Optimizing Fruit-Thinning Strategies in Peach (Prunus persica) Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultural Practices
2.2. Thinning Treatments
2.3. Yield and Fruit Quality Measurements
2.4. Statistical Analyses
3. Results
3.1. Experiment I (2017)
3.2. Experiment II (2018)
3.3. Experiment III (2019)
3.4. Relationships among Fruit Number per Tree, Yield and Fruit Size
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conners, C.H. Growth of fruits of peach. N. J. Agric. Exp. Stn. Annu. Rep. 1919, 40, 82–88. [Google Scholar]
- Day, K.R.; DeJong, T.M. Improving fruit size: Thinning and girdling nectarines, peaches, and plums. University of California. Presented at the Curso Internacional de Fruticultura de Clima Templado-Frio, Mendoza, Argentina. 1998. Available online: http://virtualorchard.com/idfta/cft/1999/april/day2/04_Day_fruit_size.html (accessed on 15 May 2019).
- Lockwood, D.W.; Coston, D.C. Peach tree physiology. In Southeastern Peach Growers’ Handbook; Georgia Experiment Station Handbook No. 1; Horton, D., Johnson, D., Eds.; University of Georgia: Athens, GA, USA, 2005; pp. 5–10. [Google Scholar]
- Lopresti, J.; Goodwin, I.; McGlasson, B.; Holford, P.; Golding, J. Variability in size and soluble solids concentration in peaches and nectarines. Hort. Rev. 2014, 42, 253–311. [Google Scholar]
- Masia, A.; Zanchin, A.; Rascio, N.; Ramina, A. Some biochemical and ultrastructural aspects of peach fruit development. J. Am. Soc. Hort. Sci. 1994, 117, 808–815. [Google Scholar] [CrossRef]
- Zanchin, A.; Bonghi, C.; Casadoro, G.; Ramina, A.; Rascio, N. Cell enlargement and cell separation during peach fruit development. Int. J. Plant Sci. 1994, 155, 49–56. [Google Scholar] [CrossRef]
- Yamagushi, M.; Haji, T.; Miyake, M.; Yaegaki, H. Varietal differences in cell division and enlargement periods during peach (Prunus persica Batsch) fruit development. J. Japan. Soc. Hort. Sci. 2002, 71, 155–163. [Google Scholar] [CrossRef]
- Wu, B.H.; Mimoun, M.B.; Génard, M.; Lescourret, F.; Besset, J.; Bussi, C. Peach fruit growth in relation to the leaf-to-fruit ratio, early fruit size and fruit position. J. Hort. Sci. Biotech. 2005, 80, 340–345. [Google Scholar] [CrossRef]
- Scorza, R.; May, L.G.; Purnell, B.; Upchurch, B. Differences in number and area of mesocarp cells between small- and large-fruited peach cultivars. J. Am. Soc. Hort. Sci. 1991, 116, 861–864. [Google Scholar] [CrossRef]
- Lopez, G.; DeJong, T.M. Spring temperatures have a major effect on early stages of peach fruit growth. J. Hort. Sci. Biotechnol. 2007, 82, 507–512. [Google Scholar] [CrossRef]
- Bassi, D.; Monet, R. Botany and taxonomy. In The Peach: Botany, Production, and Uses; Layne, D.R., Bassi, D., Eds.; CAB International: Cambridge, MA, USA, 2008; pp. 1–16. [Google Scholar]
- Njoroge, S.M.; Reighard, G. Thinning time during stage I and fruit spacing influences fruit size of ‘Contender’ peach. Sci. Hort. 2008, 115, 352–359. [Google Scholar] [CrossRef]
- Pavel, E.; DeJong, T.M. Source- and sink-limited growth periods of developing peach fruits indicated by relative growth rate analysis. J. Am. Soc. Hort. Sci. 1993, 118, 820–824. [Google Scholar] [CrossRef] [Green Version]
- DeJong, T.M.; Grossman, Y.L. Quantifying sink and source limitations on dry matter partitioning to fruit growth in peach trees. Physiol. Plant. 1995, 95, 437–443. [Google Scholar] [CrossRef]
- Grossman, Y.L.; DeJong, T.M. Maximum fruit growth potential and seasonal patterns of resource dynamics during peach growth. Ann. Bot. 1995, 75, 553–560. [Google Scholar] [CrossRef]
- Costa, G.; Vizzotto, G. Fruit thinning of peach trees. Plant Growth Regul. 2000, 31, 113–119. [Google Scholar] [CrossRef]
- Dennis, F.G., Jr. The history of fruit thinning. Plant Growth Regul. 2000, 31, 1–16. [Google Scholar] [CrossRef]
- Myers, S.C.; Savelle, A.T.; Tustin, D.S.; Byers, R.E. Partial flower thinning increases shoot growth, fruit size, and subsequent flower formation of peach. HortScience 2002, 37, 350–647. [Google Scholar] [CrossRef] [Green Version]
- Byers, R.E.; Costa, G.; Vizzotto, G. Flower and fruit thinning of peach and other Prunus. Hort. Rev. 2003, 28, 351–392. [Google Scholar]
- Grossman, Y.L.; DeJong, T.M. Maximum fruit growth potential following resource limitation during peach growth. Ann. Bot. 1995, 75, 561–567. [Google Scholar] [CrossRef]
- Byers, R.E.; Marini, R. Influence of blossom and fruit thinning on peach flower bud tolerance to an early spring freeze. HortScience 1994, 29, 146–148. [Google Scholar] [CrossRef]
- DeJong, T.M.; Johnson, R.S.; Day, K.R.; Beede, R. Feasibility of increasing cling peach yields by early thinning 1991 cling peach report. California Cling Peach Advisory Board Annual Research Report; University of California: Sacramento, CA, USA, 1991; pp. 1–5. Available online: https://ucanr.edu/sites/fruitreport/files/109964.pdf (accessed on 15 May 2019).
- Costa, G.; Botton, A.; Vizzotto, G. Fruit thinning: Advances and trends. Hort. Rev. 2019, 46, 185–226. [Google Scholar]
- Grossman, Y.L.; DeJong, T.M. Maximum vegetative growth potential and seasonal patterns of resource dynamics during peach growth. Ann. Bot. 1995, 76, 473–482. [Google Scholar] [CrossRef]
- DeJong, T.M.; Day, K.; Doyle, J.F.; Johnson, R.S. Evaluation of the physiological efficiency of peach, nectarine, and plum trees in different orchard systems. Annual Res. Rpt. California Tree Fruit Agreem. Reedley, VA, USA, 1990; pp. 1–10. Available online: https://ucanr.edu/sites/ctfa/category/Orchard_Design/?repository=46344&a=95028 (accessed on 15 May 2019).
- Marini, R.P. The perfect peach. Fruit Grow. News 2001, 40, 52. [Google Scholar]
- Lopez, G.; Johnson, R.; Dejong, T. High spring temperatures decrease peach fruit size. Calif. Agri. 2007, 61, 31–34. [Google Scholar] [CrossRef]
- Foshee, W.; Patterson, M.; Sikora, E.; Melgar, J.C.; Reighard, G.; Schnabel, G.; Anderson, P.; Harmon, P.; Mizell, R.; Johnson, D.; et al. 2020 Southeastern Peach, Nectarine, and Plum Pest Management and Culture Guide; Blaauw, B., Brannen, P., Lockwood, D., Schnabel, G., Ritchie, D., Eds.; Bulletin 1171; UGA Extension Publication; University of Georgia: Athens, GA, USA, 2020; 76p. [Google Scholar]
- Chavez, D.; Florkowska, M.; Cook, J.; Little, E. Home garden peaches. UGA Ext. Publ. 2015, 1063, 1–7. [Google Scholar]
- UGA Weather Network. Average Chilling Hours Calculator for Fort Valley, GA. Available online: http://www.georgiaweather.net/?content=calculator&variable=ch&type=cd (accessed on 15 May 2019).
- UGA Weather Network. Historical Weather Data for Fort Valley, GA. 2019. Available online: http://www.georgiaweather.net/?variable=HI&site=FTVALLEY (accessed on 15 May 2019).
- Day, K.; Lopez, G.; DeJong, T. Using growing degree hours accumulated thirty days after bloom to predict peach and nectarine harvest date. Acta Hort. 2008, 803, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Reighard, G.; Rauh, B.L. Predicting peach fruit size potential from GDD 30 days post-bloom. Acta Hort. 2015, 1084, 753–758. [Google Scholar] [CrossRef]
- Dave Wilson Nursery. Peaches. Available online: https://www.davewilson.com/product-information/product/peaches (accessed on 15 May 2019).
- UGA. Peaches: Cultivars. Available online: https://peaches.caes.uga.edu/cultivars.html (accessed on 15 May 2018).
- Simnitt, S.; Borisova, T.; Chavez, D.; Olmstead, M. Frost protection for Georgia peach varieties: Current practices and information needs. HortTechnology 2017, 27, 344–353. [Google Scholar] [CrossRef]
- Reighard, G.L. Manipulating flower bud density and bloom in peaches. In Proceedings of the Mid Atlantic Fruit and Vegetable Convention and Trade Show, Hershey, PA, USA, 31 January 2008. [Google Scholar]
- Byers, R.E. Response of peach trees to bloom thinning. Acta Hort. 1989, 254, 125–132. [Google Scholar] [CrossRef]
- Deshmukh, N.A.; Rymbai, H.; Jha, A.K.; Lyngdoh, P.; Malhotra, S.K. Effect of thinning time and fruit spacing on fruit maturity, yield, size, peel colour and quality attributes of peach cv. Flordasun. Indian J. Hort. 2017, 74, 45–50. [Google Scholar] [CrossRef]
- Oliveira, P.D.; Marodin, G.A.B.; Almeida, G.K.; Gonzatto, M.P.; Darde, D.C. Heading of shoots and hand thinning of flowers and fruits on ‘BRS Kampai’ peach trees. Pesquisa Agropecuária Brasileira 2017, 52, 1006–1016. [Google Scholar] [CrossRef] [Green Version]
- Southwick, S.M.; Weis, K.G.; Yeager, J.T. Bloom thinning ‘Loadel’ cling peach with a surfactant. J. Am. Soc. Hort. Sci. 1996, 121, 334–338. [Google Scholar] [CrossRef]
- Myers, R.E.; Deyton, D.E.; Sams, C.E. Applying soybean oil to dormant peach trees alters internal atmosphere, reduced respiration, delays bloom, and thins flower buds. J. Am. Soc. Hort. Sci. 1996, 121, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Moran, R.E.; Deyton, D.E.; Sams, C.E.; Cummins, J.C. Applying soybean oil to dormant peach trees thins flower buds. HortScience 2000, 35, 615–619. [Google Scholar]
- Alcobendas, R.; Mirás-Avalos, J.M.; Alarcón, J.J.; Pedrero, F.; Nicolás, E. Combined effects of irrigation crop load and fruit position on size, color and firmness of fruits in an extra-early cultivar of peach. Sci. Hort. 2012, 142, 128–135. [Google Scholar] [CrossRef]
- Marini, R.P.; Sowers, D.L. Peach fruit weight is influenced by crop density and fruiting shoot length but not position on the shoot. J. Am. Hort. Soc. 1994, 119, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Echeverria, G.; Cano, J.; López, L.; Alins, G. Influence of volatile compound emissions and standard quality on consumer acceptance of peaches and nectarines. Acta Hort. 2012, 934, 1075–1081. [Google Scholar] [CrossRef]
- Belisle, C.; Phan, Y.T.X.; Adhikari, K.; Chavez, D.J. A fruit quality survey of peach cultivars growth in the southeastern united states. HortTechnology 2018, 28, 189–201. [Google Scholar] [CrossRef]
- Predieri, S.; Ragazzini, P.; Rondelli, R. Sensory evaluation and peach fruit quality. Acta Hort. 2006, 713, 429–434. [Google Scholar] [CrossRef]
- Barreto, C.F.; de Mello Farias, R.; Zandoná, R.R.; Martins, C.R.; Malgarim, M.B. Influence of the period of peach tree chemical thinning on fruit quality. J. Agric. Sci. 2019, 11, 141–147. [Google Scholar] [CrossRef]
- Link, H. Significance of flower and fruit thinning on fruit quality. Plant Growth Regulat 2000, 31, 17–26. [Google Scholar] [CrossRef]
Cultivar | ‘Cary Mac’ | ‘June Prince’ | ‘Spring Prince’ | |
---|---|---|---|---|
2017 z | Spacing | |||
1 | 0 DAFB y | 0 DAFB | 0 DAFB | 15 cm |
2 | 0 DAFB | 0 DAFB | 0 DAFB | 20 cm |
3 | 43 DAFB | 49 DAFB | 49 DAFB | 15 cm |
4 | 43 DAFB | 49 DAFB | 49 DAFB | 20 cm |
5 | 62 DAFB | 62 DAFB | 62 DAFB | 15 cm |
6 | 62 DAFB | 62 DAFB | 62 DAFB | 20 cm |
7 x | No Thinning | No Thinning | No Thinning | No Thinning |
2018 | ‘Cary Mac’ | ‘July Prince’ | ‘Summer Flame’ | Spacing |
1 | 0 DAFB | 0 DAFB | 0 DAFB | 15 cm |
2 | 0 DAFB | 0 DAFB | 0 DAFB | 20 cm |
3 | 21 DAFB | 14 DAFB | 14 DAFB | 15 cm |
4 | 21 DAFB | 14 DAFB | 14 DAFB | 20 cm |
5 | 30 DAFB | 33 DAFB | 26 DAFB | 15 cm |
6 | 30 DAFB | 33 DAFB | 26 DAFB | 20 cm |
7 | No Thinning | No Thinning | No Thinning | No Thinning |
2019 | ‘Cary Mac’ | ‘July Prince’ | ‘Summer Flame’ | Spacing |
1 | 0 DAFB | − | 0 DAFB | 15 cm |
2 | 0 DAFB | − | 0 DAFB | 20 cm |
3 | 19 DAFB | 21 DAFB | 15 DAFB | 15 cm |
4 | 19 DAFB | 21 DAFB | 15 DAFB | 20 cm |
5 | 28 DAFB | 44 DAFB | 43 DAFB | 15 cm |
6 | 28 DAFB | 44 DAFB | 43 DAFB | 20 cm |
7 | No Thinning | No Thinning | No Thinning | No Thinning |
Treatment | Diameter (mm) z | SSC | TA | FPT v | |
---|---|---|---|---|---|
‘Cary Mac’ | Commercial y | Undersized y | (% Brix) x | (% MA) w | |
0 DAFB-15 cm | 62.02 ± 0.38 u | 55.65 ± 2.03 | 10.3 ± 0.2 | 0.92 ± 0.04 | 460 ± 111 |
0 DAFB-20 cm | 62.81 ± 0.40 | 56.08 ± 0.82 | 9.8 ± 1.1 | 1.05 ± 0.05 | 436 ± 85 |
43 DAFB-15 cm | 62.09 ± 1.45 | 56.60 ± 0.97 | 9.6 ± 0.6 | 0.97 ± 0.05 | 416 ± 14 |
43 DAFB-20 cm | 63.48 ± 0.76 | 56.99 ± 0.58 | 10.7 ± 0.2 | 0.98 ± 0.00 | 319 ± 70 |
62 DAFB-15 cm | 62.32 ± 1.42 | 56.36 ± 1.04 | 10.5 ± 0.4 | 1.00 ± 0.03 | 500 ± 95 |
62 DAFB-20 cm | 62.62 ± 1.00 | 55.08 ± 0.42 | 10.3 ± 0.3 | 1.08 ± 0.07 | 524 ± 65 |
Control | 62.22 ± 0.12 | 57.12 ± 1.46 | 9.9 ± 0.2 | 0.94 ± 0.03 | 607 ± 47 |
‘June Prince’ | |||||
0 DAFB-15 cm | 66.54 ± 1.37 | 48.82 ± 0.44 | 11.3 ± 0.3 | 0.88 ± 0.03 | 87 ± 1 |
0 DAFB-20 cm | 66.98 ± 1.24 | 49.42 ± 1.22 | 10.8 ± 0.1 | 0.82 ± 0.06 | 54 ± 9 |
49 DAFB-15 cm | 68.19 ± 2.20 | 50.36 ± 1.34 | 10.8 ± 0.3 | 0.88 ± 0.04 | 55 ± 8 |
49 DAFB-20 cm | 67.06 ± 0.78 | 51.23 ± 1.45 | 10.6 ± 0.2 | 0.73 ± 0.04 | 63 ± 13 |
62 DAFB-15 cm | 67.95 ± 1.03 | 51.37 ± 1.57 | 11.0 ± 0.4 | 0.79 ± 0.02 | 80 ± 15 |
62 DAFB-20 cm | 70.34 ± 1.30 | 50.64 ± 0.77 | 11.4 ± 0.1 | 0.90 ± 0.11 | 72 ± 1 |
Control | 67.55 ± 0.86 | 50.38 ± 3.09 | 9.8 ± 0.5 | 0.81 ± 0.08 | 125 ± 36 |
‘Spring Prince’ | |||||
0 DAFB-15 cm | 59.65 ± 0.64 | 43.40 ± 1.10 | 11.3 ± 0.3 | 0.72 ± 0.05 | 127 ± 27 |
0 DAFB-20 cm | 60.98 ± 1.68 | 45.05 ± 2.20 | 10.4 ± 0.2 | 0.69 ± 0.08 | 55 ± 11 |
49 DAFB-15 cm | 59.69 ± 3.12 | 43.63 ± 1.54 | 10.9 ± 0.4 | 0.81 ± 0.11 | 73 ± 9 |
49 DAFB-20 cm | 58.54 ± 0.21 | 41.20 ± 2.71 | 9.5 ± 0.6 | 0.72 ± 0.03 | 82 ± 17 |
62 DAFB-15 cm | 59.16 ± 2.43 | 45.73 ± 1.89 | 11.9 ± 0.3 | 0.79 ± 0.02 | 69 ± 13 |
62 DAFB-20 cm | 60.97 ± 1.00 | 45.47 ± 0.70 | 11.3 ± 0.7 | 0.76 ± 0.18 | 66 ± 9 |
Control | 61.15 ± 0.25 | 45.08 ± 1.44 | 10.5 ± 0.7 | 0.68 ± 0.03 | 111 ± 7 |
Treatment | Diameter (mm) z | SSC | TA | FPT w |
---|---|---|---|---|
‘Cary Mac’ | (% Brix) y | (% MA) x | ||
0 DAFB-15 cm | 76.55 ± 0.82 v | 11.7 ± 0.5 b u | 0.96 ± 0.02 | 39 ± 11 ab |
0 DAFB-20 cm | 77.15 ± 1.93 | 12.6 ± 1.5 ab | 0.93 ± 0.08 | 25 ± 5 b |
21 DAFB-15 cm | 76.35 ± 0.37 | 12.5 ± 1.3 ab | 0.89 ± 0.02 | 105 ± 2 ab |
21 DAFB-20 cm | 76.85 ± 0.75 | 12.7 ± 1.9 ab | 1.01 ± 0.06 | 91 ± 50 ab |
30 DAFB-15 cm | 78.24 ± 0.95 | 16.0 ± 1.3 ab | 1.05 ± 0.01 | 66 ± 6 ab |
30 DAFB-20 cm | 76.46 ± 1.80 | 16.7 ± 0.8 a | 1.09 ± 0.06 | 87 ± 11 ab |
Control | 75.45 ± 2.59 | 15.7 ± 0.7 ab | 1.00 ± 0.02 | 142 ± 27 a |
‘July Prince’ | ||||
0 DAFB-15 cm | 87.09 ± 1.39 | 12.1 ± 1.0 | 0.81 ± 0.04 | 153 ± 39 b |
0 DAFB-20 cm | 87.83 ± 4.27 | 12.9 ± 1.3 | 0.80 ± 0.07 | 147 ± 47 b |
14 DAFB-15 cm | 83.82 ± 2.61 | 13.0 ± 1.6 | 0.86 ± 0.04 | 214 ± 4 ab |
14 DAFB-20 cm | 87.30 ± 1.18 | 14.1 ± 1.0 | 0.85 ± 0.03 | 170 ± 11 ab |
33 DAFB-15 cm | 84.52 ± 1.36 | 13.5 ± 1.2 | 0.81 ± 0.06 | 225 ± 25 ab |
33 DAFB-20 cm | 85.76 ± 0.12 | 14.5 ± 2.1 | 0.82 ± 0.03 | 265 ± 58 ab |
Control | 82.41 ± 1.77 | 14.2 ± 1.0 | 0.79 ± 0.05 | 371 ± 66 a |
‘Summer Flame’ | ||||
0 DAFB-15 cm | 80.80 ± 2.95 | 13.0 ± 0.6 | 1.04 ± 0.08 | 15 ± 3 |
0 DAFB-20 cm | 79.87 ± 1.29 | 22.5 ± 3.6 | 1.06 ± 0.09 | 13 ± 3 |
14 DAFB-15 cm | 82.32 ± 1.57 | 14.1 ± 1.4 | 1.13 ± 0.09 | 18 ± 11 |
14 DAFB-20 cm | 80.18 ± 1.41 | 16.0 ± 1.9 | 0.95 ± 0.01 | 31 ± 15 |
26 DAFB-15 cm | 79.31 ± 2.70 | 14.6 ± 0.7 | 0.99 ± 0.04 | 25 ± 15 |
26 DAFB-20 cm | 80.68 ± 0.30 | 13.7 ± 1.8 | 1.08 ± 0.00 | 43 ± 12 |
Control | 84.57 ± 3.86 | 14.6 ± 0.7 | 1.08 ± 0.07 | 49 ± 23 |
Treatment | Diameter (mm) z | SSC | TA | FPT w |
---|---|---|---|---|
‘Cary Mac’ | (% Brix) y | (% MA) x | ||
0 DAFB-15 cm | 71.76 ± 1.60 v a u | 12.4 ± 0.1 | 0.92 ± 0.02 | 173 ± 12 |
0 DAFB-20 cm | 67.58 ± 0.84 ab | 12.2 ± 0.1 | 0.99 ± 0.02 | 135 ± 19 |
19 DAFB-15 cm | 67.41 ± 0.90 ab | 12.0 ± 0.3 | 1.07 ± 0.07 | 312 ± 31 |
19 DAFB-20 cm | 64.56 ± 1.97 b | 12.0 ± 0.2 | 1.03 ± 0.03 | 392 ± 189 |
28 DAFB-15 cm | 68.62 ± 1.73 ab | 11.8 ± 0.2 | 1.04 ± 0.03 | 366 ± 64 |
28 DAFB-20 cm | 68.66 ± 0.72 ab | 11.6 ± 0.3 | 0.93 ± 0.05 | 375 ± 72 |
Control | 62.14 ± 1.36 b | 11.3 ± 0.3 | 1.00 ± 0.01 | 694 ± 246 |
‘July Prince’ t | ||||
21 DAFB-15 cm | 73.95 ± 1.54 a | 11.6 ± 0.6 | 0.80 ± 0.01 a | 476 ± 96 |
21 DAFB-20 cm | 75.05 ± 0.67 a | 10.7 ± 0.6 | 0.70 ± 0.02 ab | 425 ± 39 |
44 DAFB-15 cm | 68.98 ± 1.26 ab | 11.5 ± 0.4 | 0.63 ± 0.04 b | 666 ± 202 |
44 DAFB-20 cm | 66.49 ± 3.42 ab | 11.1 ± 0.4 | 0.67 ± 0.02 b | 706 ± 107 |
Control | 58.96 ± 2.63 b | 11.0 ± 0.7 | 0.66 ± 0.02 b | 1084 ± 119 |
‘Summer Flame’ | ||||
0 DAFB-15 cm | 74.84 ± 0.93 | 13.2 ± 0.9 | 0.86 ± 0.09 | 106 ± 37 |
0 DAFB-20 cm | 74.03 ± 0.78 | 13.8 ± 0.4 | 0.75 ± 0.07 | 35 ± 4 |
15 DAFB-15 cm | 76.30 ± 0.90 | 11.8 ± 0.4 | 0.75 ± 0.08 | 44 ± 2 |
15 DAFB-20 cm | 74.40 ± 4.13 | 13.7 ± 0.1 | 0.87 ± 0.03 | 51 ± 5 |
43 DAFB-15 cm | 74.67 ± 1.79 | 13.4 ± 0.6 | 0.89 ± 0.02 | 94 ± 12 |
43 DAFB-20 cm | 75.58 ± 1.55 | 12.7 ± 0.5 | 0.86 ± 0.06 | 108 ± 36 |
Control | 75.21 ± 0.68 | 13.5 ± 1.3 | 0.79 ± 0.11 | 92 ± 54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutton, M.; Doyle, J.; Chavez, D.; Malladi, A. Optimizing Fruit-Thinning Strategies in Peach (Prunus persica) Production. Horticulturae 2020, 6, 41. https://doi.org/10.3390/horticulturae6030041
Sutton M, Doyle J, Chavez D, Malladi A. Optimizing Fruit-Thinning Strategies in Peach (Prunus persica) Production. Horticulturae. 2020; 6(3):41. https://doi.org/10.3390/horticulturae6030041
Chicago/Turabian StyleSutton, Mary, John Doyle, Dario Chavez, and Anish Malladi. 2020. "Optimizing Fruit-Thinning Strategies in Peach (Prunus persica) Production" Horticulturae 6, no. 3: 41. https://doi.org/10.3390/horticulturae6030041
APA StyleSutton, M., Doyle, J., Chavez, D., & Malladi, A. (2020). Optimizing Fruit-Thinning Strategies in Peach (Prunus persica) Production. Horticulturae, 6(3), 41. https://doi.org/10.3390/horticulturae6030041