Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,752)

Search Parameters:
Keywords = fruit size

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4308 KB  
Article
Histology of Pompia Peel and Bioactivity of Its Essential Oil: A New Citrus-Based Approach to Skin Regeneration
by Emma Cocco, Giulia Giorgi, Valeria Marsigliesi, Francesco Mura, Jorge M. Alves-Silva, Mónica Zuzarte, Lígia Salgueiro, Valentina Ghiani, Enrico Sanjust, Danilo Falconieri, Delia Maccioni, Alessio Valletta, Elisa Brasili and Andrea Maxia
Pharmaceuticals 2025, 18(9), 1256; https://doi.org/10.3390/ph18091256 - 24 Aug 2025
Abstract
Background/Objectives: Pompia is an ancient, endemic citrus ecotype native to Sardinia (Italy), characterized by distinctive morphology and high content of bioactive compounds. Despite increasing interest, several aspects of this fruit, including its histological characteristics, remain poorly understood. This study aims to address [...] Read more.
Background/Objectives: Pompia is an ancient, endemic citrus ecotype native to Sardinia (Italy), characterized by distinctive morphology and high content of bioactive compounds. Despite increasing interest, several aspects of this fruit, including its histological characteristics, remain poorly understood. This study aims to address this gap by investigating the anatomical features and spatial distribution of secretory cavities involved in essential oil (EO) production and accumulation, while also evaluating the EO’s chemical profile and associated biological activity. Methods: Pompia peel (flavedo and albedo) was subjected to histological analysis through fixation, dehydration, resin inclusion and sectioning. Sections were stained with 0.05% toluidine blue and observed under a light microscope to measure different parameters of secretory cavities. Essential oil (EO) was obtained from Pompia peel by hydrodistillation and characterized by gas chromatography–mass spectrometry (GC–MS) analysis. The biological activity of Pompia EO was assessed in vitro using NIH/3T3 fibroblasts, where wound-healing was evaluated by scratch assay and anti-senescence effects by β-galactosidase and γH2AX activity. Results: Microscopic analysis of the peel revealed pronounced variability in depth and size of the secretory cavities, along with the presence of lenticel-like structures in the epidermis. GC–MS analysis showed that Pompia EO is dominated by limonene (89%), with minor compounds including myrcene, geranial and neral. In vitro biological assays demonstrated that the EO promotes cell migration in a wound-healing model at concentrations ≥ 12.5 µg/mL and reduces markers of cellular senescence, including β-galactosidase activity and γH2AX foci, in etoposide-induced senescent fibroblasts. Conclusions: Overall, this study provides the first histological characterization of Pompia peel and confirms the bioactive potential of its EO. These findings support future applications in skin regeneration and anti-aging strategies and contribute to the valorization of this underexplored Citrus ecotype. Full article
(This article belongs to the Special Issue Advances in the Chemical-Biological Knowledge of Essential Oils)
19 pages, 5339 KB  
Article
Application of a Pickering Emulsion Stabilized by Zein and Cellulose Nanocrystalline Composite Particles to Preserve Kiwifruit
by Yiping Liu, Weixiang Qiu, Yalan Mo, Jing Tian, Muxiang Liao, Binghong Jia, Qian Zhou, Feichi Liu and Xiaogang Li
Molecules 2025, 30(17), 3478; https://doi.org/10.3390/molecules30173478 - 24 Aug 2025
Abstract
This study involved developing a Pickering emulsion system based on a composite material comprising zein colloidal particles (ZCPs) and cellulose nanocrystals (CNCs) with the aim of exploring its potential application in fruit preservation by loading carvacrol (CAR). The system (CAR@ZCPE) consists of ZCP [...] Read more.
This study involved developing a Pickering emulsion system based on a composite material comprising zein colloidal particles (ZCPs) and cellulose nanocrystals (CNCs) with the aim of exploring its potential application in fruit preservation by loading carvacrol (CAR). The system (CAR@ZCPE) consists of ZCP particles with an average size of approximately 317 nm in a composite with CNC particles of approximately 85 nm at an optimal mass ratio (ZCP/CNC = 1:3) to form stable particles encapsulating CAR. The results indicate that CAR@ZCPE is an O/W Pickering emulsion that can be diluted indefinitely in water and exhibits excellent environmental stability. Rheological analysis revealed that it exhibits shear-thinning properties and a gel-like network structure, which explains its good stability. Bioactivity evaluation revealed that CAR@ZCPE exhibited inhibitory activity against Botryosphaeria dothidea, with an inhibition rate of 63.60% at a concentration of 50 mg/L. Kiwifruit preservation experiments confirmed that CAR@ZCPE significantly reduced the degree of kiwifruit decay, and cell activity evaluations confirmed its biosafety. The total apoptotic rate of LO2 cells was 2.10%, indicating that the emulsion did not affect the cell growth cycle. This study successfully developed a CAR Pickering emulsion stabilized by ZCP-CNC composite particles. This emulsion system combines high stability, excellent antibacterial activity, and excellent biocompatibility. Kiwifruit preservation experiments validated its potential as a safe and efficient new preservative, providing an innovative method for preserving fruits using ZCP-CNC-composite-stabilized Pickering emulsions. Full article
Show Figures

Graphical abstract

22 pages, 2402 KB  
Article
Influence of Organic Mulching Strategies on Apple Tree (Mallus domestica BORKH.) Development, Fruit Quality and Soil Enzyme Dynamics
by Ioana Maria Borza, Cristina Adriana Rosan, Daniela Gitea, Manuel Alexandru Gitea, Alina Dora Samuel, Carmen Violeta Iancu, Ioana Larisa Bene, Daniela Padilla-Contreras, Cristian Gabriel Domuta and Simona Ioana Vicas
Agronomy 2025, 15(9), 2021; https://doi.org/10.3390/agronomy15092021 - 22 Aug 2025
Viewed by 152
Abstract
Mulching is a sustainable agronomic practice that can improve soil quality and fruit characteristics in crops. This study investigated the influence of sheep wool mulch and a soil conditioner on growth, the accumulation of bioactive compounds, and soil enzymatic activity in apple orchards. [...] Read more.
Mulching is a sustainable agronomic practice that can improve soil quality and fruit characteristics in crops. This study investigated the influence of sheep wool mulch and a soil conditioner on growth, the accumulation of bioactive compounds, and soil enzymatic activity in apple orchards. A two-year field experiment (2023–2024) was conducted using three experimental methods: mulching with sheep wool (V2), application of a soil conditioner, corn starch-based polymer (V3), and a combination of sheep wool and corn starch-based polymer (V4) along with a control (V1). Tree growth parameters, fruit physicochemical properties, total phenolic and flavonoid content, and soil enzyme activities (dehydrogenase, catalase, phosphatase) were assessed. Data were analyzed using Principal Component Analysis (PCA) and Pearson’s correlation. PCA showed that the combined variant (V4) improved fruit size, weight, and bioactive compound content, while wool mulch alone (V2) was associated with higher fruit yield and better vegetative growth. Catalase activity correlated positively and consistently with bioactive compounds in both years, while phosphatase activity showed an intensified positive relationship in 2024. Dehydrogenase activity was negatively correlated with phenolic content in both seasons. Organic and integrated mulching practices can beneficially modulate both aboveground and belowground plant–soil interactions. The combined variant proved to be the most effective strategy, enhancing fruit nutritional quality and supporting sustainable apple orchard management. Full article
Show Figures

Figure 1

15 pages, 764 KB  
Article
Essential Elements (Fe, Cu, Mn, Zn) in Meconium, and Newborn Length and Weight, in Relation to Maternal Lifestyle and Diet
by Bianka Mimica, Ajka Pribisalic, Zlatka Knezovic and Davorka Sutlovic
Nutrients 2025, 17(16), 2700; https://doi.org/10.3390/nu17162700 - 20 Aug 2025
Viewed by 248
Abstract
Background/Objectives: Fetal exposure to essential metals, such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn), is influenced by maternal nutrition and lifestyle during pregnancy, potentially impacting newborn health. This study aimed to quantify concentrations of these metals in meconium and evaluate [...] Read more.
Background/Objectives: Fetal exposure to essential metals, such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn), is influenced by maternal nutrition and lifestyle during pregnancy, potentially impacting newborn health. This study aimed to quantify concentrations of these metals in meconium and evaluate their associations, together with newborn length and weight, in relation to maternal dietary and lifestyle factors. Methods: This cross-sectional study included 152 mother–infant pairs recruited from various regions of Split-Dalmatia County, Croatia. Meconium samples were collected within 24 h after birth and analyzed for Fe, Zn, Cu, and Mn concentrations. Maternal characteristics, dietary intake, supplement use, and lifestyle factors were collected via structured questionnaires and supplemented by hospital records. Associations among maternal factors, meconium metal concentrations, and newborn birth weight and length were assessed using non-parametric statistical methods. Results: Meconium concentrations of Fe, Zn, Cu, and Mn showed substantial interindividual variability, with a strong positive correlation between Fe and Cu. Higher maternal pre-pregnancy BMI was linked to lower meconium Fe, while BMI at delivery was associated with Zn. Dietary patterns influenced metal levels: higher fruit intake was linked to increased Cu, greater vegetable intake with lower Fe, and moderate tea consumption with higher Zn. No significant associations were found with maternal smoking, residence, or supplement use. Maternal meat consumption and higher pre-pregnancy BMI were both associated with higher newborn birth weight and length. Conclusions: Maternal BMI and specific dietary patterns during pregnancy significantly influence essential metal concentrations in newborn meconium and are associated with newborn size, highlighting the importance of balanced maternal nutrition and healthy metabolic status during pregnancy. Full article
(This article belongs to the Special Issue Diet, Maternal Nutrition and Reproductive Health)
Show Figures

Figure 1

11 pages, 2495 KB  
Communication
Chitosan Mitigates Phytophthora Blight in Chayote (Sechium edule) by Direct Pathogen Inhibition and Systemic Resistance Induction
by José Rigoberto Arroyo-Axol, Ana Karen Miranda-Solares, José Juan Zúñiga-Aguilar, Alma Rosa Solano-Báez, Régulo Carlos Llarena-Hernández, Luz Irene Rojas-Avelizapa and Rosalía Núñez-Pastrana
Int. J. Plant Biol. 2025, 16(3), 96; https://doi.org/10.3390/ijpb16030096 - 20 Aug 2025
Viewed by 83
Abstract
Phytophthora blight, caused by Phytophthora capsici, is a destructive disease that significantly constrains the production of chayote (Sechium edule) in Mexico, leading to substantial yield and economic losses. The increasing ineffectiveness of synthetic fungicides and associated environmental concerns underscore the [...] Read more.
Phytophthora blight, caused by Phytophthora capsici, is a destructive disease that significantly constrains the production of chayote (Sechium edule) in Mexico, leading to substantial yield and economic losses. The increasing ineffectiveness of synthetic fungicides and associated environmental concerns underscore the need for sustainable control alternatives. This study evaluated the antifungal efficacy of low molecular weight chitosan (75–85% deacetylation; Sigma-Aldrich) against P. capsici under in vitro and in vivo conditions. Chitosan solutions (0.1–3.0 g L−1) were tested for their ability to inhibit pathogen growth and suppress disease symptoms. In vitro assays demonstrated a concentration-dependent inhibition of mycelial growth, with the highest dose (3.0 g L−1) reducing radial expansion by 32.6%. In fruit inoculation experiments, treatment with 1.0 g L−1 chitosan decreased lesion size by 50.9%, while the same concentration reduced disease severity index (DSI) by 50% in whole plants. Notably, symptom suppression was observed in tissues not directly exposed to chitosan, suggesting the activation of systemic resistance. Although the underlying molecular mechanisms were not directly assessed, the results support the dual role of chitosan as a direct antifungal agent and a potential inducer of host defense responses. These findings highlight the potential of chitosan as a biodegradable, low-toxicity alternative to synthetic fungicides and support its integration into sustainable management strategies for Phytophthora blight in chayote production systems. Full article
Show Figures

Figure 1

18 pages, 1956 KB  
Article
FCNet: A Transformer-Based Context-Aware Segmentation Framework for Detecting Camouflaged Fruits in Orchard Environments
by Ivan Roy Evangelista, Argel Bandala and Elmer Dadios
Technologies 2025, 13(8), 372; https://doi.org/10.3390/technologies13080372 - 20 Aug 2025
Viewed by 176
Abstract
Fruit segmentation is an essential task due to its importance in accurate disease prevention, yield estimation, and automated harvesting. However, accurate object segmentation in agricultural environments remains challenging due to visual complexities such as background clutter, occlusion, small object size, and color–texture similarities [...] Read more.
Fruit segmentation is an essential task due to its importance in accurate disease prevention, yield estimation, and automated harvesting. However, accurate object segmentation in agricultural environments remains challenging due to visual complexities such as background clutter, occlusion, small object size, and color–texture similarities that lead to camouflaging. Traditional methods often struggle to detect partially occluded or visually blended fruits, leading to poor detection performance. In this study, we propose a context-aware segmentation framework designed for orchard-level mango fruit detection. We integrate multiscale feature extraction based on PVTv2 architecture, a feature enhancement module using Atrous Spatial Pyramid Pooling (ASPP) and attention techniques, and a novel refinement mechanism employing a Position-based Layer Normalization (PLN). We conducted a comparative study against established segmentation models, employing both quantitative and qualitative evaluations. Results demonstrate the superior performance of our model across all metrics. An ablation study validated the contributions of the enhancement and refinement modules, with the former yielding performance gains of 2.43%, 3.10%, 5.65%, 4.19%, and 4.35% in S-measure, mean E-measure, weighted F-measure, mean F-measure, and IoU, respectively, and the latter achieving improvements of 2.07%, 1.93%, 6.85%, 4.84%, and 2.73%, in the said metrics. Full article
Show Figures

Graphical abstract

19 pages, 9093 KB  
Article
Identifying Primary Ecological Drivers and Regional Suitability for High-Quality Diospyros kaki ‘Taishuu’
by Xu Yang, Cuiyu Liu, Xibing Jiang and Yang Xu
Horticulturae 2025, 11(8), 984; https://doi.org/10.3390/horticulturae11080984 - 19 Aug 2025
Viewed by 250
Abstract
Diospyros kaki Thunb. ‘Taishuu’ is novel fruit cultivar known for its excellent mouthfeel properties and high economic value. This study aimed to identify the ecological adaptability and potential suitable cultivating regions of this persimmon in China. In addition, key ecological factors influencing fruit [...] Read more.
Diospyros kaki Thunb. ‘Taishuu’ is novel fruit cultivar known for its excellent mouthfeel properties and high economic value. This study aimed to identify the ecological adaptability and potential suitable cultivating regions of this persimmon in China. In addition, key ecological factors influencing fruit mouthfeel were also investigated. Differences between key metabolites and mouthfeel properties of 35 persimmon samples from 13 provinces were compared. Subsequently, ecological factors were evaluated to explore interactions among dominant ecological factors, habitat suitability, and fruit quality. An adaptive segmentation map was ultimately created to highlight variations in mouthfeel properties of the persimmon. The findings were summarized as follows: The core ecological suitability zones encompass most warm, temperate and typically subtropical regions of China, spanning 116,200 square kilometers. Habitat suitability influences fruit size but does not affect mouthfeel properties. Key factors affecting mouthfeel properties of D. kaki ‘Taishuu’ include precipitation during the growing period, high temperature during the fruit ripening stage, and low temperatures during dormancy. Persimmons from coastal areas and Yunnan province were characterized by a lusciously sweeter and richer taste, a satisfying crisp texture, and an overall distinctly superior mouthfeel. In contrast, samples from central cultivation areas exhibited higher density, greater firmness, reduced crispness, and inferior flavor quality Based on zoning results, extensive regions show significant potential for high-quality production, making them highly promising for D. kaki ‘Taishuu’ cultivation. For marginally suitable habitats, appropriate cultivation measures should be implemented to mitigate limiting factors such as temperature and soil moisture. Full article
Show Figures

Figure 1

23 pages, 10569 KB  
Article
Micronization Combined Ultrasound-Assisted Extraction Enhances the Sustainability of Polyphenols from Pineapple and Lemon Peels Utilizing Acidified Ethanol
by Yen-Chieh Lee, Yi-Chan Chiang, Min-Hung Chen and Po-Yuan Chiang
Foods 2025, 14(16), 2872; https://doi.org/10.3390/foods14162872 - 19 Aug 2025
Viewed by 287
Abstract
Pineapple and lemon processing generates large volumes of peel waste, which is a valuable source of dietary polyphenols and flavonoids with potent antioxidant activity. This study employed a strategy of micronization and ultrasound-assisted extraction (UAE) with acidified ethanol to valorize pineapple peel (PP) [...] Read more.
Pineapple and lemon processing generates large volumes of peel waste, which is a valuable source of dietary polyphenols and flavonoids with potent antioxidant activity. This study employed a strategy of micronization and ultrasound-assisted extraction (UAE) with acidified ethanol to valorize pineapple peel (PP) and lemon peel (LP). Physicochemical characteristics, total polyphenol content, total flavonoid content, and antioxidant activities (DPPH, FRAP, and ABTS+) were evaluated under varying particle sizes, ethanol concentrations, extraction times, and pH conditions. Optimal extraction was achieved with 30 min of UAE using 75% ethanol acidified with citric acid at pH 5 for PP (96.6 µm) and pH 4 for LP (91.7 µm). These conditions maximized polyphenol yields, with the LP micropowder produced containing 65.7 µg/mg of hesperidin and 23.2 µg/mg of eriocitrin. Contour plots and principal component analysis confirmed that the antioxidant extraction selectivity of micropowder was dependent on pH and extraction time. Microstructural and Fourier-transform infrared spectroscopy analyzes further supported that short-dried period and a lower particle size significantly improve solute release. This study not only demonstrates the efficacy of micronization and UAE in enhancing the selective extraction of antioxidants from fruit peels but also offers a digital visualization strategy for optimizing extraction processes to support sustainable bioprocessing and functional ingredient development. Full article
Show Figures

Figure 1

18 pages, 3446 KB  
Article
Influence of GA3 and CPPU on the Quality Attributes and Peelability of ‘Wuhe Cuibao’ Grape
by Xinyue Han, Yufei Mi, Huanling Wang, Shaosong Ye, Naomi Abe-Kanoh and Wei Ji
Agronomy 2025, 15(8), 1986; https://doi.org/10.3390/agronomy15081986 - 19 Aug 2025
Viewed by 350
Abstract
Gibberellic acid (GA3) and forchlorfenuron (CPPU) are widely used plant growth regulators for promoting berry enlargement in grapes. To evaluate the effects of GA3 and CPPU on fruit quality and peelability of the seedless grape cultivar ‘Wuhe Cuibao’, and to [...] Read more.
Gibberellic acid (GA3) and forchlorfenuron (CPPU) are widely used plant growth regulators for promoting berry enlargement in grapes. To evaluate the effects of GA3 and CPPU on fruit quality and peelability of the seedless grape cultivar ‘Wuhe Cuibao’, and to determine the optimal concentration combination under the ecological conditions of Jinzhong, Shanxi Province, grape clusters were treated with varying concentrations of GA3 and CPPU at full bloom and again 14 days later (young fruit stage), with water treatment as the control (CK). After maturation, the fruits were harvested for subsequent analysis of external morphology and internal quality parameters in both fruit clusters and individual berries. Paraffin embedding and sectioning were performed to conduct histological observations of cuticle thickness and cellular morphology in the treated fruits. The results indicate that GA3 and CPPU treatments significantly enhanced the external quality of ‘Wuhe Cuibao’ grapes by effectively reducing fruit drop during cultivation. With the exception of T3 treatment, all treatments promoted both cluster elongation and berry enlargement. GA3 treatment alone was more effective than CPPU treatment, and its effects were positively correlated with concentration. The T2 treatment resulted in the greatest increases in fruit length, berry weight, pedicel thickness, and pedicel tensile strength, surpassing the control (CK) by 35.53%, 43.65%, 88.92%, and 104.76%, respectively. The combined application of GA3 and CPPU showed a synergistic effect, especially in T8, which led to the highest increases in cluster length (21.94%), cluster weight (41.92%), and berry width (13.49%) compared with the control. In addition, all treatments promoted the color transition of berries from green to yellow-green. Histological analysis showed a significant increase in cuticle thickness and in the size of both epidermal and subepidermal cells after treatment. In addition, all treatments increased fruit firmness and peel adherence in a concentration-dependent manner. GA3 treatment alone produced the greatest increases in both fruit firmness and peel–flesh adherence, while the addition of CPPU treatment alleviated these effects. All treatments improved internal fruit quality by increasing the content of vitamin C, reducing sugars, soluble sugars, starch, and cellulose. GA3 treatment alone significantly increased the levels of soluble solids, soluble proteins, and total phenols by 5.67%, 1.49%, and 5.38%, respectively, compared to the control (CK). In contrast, CPPU treatment alone significantly reduced the levels of these compounds. Notably, combined GA3 and CPPU treatment in T5 led to the highest accumulation of vitamin C and reducing sugars, with increases of 3.78% and 62.36%, respectively, compared to the CK. Additionally, all treatments reduced anthocyanin and titratable acid levels, with a synergistic effect observed under combined treatment in lowering titratable acidity. Comprehensive evaluation revealed that the combined application of 50 mg·L−1 GA3 and 5.0 mg·L−1 CPPU at full bloom and 14 days thereafter resulted in the greatest overall improvement in grape quality, offering theoretical and practical support for the efficient, high-quality cultivation of this cultivar. Full article
Show Figures

Figure 1

19 pages, 811 KB  
Article
Exogenous Gibberellic Acid (GA3) and Benzylaminopurine Enhance the Antioxidant Properties of Vaccinium corymbosum L. ‘Biloxi’ Fruits Without Affecting Yield
by Larissa Silva Rodrigues, Caroline Pardine Cardoso, Edson Tadashi Savazaki, Stephane Catarine Rosa Kim, Carolina Ovile Mimi, Iván De-la-Cruz-Chacón and Gisela Ferreira
Int. J. Mol. Sci. 2025, 26(16), 7984; https://doi.org/10.3390/ijms26167984 - 19 Aug 2025
Viewed by 186
Abstract
Vaccinium corymbosum L. ‘Biloxi’ is a cultivated blueberry variety valued for its rich content of phenolic compounds, which contribute to its strong antioxidant activity and recognized health benefits. There is little information on the effects of GA3 and BA on blueberry, especially [...] Read more.
Vaccinium corymbosum L. ‘Biloxi’ is a cultivated blueberry variety valued for its rich content of phenolic compounds, which contribute to its strong antioxidant activity and recognized health benefits. There is little information on the effects of GA3 and BA on blueberry, especially when used in combination. This study aimed to evaluate whether GA3 and BA alter the yield and quality of V. corymbosum ‘Biloxi’ fruits. The experiment included 12 treatments consisting of GA3 (25, 50 and 100 mg L−1) and BA concentrations (50 and 100 mg L−1) alone and combined and a control. The following parameters were analyzed: yield (g) and number of fruits per plant, mass, diameter, pH, soluble solids (SS), titratable acidity (TA), soluble sugars, total phenols, flavonoids, anthocyanins and antioxidant activity. The results indicate that foliar GA3 and BA application improved the antioxidant capacity and biochemical composition of fruits, without negatively affecting production traits such as yield, fruit size or maturation period. The increases in antioxidant activity, phenol metabolites (total phenols, anthocyanins and flavonoids), soluble sugars, SS and SS/TA ratio were higher with the combination of GA3 and BA at 100 mg L−1. These results suggest that the combination of GA3 and BA is a promising approach to sustainably improve fruit quality in commercial blueberry cultivation, providing both economic and nutritional benefits. Full article
(This article belongs to the Special Issue The Role of Cytokinins and Other Phytohormones in Plant Life)
Show Figures

Figure 1

25 pages, 1499 KB  
Systematic Review
Endothelial and Cardiovascular Effects of Naringin: A Systematic Review
by Jose A. Adams, Arkady Uryash, Alfredo Mijares, Jose Miguel Eltit and Jose R. Lopez
Nutrients 2025, 17(16), 2658; https://doi.org/10.3390/nu17162658 - 17 Aug 2025
Viewed by 522
Abstract
Background/Objectives: Naringin, a major flavonoid found in citrus fruits, has garnered significant attention over the past two decades for its potential cardiovascular benefits. This systematic review evaluates the effects of naringin on endothelial function and myocardial performance, with particular emphasis on ischemia-reperfusion (I/R) [...] Read more.
Background/Objectives: Naringin, a major flavonoid found in citrus fruits, has garnered significant attention over the past two decades for its potential cardiovascular benefits. This systematic review evaluates the effects of naringin on endothelial function and myocardial performance, with particular emphasis on ischemia-reperfusion (I/R) injury, based on the literature published from January 2000 to June 2025. Methods: The review was conducted in accordance with PRISMA 2020 guidelines. A comprehensive search of PubMed, Scopus, EMBASE, and Web of Science databases was performed using key terms including “naringin”, “cardiovascular”, “endothelial function”, “atherosclerosis”, and “ischemia-reperfusion.” A total of 62 studies were included and categorized into three domains: cellular models, animal studies, and human trials. Risk of bias assessments were conducted for each study type using appropriate tools. Results: Naringin consistently exhibited antioxidant, anti-inflammatory, and vasoprotective effects across all study types. Mechanistic studies highlighted the modulation of key signaling pathways, including PI3K/Akt, NF-κB, Nrf2, the renin-angiotensin system (RAS), and enhancement of KATP channel expression, as well as its ability to inhibit apoptosis, autophagy, and ferroptosis. In animal models, naringin improved endothelium-dependent vasorelaxation, reduced infarct size, and preserved myocardial function. Although limited, human trials reported beneficial effects on lipid profiles, arterial stiffness, and adiponectin levels. Conclusions: Naringin demonstrates strong potential as a dietary adjunct for cardiovascular protection, especially in the context of ischemic injury and vascular dysfunction. Further well-designed clinical trials are needed to define optimal dosing strategies and improve its bioavailability in humans. Full article
Show Figures

Figure 1

12 pages, 1707 KB  
Article
Characteristics of the Insulin-like Peptide Genes and Their Roles in the Ovarian Development of Zeugodacus cucurbitae (Coquillett)
by Jun-Chen Yi, Chuan-Lian Liu, Dong Chen, Dong Wei and Zhu-Ting Zhang
Insects 2025, 16(8), 854; https://doi.org/10.3390/insects16080854 - 17 Aug 2025
Viewed by 327
Abstract
The melon fly Zeugodacus cucurbitae (Coquillett) is a globally invasive pest responsible for substantial economic losses in the fruit and vegetable industries. Insulin-like peptides (ILPs) are evolutionarily conserved neuropeptides that play a crucial role in insect reproduction. In this study, six ZcILPs from [...] Read more.
The melon fly Zeugodacus cucurbitae (Coquillett) is a globally invasive pest responsible for substantial economic losses in the fruit and vegetable industries. Insulin-like peptides (ILPs) are evolutionarily conserved neuropeptides that play a crucial role in insect reproduction. In this study, six ZcILPs from the melon fly, designated as ZcILP16, were cloned. Phylogenetic analysis demonstrated a strong orthologous link with Dipteran ILPs. Spatiotemporal expression profiling revealed that ZcILP1 and ZcILP3 exhibit preferential enrichment in the adult female fat body, with their expression specifically and significantly upregulated in 5-day-old individuals. Their expression decreased 12, 24, and 48 h post-starvation and increased upon re-feeding. Silencing ZcILP1 and ZcILP3 resulted in reduced ovarian size by 51.42% and 69.17%, respectively. Furthermore, silencing ZcILP1 or ZcILP3 significantly decreased the transcriptional levels of genes downstream of the insulin signaling pathway (ISP), notably the target of rapamycin (ZcTOR) and Forkhead box O (ZcFOXO). Concurrently, the expression of Vitellogenin (ZcVg), a gene associated with reproduction, was significantly downregulated. These findings indicate that ZcILP1 and ZcILP3 regulate ZcVgs expression and ovarian development through ISP, suggesting them as potential targets for green control of Z. cucurbitae. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

19 pages, 4317 KB  
Article
Native Rhizobial Inoculation Improves Tomato Yield and Nutrient Uptake While Mitigating Heavy Metal Accumulation in a Conventional Farming System
by Luis Alberto Manzano-Gómez, Clara Ivette Rincón-Molina, Esperanza Martínez-Romero, Simón Samuel Stopol-Martínez, Amado Santos-Santiago, Juan José Villalobos-Maldonado, Víctor Manuel Ruíz-Valdiviezo and Reiner Rincón-Rosales
Microorganisms 2025, 13(8), 1904; https://doi.org/10.3390/microorganisms13081904 - 15 Aug 2025
Viewed by 370
Abstract
Enhancing crop productivity through biological strategies is critical for agriculture, particularly under conventional farming systems heavily reliant on chemical inputs. Plant probiotic bacteria offer promising alternatives by promoting plant growth and yield. This is the first field study to assess the effects of [...] Read more.
Enhancing crop productivity through biological strategies is critical for agriculture, particularly under conventional farming systems heavily reliant on chemical inputs. Plant probiotic bacteria offer promising alternatives by promoting plant growth and yield. This is the first field study to assess the effects of biofertilization with native rhizobial strains Rhizobium sp. ACO-34A, Sinorhizobium mexicanum ITTG-R7T, and S. chiapasense ITTG-S70T on Solanum lycopersicum (tomato) cultivated under conventional farming conditions. Key parameters assessed include plant performance (plant height, plant stem width, plant dry weight, and chlorophyll content), fruit yield (fruits per plant, fruit height, fruit width, fruit weight, and estimated fruit volume), and macronutrient and micronutrient contents in plant tissue. Additionally, rhizospere bacterial communities were characterized through 16S rRNA amplicon sequencing to evaluate alpha and beta diversity. Inoculation with ITTG-R7T significantly improved plant height, stem width, and plant dry weight, while ITTG-S70T enhanced stem width and chlorophyll content. ACO-34A inoculation notably increased fruit number, size, and yield parameters. Moreover, inoculated plants exhibited reduced Fe and Cu accumulation compared to non-inoculated controls. Metagenomic analyses indicated that rhizobial inoculation did not significantly disrupt the native rhizosphere bacterial community. These findings highlight the potential of rhizobial strains as effective plant probiotics that enhance tomato productivity while preserving microbial community structure, supporting the integration of microbial biofertilizers into conventional farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Plant–Microbe Interactions in North America)
Show Figures

Graphical abstract

13 pages, 345 KB  
Article
Preliminary Results from an RCT Examining the Effects of a Health Behavior Intervention as an Adjunct to Standard Trauma Therapy Among Adults with PTSD
by Jeffrey L. Kibler, Karla Patricia Molina Valenzuela, Shalynn Murphy, Claudia Ocholski, Dania Dabbagh, Valeria Rangel Cunha and Mindy Ma
Brain Sci. 2025, 15(8), 871; https://doi.org/10.3390/brainsci15080871 - 15 Aug 2025
Viewed by 417
Abstract
Background/Objectives: Individuals with posttraumatic stress disorder (PTSD) tend to show patterns of elevated cardiovascular disease (CVD) risk earlier in life than the general population. The need for effective interventions for CVD risk-reduction in PTSD is increasingly evident. In this paper we present preliminary [...] Read more.
Background/Objectives: Individuals with posttraumatic stress disorder (PTSD) tend to show patterns of elevated cardiovascular disease (CVD) risk earlier in life than the general population. The need for effective interventions for CVD risk-reduction in PTSD is increasingly evident. In this paper we present preliminary results from a longitudinal study of a health behavior intervention, as an adjunct to standard trauma therapy in PTSD. The health behavior intervention addresses CVD-related heath behaviors (physical activity, nutrition, sleep, and stress) in a 12-week program delivered individually in 90-min sessions. Behavior change recommendations included: increased aerobic activity; establishing a balanced diet, enhancing consumption of fruits and vegetables and reducing sugars and fat/saturated fat; incorporating strategies to enhance sleep and lower PTSD-related disruptions (e.g., nightmares); and relaxation and cognitive coping skills to reduce general stress. Methods: Participants were randomized to the health behavior intervention plus standard trauma therapy experimental condition or a standard trauma therapy control group. Outcomes were measured at baseline and after the 12-week intervention phase. Sleep efficiency was measured from actigraphy watches. Physical activity was assessed by self-report and blood pressure was measured using an automated device. The preliminary outcomes are for 29 participants to date who have pre-post data. Results: Sleep efficiency was improved in the intervention group compared to controls (p < 0.05). The intervention group also evidenced significant pre-post increases in moderate physical activity compared to the control group (p < 0.05). Changes in vigorous physical activity did not reach statistical significance in this preliminary sample but the pattern of results are similar to those for moderate activity. Trends toward significance were also observed for pre-post changes in systolic (p = 0.06) and diastolic blood pressure (p = 0.07), with small reductions for the intervention group and increases for the control group. Conclusions: These findings provide preliminary information about the effectiveness of the health behavior intervention on multiple parameters for adults with PTSD. The findings suggest that focusing on health behavior change in multidisciplinary treatments for PTSD may enhance outcomes such as sleep and physical activity and potentially result in greater quality of life. However, the small preliminary sample size reported here should be considered when interpreting the outcomes. Further research may also determine how improvements in health parameters impact other indices of long-term cardiovascular health. Full article
Show Figures

Figure 1

23 pages, 7983 KB  
Article
Genome-Wide Identification of ATP-Binding Cassette (ABC) Transporter Gene Family and Their Expression Analysis in Response to Anthocyanin Transportation in the Fruit Peel of Eggplant (Solanum melongena L.)
by Hesbon Ochieng Obel, Xiaohui Zhou, Songyu Liu, Liwei Xing, Yan Yang, Jun Liu and Yong Zhuang
Int. J. Mol. Sci. 2025, 26(16), 7848; https://doi.org/10.3390/ijms26167848 - 14 Aug 2025
Viewed by 241
Abstract
The ATP-binding cassette (ABC) gene family represents one of the most extensive and evolutionarily conserved groups of proteins, characterized by ATP-dependent transporters that mediate the movement of substrates across cellular membranes. Despite their well-documented functions in various biological processes, the specific contributions of [...] Read more.
The ATP-binding cassette (ABC) gene family represents one of the most extensive and evolutionarily conserved groups of proteins, characterized by ATP-dependent transporters that mediate the movement of substrates across cellular membranes. Despite their well-documented functions in various biological processes, the specific contributions of ABC transporters in eggplant (Solanum melongena L.) remain unexplored. To address this gap, we conducted a comprehensive genome-wide identification and expression profiling of ABC transporter-encoding genes in eggplant. Our investigation identified 159 SmABC genes encoding ABC transporter that were irregularly dispersed across all 12 chromosomes. The encoded proteins exhibited considerable diversity in size, with amino acid lengths varying from 55 to 2628 residues, molecular weights ranging between 4.04 and 286.42 kDa, and isoelectric points spanning from 4.89 to 11.62. Phylogenetic analysis classified the SmABC transporters into eight distinct subfamilies, with the ABCG subfamily being the most predominant. Subcellular localization predictions revealed that most SmABC proteins were localized to the plasma membrane. Members within the same subfamily exhibited conserved motif arrangements and exon–intron structures, suggesting functional and evolutionary conservation. Promoter analysis identified both shared and unique cis-regulatory elements associated with transcriptional regulation. We identified 9 tandem duplication gene pairs and 20 segmental duplication pairs in the SmABC gene family, with segmental duplication being the major mode of expansion. Non-synonymous to synonymous substitutions (Ka/Ks) analysis revealed that paralogs of SmABC family genes underwent mainly purifying selection during the evolutionary process. Comparative genomic analysis demonstrated collinearity between eggplant, Arabidopsis thaliana, and tomato (Solanum lycopersicum), confirming homology among SmABC, AtABC, and SlABC genes. Tissue-specific expression profiling revealed differential SmABC expression patterns, with three distinct genes, SmABCA16, SmABCA17 and SmABCG15, showing preferential expression in purple-peeled fruits (A1, A3, and A5 accessions), implicating their potential involvement in anthocyanin transport. Functional validation via SmABCA16 silencing led to a significant downregulation of SmABCA16 and reduced purple coloration, indicating its regulatory role in anthocyanin transport in eggplant fruit peel. This comprehensive genomic and functional characterization of ABC transporters in eggplant establishes a critical foundation for understanding their biological roles and supports targeted breeding strategies to enhance fruit quality traits. Full article
(This article belongs to the Special Issue Advances in Vegetable Breeding and Molecular Research)
Show Figures

Figure 1

Back to TopTop