Phytochemicals, Antioxidant and Antidiabetic Activities of Extracts from Miliusa velutina Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Preparation and Extraction
2.2. Phytochemical Screening
2.2.1. Determination of Total Polyphenol Content
2.2.2. Determination of Total Flavonoid Content
2.3. Assays of Antioxidant Activities
2.3.1. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Assay
2.3.2. 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulphonic Acid (ABTS•+) Assay
2.3.3. Reducing Power (RP) Capacity Assessment
2.3.4. Ferric Reducing Antioxidant Power (FRAP) Assay
2.3.5. Total Antioxidant Capacity (TAC) Assay
2.4. Antidiabetic Activity Tests
2.4.1. Alpha-Amylase Inhibitory Assay
2.4.2. Alpha-Glucosidase Inhibitory Assay
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Antioxidant Assays
3.3. Carbohydrate Digesting Enzyme Inhibition Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [Green Version]
- Inzucchi, S.E. Oral antihyperglycemic therapy for type 2 diabetes: Scientific review. J. Am. Med. Assoc. 2002, 287, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Carlson, E.E. Natural products as chemical probes. ACS Chem. Biol. 2010, 5, 639–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N. Free radicals, antioxidants and disease. Biol. Med. 2014, 6, 214. [Google Scholar] [CrossRef] [Green Version]
- Rates, S.M.K. Plants as source of drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef]
- Kuna, L.; Jakab, J.; Smolic, R.; Raguz-Lucic, N.; Vcev, A.; Smolic, M. Peptic ulcer disease: A brief review of conventional therapy and herbal treatment options. J. Clin. Med. 2019, 8, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casula, E.; Manca, M.L.; Manconi, M. An integrative review on the uses of plant-derived bioactives formulated in conventional and innovative dosage forms for the local treatment of damaged nasal cavity. Int. J. Pharm. 2021, 610, 121229. [Google Scholar] [CrossRef] [PubMed]
- Dutta, T.; Paul, A.; Majumder, M.; Sultan, R.A.; Emran, T.B. Pharmacological evidence for the use of Cissus assamica as a medicinal plant in the management of pain and pyrexia. Biochem. Biophys. Rep. 2020, 21, 100715. [Google Scholar] [CrossRef]
- Jumana, S.; Hasan, C.M.; Rashid, M.A. Antibacterial activity and cytotoxicity of Miliusa velutina. Fitoterapia 2000, 71, 559–561. [Google Scholar] [CrossRef]
- Linh, T.C.; Trang, Đ.T.X. Đánh giá hoạt tính kháng oxy hóa và kháng đái tháo đường in vitro của các cao chiết từ lá cây cò sen (Miliusa velutina). Tạp chí Khoa học và công nghệ Đại học Thái Nguyên 2019, 207, 99–106. (In Vietnamese) [Google Scholar]
- Trang, Đ.T.X.; Bui, H.L.T.; Tran, L.C.; Luu, D.T.; Nguyen, T.T. Antioxidant and hepatoprotective potentials of miliusa velutina stem bark extract. Sci. Technol. Dev. J.-Nat. Sci. 2020, 4, 633–642. [Google Scholar]
- Promgool, T.; Kanokmedhakul, K.; Tontapha, S.; Amornkitbamrung, V.; Tongpim, S.; Jamjan, W.; Kanokmedhakul, S. Bioactive homogentisic acid derivatives from fruits and flowers of Miliusa velutina. Fitoterapia 2019, 134, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Kitzberger, C.S.G.; Smânia, A.; Pedrosa, R.C.; Ferreira, S.R.S. Antioxidant and antimicrobial activities of shiitake (Lentinula edodes) extracts obtained by organic solvents and supercritical fluids. J. Food Eng. 2007, 80, 631–638. [Google Scholar] [CrossRef]
- Biswas, S.K.; Chowdhury, A.; Raihan, S.Z.; Muhit, M.A.; Akbar, M.A.; Mowla, R. Phytochemical investigation with assessment of cytotoxicity and antibacterial activities of chloroform extract of the leaves of Kalanchoe pinnata. J. Plant Physiol. 2012, 7, 41–46. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Bag, G.C.; Devi, P.G.; Bhaigyabati, T. Assessment of total flavonoid content and antioxidant activity of methanolic rhizome extract of three Hedychium species of Manipur Valley. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 154–159. [Google Scholar]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Nenadis, N.; Wang, L.F.; Tsimidou, M.; Zhang, H.Y. Estimation of scavenging activity of phenolic compounds using the ABTS •+ assay. J. Agric. Food Chem. 2004, 52, 4669–4674. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Piaru, S.P.; Mahmud, R.; Majid, A.M.S.A.; Nassar, Z.D.M. Antioxidant and antiangiogenic activities of the essential oils of Myristica fragrans and Morinda citrifolia. Asian Pac. J. Trop. Med. 2012, 5, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Rana, Z.H.; Alam, M.K.; Akhtaruzzaman, M. Nutritional composition, total phenolic content, antioxidant and α-amylase inhibitory activities of different fractions of selected wild edible plants. Antioxidants 2019, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- Pujirahayu, N.; Bhattacharjya, D.K.; Suzuki, T.; Katayama, T. α-Glucosidase inhibitory activity of cycloartane-type triterpenes isolated from indonesian stingless bee propolis and their structure-activity relationship. Pharmaceuticals 2019, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Roginsky, V.; Lissi, E.A. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 2005, 92, 235–254. [Google Scholar] [CrossRef]
- Abu, F.; Mat Taib, C.N.; Mohd Moklas, M.A.; Mohd Akhir, S. Antioxidant properties of crude extract, partition extract, and fermented medium of Dendrobium sabin flower. eCAM 2017, 2017, 2907219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Choi, H.K.; Moon, J.Y.; Kim, Y.S.; Mosaddik, A.; Cho, S.K. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. J. Food Sci. 2011, 76, C38–C45. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, G.M.; Mahajan, R.T. Comparative antioxidant activity of twenty traditional Indian medicinal plants and its correlation with total flavonoid and phenolic content. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 105–111. [Google Scholar]
- Kim, E.J.; Choi, J.Y.; Yu, M.R.; Kim, M.Y.; Lee, S.H.; Lee, B.H. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J. Food Sci. Technol. 2012, 44, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Lucas-González, R.; Fernández-López, J.; Pérez-Álvarez, J.Á.; Viuda-Martos, M. Effect of particle size on phytochemical composition and antioxidant properties of two persimmon flours from Diospyros kaki Thunb. vars.‘Rojo Brillante’and ‘Triumph’co-products. J. Sci. Food Agric. 2018, 98, 504–510. [Google Scholar] [CrossRef]
- Hayat, J.; Akodad, M.; Moumen, A.; Baghour, M.; Skalli, A.; Ezrari, S.; Belmalha, S. Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco. Heliyon 2020, 6, e05609. [Google Scholar] [CrossRef] [PubMed]
- Haq, S.H.; Al-Ruwaished, G.; Al-Mutlaq, M.A.; Naji, S.A.; Al-Mogren, M.; Al-Rashed, S.; Al-Mussallam, A. Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Sci. Rep. 2019, 9, 18906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, N.T. Genus Miliusa: A review of phytochemistry and pharmacology. Evid.-Based Complementary Altern. Med. 2019, 2019, 8314693. [Google Scholar]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin− Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.; Iqbal, M. Antioxidant activity of Ricinus Communis. Org. Med. Chem. Int. J. 2018, 5, 555667. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Adefegha, S.A.; Oboh, G. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices. Pharm. Biol. 2012, 50, 857–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sousa, E.; Zanatta, L.; Seifriz, I.; Creczynski-Pasa, T.B.; Pizzolatti, M.G.; Szpoganicz, B.; Silva, F.R.M.B. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(α)-dirhamnoside from Bauhinia forficata leaves. J. Nat. Prod. 2004, 67, 829–832. [Google Scholar] [CrossRef]
- Hanamura, T.; Hagiwara, T.; Kawagishi, H. Structural and functional characterization of polyphenols isolated from Acerola (Malpighia emarginata DC.) fruit. Biosci. Biotechnol. Biochem. 2005, 69, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.I.; Apostolidis, E.; Shetty, K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. J. Food. Biochem. 2008, 32, 15–31. [Google Scholar] [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-glucosidase and α-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, C.; Zhang, H.; Putri, C.; Ng, K. Evaluation of α-Amylase and α-Glucosidase Inhibitory Activity of Flavonoids. Int. J. Food Sci. Nutr. 2015, 2, 1–6. [Google Scholar] [CrossRef]
- Mbhele, N.; Balogun, F.O.; Kazeem, M.I.; Ashafa, T. In vitro studies on the antimicrobial, antioxidant and antidiabetic potential of Cephalaria gigantea. Bangladesh J. Pharmacol. 2015, 10, 214–221. [Google Scholar] [CrossRef] [Green Version]
Extracts | Alkaloids | Flavonoids | Tannins | Glycosides | Steroids | Saponins |
---|---|---|---|---|---|---|
Ethanol extract (crude) | + | + | + | + | + | + |
n-Hexane fraction | + | + | + | − | + | − |
Dichloromethane fraction | + | + | + | − | + | − |
Ethyl acetate fraction | + | + | + | − | + | − |
Aqueous fraction | + | + | + | + | + | + |
Extracts | Polyphenol (mg Gallic Acid/g Extract) | Flavonoid (mg Quercetin/g Extract) |
---|---|---|
Ethanol extract (crude) | 8.0 b ± 0.1 | 172.2 ± 3.1 |
n-Hexane fraction | 4.7 c ± 0.2 | 71.18 d ± 4.5 |
Dichloromethane fraction | 5.1 c ± 0.1 | 132.07 c ± 16.03 |
Ethyl acetate fraction | 9.2 a ± 0.1 | 185.92 b ± 5.82 |
Aqueous fraction | 12.6 a ± 0.1 | 205.58 a ± 38.98 |
Extracts | EC50 (μg/mL) | ||||
---|---|---|---|---|---|
ABTS•+ | DPPH | RP | TAC | FRAP | |
Crude extract (ethanol) | 71.7 c ± 0.9 | 101.0 c ± 0.7 | 193.7 c ± 2.2 | 27.5 d ± 1.0 | 64.9 c ± 0.9 |
n-Hexane fraction | 377.0 a ± 10.3 | 188.9 a ± 3.7 | 346.7 a ± 4.6 | 57.8 a ± 0.4 | 154.3 a ± 0.9 |
Dichloromethane fraction | 225.1 b ± 3.1 | 117.0 b ± 1.3 | 232.6 b ± 9.5 | 42.0 b ± 0.2 | 80.5 b ± 0.8 |
Ethyl acetate fraction | 63.9 c ± 0.5 | 72.7 d ± 1.2 | 158.0 d ± 2.4 | 11.9 e ± 0.3 | 56.5 d ± 1.7 |
Aqueous fraction | 48.1 d ± 0.7 | 59.1 e ± 1.0 | 78.07 e ± 1.1 | 11.8 e ± 0.1 | 38.5 e ± 1.1 |
Trolox | 3.3 e ± 0.1 | 0.7 f ± 0.01 | 1.92 f ± 0.11 | 35.0 c ± 0.4 | 1.6 f ± 0.0 |
Extracts | IC50 (μg/mL) | |
---|---|---|
α-amylase | α-glucosidase | |
Ethanol extract (crude) | 701.5 c ± 13.4 | 92.2 c ± 13.4 |
n-Hexane fraction | 1675.1 a ± 40.8 | 150.7 a ± 40.8 |
Dichloromethane fraction | 1258.0 b ± 32.5 | 110.3 b ± 0.5 |
Ethyl acetate fraction | 541.1 d ± 11.8 | 84.8 d ± 0.3 |
Aqueous fraction | 376.6 e ± 5.2 | 69.7 e ± 0.3 |
Acarbose | 12.1 f ± 0.2 | 6.7 f ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anh, V.T.T.; Trang, D.T.X.; Kamei, K.; Linh, T.C.; Pham-Khanh, N.H.; Tuan, N.T.; Danh, L.T. Phytochemicals, Antioxidant and Antidiabetic Activities of Extracts from Miliusa velutina Flowers. Horticulturae 2021, 7, 555. https://doi.org/10.3390/horticulturae7120555
Anh VTT, Trang DTX, Kamei K, Linh TC, Pham-Khanh NH, Tuan NT, Danh LT. Phytochemicals, Antioxidant and Antidiabetic Activities of Extracts from Miliusa velutina Flowers. Horticulturae. 2021; 7(12):555. https://doi.org/10.3390/horticulturae7120555
Chicago/Turabian StyleAnh, Vo Thi Tu, Dai Thi Xuan Trang, Kaeko Kamei, Tran Chi Linh, Nguyen Huan Pham-Khanh, Nguyen Trong Tuan, and Luu Thai Danh. 2021. "Phytochemicals, Antioxidant and Antidiabetic Activities of Extracts from Miliusa velutina Flowers" Horticulturae 7, no. 12: 555. https://doi.org/10.3390/horticulturae7120555
APA StyleAnh, V. T. T., Trang, D. T. X., Kamei, K., Linh, T. C., Pham-Khanh, N. H., Tuan, N. T., & Danh, L. T. (2021). Phytochemicals, Antioxidant and Antidiabetic Activities of Extracts from Miliusa velutina Flowers. Horticulturae, 7(12), 555. https://doi.org/10.3390/horticulturae7120555