plant Pathol. J. 2008, 24, 171–177. [Google Scholar]
- De Meyer, G.; Capieau, K.; Audenaert, K.; Buchala, A.; Métraux, J.P.; Hofte, M. Nanogram amounts of salicylic acid produced by the Rhizobacterium pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in Bean. Mol. Plant Microbe Interact. 1999, 12, 450–458. [Google Scholar] [CrossRef] [Green Version]
- Zimmerli, L.; Jakab, G.; Metraux, J.P.; Mauch-Mani, B. Potentiation of pathogen—Specific defense mechanisms in Arabidopsis by β-Aminobutyric acid. Proc. Natl. Acad. Sci. USA 2000, 97, 12920–12925. [Google Scholar] [CrossRef] [Green Version]
- Zimmerli, L.; Metraux, J.P.; Mauch-Mani, B. Beta–Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 2001, 126, 517–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seleim, M.A.A.; Abo-Elyousr, K.A.M.; Mohamed, A.A.; Al-Marzoky, H.A. Peroxidase and polyphenoloxidase activities as biochemical markers for biocontrol efficacy in the control of tomato bacterial wilt. J. Plant. Physiol. Pathol. 2014, 2, 2–8. [Google Scholar] [CrossRef]
- Safdarpour, F.; Khodakaramain, G. Endophytic bacteria suppress bacterial wilt of tomato caused by Ralstonia solanacearum and Activate defense–related metabolites. Biol. J. Microorg. 2018, 6, 39–52. [Google Scholar]
Plant Extracts | Method of Extract | CFU/g z |
---|---|---|
Nerium oleander | Water extract | 6.2 ± 0.15 b y |
Ethanol extract | 5.0 ± 0.72 c | |
Eucalyptus chamadulonsis | Water extract | 7.7 ± 0.38 b |
Ethanol extract | 5.1 ± 0.23 c | |
Citrullus colocynthis | Water extract | 4.0 ± 0.15 d |
Ethanol extract | 3.0 ± 0.45 d | |
Controls | Infected | 9.7 ± 0.53 a |
Healthy | 0 e |
Plant Extracts | Method of Extract | Disease Severity (%) | Shoot Weight (gm) |
---|---|---|---|
Nerium oleander | Water extract | 29.13 ± 0.10 z c y | 25.2 ± 0.30 c |
Ethanol extract | 30.00 ± 1.51 c | 25.5 ± 0.38 c | |
Eucalyptus chamadulonsis | Water extract | 39.90 ± 0.68 b | 26.8 ± 0.60 c |
Ethanol extract | 33.13 ± 0.10 cd | 24.2 ± 0.30 c | |
Citrullus colocynthis | Water extract | 21.23 ± 0.17 e | 43.0 ± 1.51 ab |
Ethanol extract | 20.00 ± 0.76 e | 44.7 ± 0.45 ab | |
Controls | Infected | 45.23 ± 0.98 a | 13.2 ± 0.30 d |
Healthy | 0 f | 45.2 ± 0.91 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abo-Elyousr, K.A.M.; Almasoudi, N.M.; Abdelmagid, A.W.M.; Roberto, S.R.; Youssef, K. Plant Extract Treatments Induce Resistance to Bacterial Spot by Tomato Plants for a Sustainable System. Horticulturae 2020, 6, 36. https://doi.org/10.3390/horticulturae6020036
Abo-Elyousr KAM, Almasoudi NM, Abdelmagid AWM, Roberto SR, Youssef K. Plant Extract Treatments Induce Resistance to Bacterial Spot by Tomato Plants for a Sustainable System. Horticulturae. 2020; 6(2):36. https://doi.org/10.3390/horticulturae6020036
Chicago/Turabian StyleAbo-Elyousr, Kamal A. M., Najeeb M. Almasoudi, Ahmed W. M. Abdelmagid, Sergio R. Roberto, and Khamis Youssef. 2020. "Plant Extract Treatments Induce Resistance to Bacterial Spot by Tomato Plants for a Sustainable System" Horticulturae 6, no. 2: 36. https://doi.org/10.3390/horticulturae6020036