Individual and Interactive Temporal Implications of UV-B Radiation and Elevated CO2 on the Morphology of Basil (Ocimum basilicum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. UV-B and CO2 Treatments
2.3. Morphophysiological Measurements
2.4. Root Image Acquisition and Analysis
2.5. Specific Leaf Area Estimation
2.6. Epicuticular Wax Content Determination
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dou, H.; Niu, G.; Gu, M.; Masabni, J.G. Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality. HortScience 2018, 53, 496–503. [Google Scholar] [CrossRef]
- Aphalo, P.J.; Jansen, M.A.; McLeod, A.R.; Urban, O. Ultraviolet radiation research: From the Field to the Laboratory and Back. Plant Cell Environ. 2015, 38, 853–855. [Google Scholar] [CrossRef]
- Johnson, C.B.; Kirby, J.; Naxakis, G.; Pearson, S. Substantial UV-B-Mediated Induction of Essential Oils in Sweet Basil (Ocimum basilicum L.). Phytochemistry 1999, 51, 507–510. [Google Scholar] [CrossRef]
- Moreira-Rodríguez, M.; Nair, V.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts. Molecules 2017, 22, 1065. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Kakani, V.G.; Reddy, K.R. Ozone Depletion. In Encyclopedia of Applied Plant Sciences; Thomas, B., Murray, B.G., Murpy, D.J., Eds.; Academic Press: Waltham, MA, United States of America, 2017; Volume 3, pp. 318–326. [Google Scholar] [CrossRef]
- Williamson, C.E.; Zepp, R.G.; Lucas, R.M.; Madronich, S.; Austin, A.T.; Ballaré, C.L.; Norval, M.; Sulzberger, B.; Bais, A.F.; McKenzie, R.L.; et al. Solar Ultraviolet Radiation in a Changing Climate. Nat. Clim. Chang. 2014, 4, 434–441. [Google Scholar] [CrossRef]
- Qaderi, M.M.; Reid, D.M.; Yeung, E.C. Morphological and Physiological Responses of Canola (Brassica napus) Siliquas and Seeds to UVB and CO2 under Controlled Environment Conditions. Environ. Exp. Bot. 2007, 60, 428–437. [Google Scholar] [CrossRef]
- Krizek, D.T.; Britz, S.J.; Mirecki, R.M. Inhibitory Effects of Ambient Levels of Solar UV-A and UV-B Radiation on Growth of CV. New Red Fire Lettuce. Physiol. Plant. 1998, 103, 1–7. [Google Scholar] [CrossRef]
- Koti, S.; Reddy, K.R.; Kakani, V.G.; Zhao, D.; Reddy, V.R. Interactive Effects of Carbon Dioxide, Temperature and Ultraviolet-B Radiation on Flower and Pollen Morphology, Quantity and Quality of Pollen in Soybean (Glycine max L.) Genotypes. J. Exp. Bot. 2005, 56, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.; Niu, G.; Gu, M. Pre-Harvest UV-B Radiation and Photosynthetic Photon Flux Density Interactively Affect Plant Photosynthesis, Growth, and Secondary Metabolites Accumulation in Basil (Ocimum basilicum) Plants. Agronomy 2019, 9, 434. [Google Scholar] [CrossRef] [Green Version]
- Hideg, É.; Jansen, M.A.K.; Strid, Å. UV-B Exposure, ROS, and Stress: Inseparable Companions or Loosely Linked Associates? Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Ballaré, C.L.; Mazza, C.A.; Austin, A.T.; Pierik, R. Canopy Light and Plant Health. Plant Physiol. 2012, 160, 145–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, N.D.; Moore, J.P.; McPherson, M.; Lambourne, C.; Croft, P.; Heaton, J.C.; Wargent, J.J. Ecological Responses to UV Radiation: Interactions between the Biological Effects of UV on Plants and on Associated Organisms. Physiol. Plant. 2012, 145, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Alonso, R.; Berli, F.J.; Bottini, R.; Piccoli, P. Acclimation Mechanisms Elicited by Sprayed Abscisic Acid, Solar UV-B and Water Deficit in Leaf Tissues of Field-Grown Grapevines. Plant Physiol. Biochem. 2015, 91, 56–60. [Google Scholar] [CrossRef]
- Kakani, V.G.; Reddy, K.R.; Zhao, D.; Sailaja, K. Field Crop Responses to Ultraviolet-B Radiation: A Review. Agric. For. Meteorol. 2003, 120, 191–218. [Google Scholar] [CrossRef]
- Gilardi, G.; Pugliese, M.; Chitarra, W.; Ramon, I.; Gullino, M.L.; Garibaldi, A. Effect of Elevated Atmospheric CO2 and Temperature Increases on the Severity of Basil Downy Mildew Caused by Peronospora belbahrii under Phytotron Conditions. J. Phytopathol. 2015, 164, 114–121. [Google Scholar] [CrossRef]
- Zhao, D.; Reddy, K.R.; Kakani, V.G.; Koti, S.; Gao, W. Physiological Causes of Cotton Fruit Abscission under Conditions of High Temperature and Enhanced Ultraviolet-B Radiation. Physiol. Plant. 2005, 124, 189–199. [Google Scholar] [CrossRef]
- Kakani, V.G.; Reddy, K.R.; Zhao, D.; Gao, W. Senescence and Hyperspectral Reflectance of Cotton Leaves Exposed to Ultraviolet-B Radiation and Carbon Dioxide. Physiol. Plant. 2004, 121, 250–257. [Google Scholar] [CrossRef]
- Zhao, D.; Reddy, K.R.; Kakani, V.G.; Read, J.J.; Sullivan, J.H. Growth and Physiological Responses of Cotton (Gossypium hirsutum L.) to Elevated Carbon Dioxide and Ultraviolet-B Radiation under Controlled Environmental Conditions. Plant Cell Environ. 2003, 26, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Reddy, K.R.; Kakani, V.G.; Mohammed, A.R.; Read, J.J.; Gao, W. Leaf and Canopy Photosynthetic Characteristics of Cotton (Gossypium hirsutum) under Elevated CO2 Concentration and UV-B Radiation. J. Plant Physiol. 2004, 161, 581–590. [Google Scholar] [CrossRef]
- Koti, S.; Reddy, K.R.; Kakani, V.G.; Zhao, D.; Reddy, V.R. Soybean (Glycine max) Pollen Germination Characteristics, Flower and Pollen Morphology in Response to Enhanced Ultraviolet-B Radiation. Ann. Bot. 2004, 94, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Koti, S.; Reddy, K.R.; Kakani, V.G.; Zhao, D.; Gao, W. Effects of Carbon Dioxide, Temperature and Ultraviolet-B Radiation and Their Interactions on Soybean (Glycine max L.) Growth and Development. Environ. Exp. Bot. 2007, 60, 1–10. [Google Scholar] [CrossRef]
- Al Jaouni, S.; Saleh, A.M.; Wadaan, M.A.M.; Hozzein, W.N.; Selim, S.; AbdElgawad, H. Elevated CO2 Induces a Global Metabolic Change in Basil (Ocimum basilicum L.) and Peppermint (Mentha piperita L.) and Improves Their Biological Activity. J. Plant Physiol. 2018, 224–225, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lüscher, J.; Morales, F.; Sánchez-Díaz, M.; Delrot, S.; Aguirreolea, J.; Gomès, E.; Pascual, I. Climate Change Conditions (Elevated CO2 and Temperature) and UV-B Radiation Affect Grapevine (Vitis vinifera Cv. Tempranillo) Leaf Carbon Assimilation, Altering Fruit Ripening Rates. Plant Sci. 2015, 236, 168–176. [Google Scholar] [CrossRef]
- Wijewardana, C.; Henry, W.B.; Gao, W.; Reddy, K.R. Interactive Effects on CO2, Drought, and Ultraviolet-B Radiation on Maize Growth and Development. J. Photochem. Photobiol. B Biol. 2016, 160, 198–209. [Google Scholar] [CrossRef]
- Singh, S.K.; Kakani, V.G.; Surabhi, G.-K.; Reddy, K.R. Cowpea (Vigna unguiculata [L.] Walp.) Genotypes Response to Multiple Abiotic Stresses. J. Photochem. Photobiol. B Biol. 2010, 100, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Gao, W.; Reddy, K.R.; Chen, M.; Taduri, S.; Meyers, S.L.; Shankle, M.W. Ultraviolet (UV) B Effects on Growth and Yield of Three Contrasting Sweet Potato Cultivars. Photosynthetica 2020, 58, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Lavola, A.; Nybakken, L.; Rousi, M.; Pusenius, J.; Petrelius, M.; Kellomäki, S.; Julkunen-Tiitto, R. Combination Treatment of Elevated UVB Radiation, CO2 and Temperature Has Little Effect on Silver Birch (Betula pendula) Growth and Phytochemistry. Physiol. Plant. 2013, 149, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Paajanen, R.; Julkunen-Tiitto, R.; Nybakken, L.; Petrelius, M.; Tegelberg, R.; Pusenius, J.; Rousi, M.; Kellomäki, S. Dark-Leaved Willow (Salix myrsinifolia) Is Resistant to Three-Factor (Elevated CO2, Temperature and UV-B-Radiation) Climate Change. New Phytol. 2010, 190, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, D. UV-B Is Required for Normal Development of Oil Glands in Ocimum basilicum L. (Sweet Basil). Ann. Bot. 2002, 90, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Sakalauskaitė, J.; Viskelis, P.; Dambrauskienė, E.; Sakalauskienė, S.; Samuolienė, G.; Brazaitytė, A.; Duchovskis, P.; Urbonavičienė, D. The Effects of Different UV-B Radiation Intensities on Morphological and Biochemical Characteristics in Ocimum basilicuml. J. Sci. Food Agric. 2012, 93, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Mosadegh, H.; Trivellini, A.; Ferrante, A.; Lucchesini, M.; Vernieri, P.; Mensuali, A. Applications of UV-B Lighting to Enhance Phenolic Accumulation of Sweet Basil. Sci. Hortic. 2018, 229, 107–116. [Google Scholar] [CrossRef]
- Reddy, K.R.; Hodges, H.F.; Read, J.J.; McKinion, J.M.; Baker, J.T.; Tarpley, L.; Reddy, V.R. Soil-Plant-Atmosphere-Research (SPAR) facility: A tool for plant research and modeling. Biotronics 2001, 30, 27–50. [Google Scholar]
- Wijewardana, C.; Hock, M.; Henry, B.; Reddy, K.R. Screening Corn Hybrids for Cold Tolerance Using Morphological Traits for Early-Season Seeding. Crop Sci. 2015, 55, 851–867. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil. In Circular. California Agricultural Experiment Station, 2nd ed.; University of California: Berkley, CA, United States of America, 1950; Volume 347, p. 32. [Google Scholar]
- McKinion, J.M.; Hodges, H.F. Automated System for Measurement of Evapotranspiration from Closed Environmental Growth Chambers. Trans. ASAE 1985, 28, 1825–1828. [Google Scholar] [CrossRef]
- Timlin, D.; Fleisher, D.; Kim, S.-H.; Reddy, V.; Baker, J. Evapotranspiration Measurement in Controlled Environment Chambers: A Comparison between Time Domain Reflectometry and Accumulation of Condensate from Cooling Coils. Agron. J. 2007, 99, 166–173. [Google Scholar] [CrossRef]
- Bannayan, M.; Tojo Soler, C.M.; Garcia, y. Garcia, A.; Guerra, L.C.; Hoogenboom, G. Interactive Effects of Elevated [CO2] and Temperature on Growth and Development of a Short-and Long-Season Peanut Cultivar. Clim. Chang. 2008, 93, 389–406. [Google Scholar] [CrossRef]
- Ebercon, A.; Blum, A.; Jordan, W.R. A Rapid Colorimetric Method for Epicuticular Wax Contest of Sorghum Leaves. Crop Sci. 1977, 17, 179–180. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Reddy, K.R. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. J. Photochem. Photobiol. B Biol. 2011, 105, 40–50. [Google Scholar] [CrossRef]
- Chang, X.; Alderson, P.G.; Wright, C.J. Variation in the Essential Oils in Different Leaves of Basil (Ocimum Basilicum L.) at Day Time. Open Hortic. J. 2009, 2, 13–16. [Google Scholar] [CrossRef]
- Ni, Y.; Xia, R.; Li, J. Changes of Epicuticular Wax Induced by Enhanced UV-B Radiation Impact on Gas Exchange in Brassica napus. ACTA Physiol. Plant. 2014, 36, 2481–2490. [Google Scholar] [CrossRef]
- Singh, S.K.; Reddy, K.R.; Reddy, V.R.; Gao, W. Maize Growth and Developmental Responses to Temperature and Ultraviolet-B Radiation Interaction. Photosynthetica 2014, 52, 262–271. [Google Scholar] [CrossRef]
- Wang, X.; Curtis, P. A Meta-Analytical Test of Elevated CO2 Effects on Plant Respiration. Plant Ecol. 2002, 161, 251–261. [Google Scholar] [CrossRef]
- Li, X.; Zhang, G.; Sun, B.; Zhang, S.; Zhang, Y.; Liao, Y.; Zhou, Y.; Xia, X.; Shi, K.; Yu, J. Stimulated Leaf Dark Respiration in Tomato in an Elevated Carbon Dioxide Atmosphere. Sci. Rep. 2013, 3, 3433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Ratkowsky, D.; Hui, C.; Wang, P.; Su, J.; Shi, P. Leaf Fresh Weight versus Dry Weight: Which Is Better for Describing the Scaling Relationship between Leaf Biomass and Leaf Area for Broad-Leaved Plants? Forests 2019, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.H.; Prior, S.A.; Runion, G.B.; Mitchell, R.J. Root to Shoot Ratio of Crops as Influenced by CO2. Plant Soil 1995, 187, 229–248. [Google Scholar] [CrossRef]
- Savitch, L.V.; Pocock, T.; Krol, M.; Wilson, K.E.; Greenberg, B.M.; Huner, N.P. Effects of Growth under UVA Radiation on CO2 Assimilation, Carbon Partitioning, PSII Photochemistry and Resistance to UVB Radiation in Brassica napus Cv. Topas. Funct. Plant Biol. 2001, 28, 203. [Google Scholar] [CrossRef]
- Hao, X.; Hale, B.A.; Ormrod, D.P.; Papadopoulos, A.P. Effects of Pre-Exposure to Ultraviolet-B Radiation on Responses of Tomato (Lycopersicon esculentum Cv. New Yorker) to Ozone in Ambient and Elevated Carbon Dioxide. Environ. Pollut. 2000, 110, 217–224. [Google Scholar] [CrossRef]
Treatment | HT 1 | NN | BN | LA | L DM | ST DM | RT DM | SH DM | TTL DM | RS Ratio 2 |
---|---|---|---|---|---|---|---|---|---|---|
Ambient [CO2] | ||||||||||
No UV-B | 36.56 a | 7.1 a | 15.3 a | 1223.6 a | 4.479 b | 2.188 b | 0.941 ab | 6.667 b | 7.608 b | 0.140 a |
UV-B | 29.61 c | 6.7 a | 11.2 b | 960.8 b | 3.536 c | 1.664 c | 0.783 b | 5.200 c | 5.983 c | 0.149 a |
Elevated [CO2] | ||||||||||
No UV-B | 36.61 a | 7.0 a | 15.3 a | 1321.0 a | 5.779 a | 2.789 a | 1.021 a | 8.568 a | 9.589 a | 0.118 b |
UV-B | 32.00 b | 6.9 a | 12.3 b | 909.3 b | 4.757 b | 2.368 b | 0.868 ab | 7.124 b | 7.992 b | 0.121 b |
p-Value 3,4 | ||||||||||
UV-B | *** | NS | *** | *** | ** | ** | * | ** | ** | NS |
CO2 | * | NS | NS | NS | *** | *** | NS | *** | *** | *** |
UV-B × CO2 | * | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatment | HT 1 | NN | BN | LA | L DM | ST DM | RT DM | SH DM | TTL DM | RS Ratio 2 |
---|---|---|---|---|---|---|---|---|---|---|
Ambient [CO2] | ||||||||||
No UV-B | 61.67 b | 10.0 b | 29.9 a | 6946.3 a | 25.032 a | 33.049 ab | 6.847 b | 58.081 ab | 64.922 ab | 0.1156 b |
UV-B | 68.97 a | 10.0 b | 19.7 c | 6735.3 a | 23.026 a | 28.004 b | 7.147 ab | 51.030 b | 57.978 b | 0.1376 ab |
Elevated [CO2] | ||||||||||
No UV-B | 60.93 b | 10.1 b | 29.7 a | 8078.9 a | 28.393 a | 38.733 a | 8.511 ab | 67.126 a | 75.637 a | 0.1284 b |
UV-B | 57.80 b | 10.5 a | 22.7 b | 7369.3 a | 25.456 a | 30.509 b | 9.166 a | 55.965 ab | 65.131 ab | 0.1751 a |
p-Value 3,4 | ||||||||||
UV-B | NS | NS | *** | NS | NS | * | NS | NS | NS | * |
CO2 | *** | NS | NS | NS | NS | NS | * | NS | NS | NS |
UV-B × CO2 | ** | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatment | RL1 | TRL | SA | RD | RV | TP | FK | CR |
---|---|---|---|---|---|---|---|---|
Ambient [CO2] | ||||||||
No UV-B | 45.11 a | 4572.9 a | 854.31 a | 0.597 ab | 14.003 a | 10,052 a | 38,545 ab | 2412.6 b |
UV-B | 45.44 a | 4208.5 ab | 600.35 b | 0.533 b | 9.286 b | 10,489 a | 30,945 b | 2377.4 b |
Elevated [CO2] | ||||||||
No UV-B | 46.67 a | 4159.10 ab | 738.59 ab | 0.560 ab | 15.451 a | 12,477 a | 46,580 a | 3287.8 a |
UV-B | 42.44 a | 3565.30 b | 807.88 a | 0.618 a | 12.722 ab | 9726 a | 35,863 b | 2263.3 b |
p-Value 2,3 | ||||||||
UV-B | NS | NS | NS | NS | ** | NS | * | NS |
CO2 | NS | NS | NS | NS | NS | NS | NS | NS |
UV-B × CO2 | NS | NS | ** | * | NS | NS | NS | NS |
Treatment | Leaf DM 1,2 | LA | SLA | Wax |
---|---|---|---|---|
Ambient [CO2] | ||||
No UV-B | 0.536 b | 0.0123 ab | 23.0 bc | 20.1 b |
UV-B | 0.402 c | 0.0110 bc | 27.4 a | 24.2 a |
Elevated [CO2] | ||||
No UV-B | 0.600 a | 0.0125 a | 20.8 c | 18.8 b |
UV-B | 0.396 c | 0.0099 c | 25.0 ab | 21.5 ab |
p-Value 3,4 | ||||
Treatment | *** | *** | *** | * |
CO2 | NS | NS | * | NS |
UV-B × CO2 | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barickman, T.C.; Brazel, S.; Sehgal, A.; Walne, C.H.; Gao, W.; Reddy, K.R. Individual and Interactive Temporal Implications of UV-B Radiation and Elevated CO2 on the Morphology of Basil (Ocimum basilicum L.). Horticulturae 2021, 7, 474. https://doi.org/10.3390/horticulturae7110474
Barickman TC, Brazel S, Sehgal A, Walne CH, Gao W, Reddy KR. Individual and Interactive Temporal Implications of UV-B Radiation and Elevated CO2 on the Morphology of Basil (Ocimum basilicum L.). Horticulturae. 2021; 7(11):474. https://doi.org/10.3390/horticulturae7110474
Chicago/Turabian StyleBarickman, T. Casey, Skyler Brazel, Akanksha Sehgal, C. Hunt Walne, Wei Gao, and K. Raja Reddy. 2021. "Individual and Interactive Temporal Implications of UV-B Radiation and Elevated CO2 on the Morphology of Basil (Ocimum basilicum L.)" Horticulturae 7, no. 11: 474. https://doi.org/10.3390/horticulturae7110474
APA StyleBarickman, T. C., Brazel, S., Sehgal, A., Walne, C. H., Gao, W., & Reddy, K. R. (2021). Individual and Interactive Temporal Implications of UV-B Radiation and Elevated CO2 on the Morphology of Basil (Ocimum basilicum L.). Horticulturae, 7(11), 474. https://doi.org/10.3390/horticulturae7110474