Water-Yield Relationship and Vegetative Growth of Wonderful Young Pomegranate Trees under Deficit Irrigation Conditions in Southeastern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental and Climatic Conditions
2.2. Irrigation Treatments
2.3. Determination of the ETc
2.4. Determination of the Yield Water Use Efficiency (YWUE) and the Yield Response Factor (Ky)
2.5. Vegetative Growth Parameters
2.6. Yield, Morpho-Pomological Characteristics of the Fruits
2.7. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions and Water Consumption
3.2. Applied Irrigation
3.3. The Effects of Irrigation Treatments on Vegetative Growth
3.4. The Effect of Irrigation Treatments on Yield
3.5. The Effect of Irrigation Treatments on Morphological Characteristics of Fruit
3.6. The Water use Efficiency (WUE) and the Yield Response Factor (Ky)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stover, E.; Mercure, E.W. The pomegranate: A new look at the fruit of paradise. Hortscience 2007, 42, 1088–1092. [Google Scholar] [CrossRef] [Green Version]
- Holland, D.; Hatib, K.; Bar-Yàakov, I. Pomegranate: Botany, horticulture, breeding. Hortic. Rev. 2009, 35, 127–191. [Google Scholar]
- Babu, D. Floral biology of pomegranate (Punica granatum L.). Fruit Veg. Cereal Sci. Biotechnol. 2010, 4, 45–50. [Google Scholar]
- Romano, K.R.; Finco, F.D.B.A.; Rosenthal, A.; Finco, M.V.A.; Deliza, R. Willingness to pay more for value-added pomegranate juice (Punica granatum L.): An open-ended contingent valuation. Food Res. Int. 2016, 89, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, G.; Cavoski, I.; Pacifico, A.; Tedone, L.; Mondelli, D. Morpho-pomological and chemical characterization of pomegranate (Punica granatum L.) genotypes in Apulia region, Southeastern Italy. Sci. Hort. 2011, 130, 599–606. [Google Scholar] [CrossRef]
- Anonymous. Comunicati Stampa. 2019. Available online: www.puglia.coldiretti.it (accessed on 23 March 2021).
- Shailendra, A.; Narendra, A. The effect of trickle irrigation on growth yield and quality of pomegranate (Punica granatum L.) in cv. Ganesh in Chhattisgarth region. J. Agric. Sci. 2005, 39, 175–181. [Google Scholar]
- Sulochanamma, B.N.; Yellamanda Reddy, T.; Subbi Reddy, G. Effect of basin and drip irrigation on growth, yield and water use efficiency in pomegranate cv. Ganesh. Acta Hortic. 2005, 696, 277–279. [Google Scholar] [CrossRef]
- El-Taweel, A.A.; Farag, A.A. Mulching implication on productivity and fruit quality on pomegranate grown in a sand soil. Egypt J. Hort. 2015, 42, 367–388. [Google Scholar]
- Intrigliolo, D.S.; Puerto, H.; Bonet, L.; Alarcòn, J.J.; Nicolas, E.; Bartual, J. Usefulness of trunk diameter variations as continuos water stress indicators of pomegranate (Punica granatum) trees. Agric. Water Manag. 2011, 98, 1462–1468. [Google Scholar] [CrossRef]
- Moriana, A.; Fereres, E. Plant indicators for scheduling irrigation of young olive trees. Irrig. Sci. 2002, 21, 83–90. [Google Scholar]
- Martínez-Nicolás, J.J.; Galindo, A.; Griñán, I.; Rodríguez, P.; Cruz, Z.N.; Martínez-Font, R.; Carbonell-Barrachina, A.A.; Nouri, H.; Melgarejo, P. Irrigation water saving during pomegranate flowering and fruit set period do not affect Wonderful and Mollar de Elche cultivars yield and fruit composition. Agric. Water Manag. 2019, 226, 105781. [Google Scholar] [CrossRef]
- Khattab, M.M.; Shaban, A.E.; El-Shrief, A.H.; El-Deen Mohamed, A.S. Growth and productivity of pomegranate trees under different irrigation levels I: Vegetative growth and fruiting. J. Hortic. Sci. Ornament Plants 2011, 3, 194–198. [Google Scholar]
- Ortuño, M.F.; Conejero, W.; Moreno, F.; Moriana, A.; Intrigliolo, D.S.; Biel, C.; Mellisho, C.; Pérez-Pastor, A.; Domingo, R.; Ruiz-Sánchez, M.; et al. Could trunk diameter sensors be used in woddy crops for irrigation scheduling? A review of current knowledge and future perspectives. Agric. Water Manag. 2010, 97, 1–11. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Bonet, L.; Nortes, P.A.; Puerto, H.; Nicolas, E.; Bartual, J. Pomegranate trees performance under sustained and regulated deficit irrigation. Irrig. Sci. 2013, 31, 959–970. [Google Scholar] [CrossRef]
- Galindo, A.; Calin-Sànchez, A.; Rodriguez, P.; Cruz, Z.N.; Giròn, I.F.; Correl, M.; Martinez-Font, R.; Moriana, A.; Carbonell-Barrachina, A.A.; Torrecillas, A.; et al. Water stress and the end of pomegranate fruit ripening produces earlier harvesting and improves fruit quality. Sci. Hortic. 2017, 226, 28–74. [Google Scholar] [CrossRef]
- Zang, H.; Wang, D.; Ayars, J.E.; Phene, C.J. Biophysical response of young pomegranate trees to surface and sub-surface drip irrigation and deficit irrigation. Irrig. Sci. 2017, 35, 425–435. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Viveros, M.; Salinas, M. Regulated deficit irrigation in almonds: Effects of variations in applied water and stress timing on yield and yield components. Irrig Sci. 2005, 24, 101–114. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Centofanti, T.; Banuelos, G.S.; Wallis, C.M.; Ayars, J.E. Deficit irrigation strategies and their impact on yield and nutritional quality of pomegranate fruit. Fruits 2017, 72, 47–54. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate front. Plant Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Doorembos, J.; Kassam, A.H. Yield Response to Water; Paper No 33; FAO Irrigation and Drainage: Rome, Italy, 1979; p. 133. [Google Scholar]
- Tarantino, A.; Difonzo GLopriore, G.; Disciglio, G.; Paradiso, V.M.; Gambacorta, G.; Caponio, F. Bioactive compounds and quality evaluation of ‘wonderful’ pomegranate fruit and juice as affected by deficit irrigation. J. Sci. Food Agric. 2020. [Google Scholar] [CrossRef]
- USDA. Textural soil classification. In Study Guide Revised; United States Department of Agriculture, Soil Conservation Service: Washington, DC, USA, 1987; p. 48. [Google Scholar]
- UNESCO/FAO. Bioclimatic Map of the Mediterranean Zone; Explanatory Notes, Arid Zone Research; UNESCO/FAO: Rome, Italy, 1963; p. 2217. [Google Scholar]
- Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: Irrigation and nitrogen fertilization. Reg. Environ. Chang. 2012, 12, 407–412. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. Guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Dastane, N.G. Effective Rainfall in Irrigated Agriculture; F.A.O. Irrigation and Drainage Paper 25; Food and Agriculture Organization of the United Nations: Rome, Italy, 1974. [Google Scholar]
- Smith, M. CROPWAT. A Computer Program for Irrigation Planning and Management; Irrigation and Drainage FAO: Roma, Italy, 1992; p. 46. [Google Scholar]
- Xiloyannis, C.; Montanaro, G.; Sofo, A.; Di Chio, B. Irrigazione sostenibile delle specie arboree da frutto in ambiente mediterraneo. Cap VII in Irrigazione sostenibile. In La Buona Pratica Agricola; L’Informatore, A., Ed.; Progetto Editoriale PANDA, 2004; Volume 5, pp. 158–187. [Google Scholar]
- Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Melgarejo, P.; Martínez-Valero, R.; Guillamón, J.M.; Amorós, M.M. Phenological stages of the pomegranate tree (Punica granatum L.). Ann. Appl. Biol. 1997, 130, 135–140. [Google Scholar] [CrossRef]
- Bhantana, P.; Lazarovitch, N. Evapo-traspiration crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress. Agric. Water Manag. 2010, 97, 715–722. [Google Scholar] [CrossRef]
- Bugueño, F.; Livellara, N.; Varas, F.; Undurraga, P.; Castro, M.; Salgado, E. Responses of young Punica granatum plants under four different water regimes. Cienc. Inv. Agric. 2016, 43, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Nortes, P.A.; Perèz-Pastor, A.; Egea, G.; Conejero, W.; Domingo, R. Comparison on changes in stem diameter and water potential valùes for detecting water stress in young almond trees. Agric. Water Manag. 2005, 77, 296–307. [Google Scholar] [CrossRef]
- Dinc, N.; Aydinsakir, K.; Isik, M.; Bastug, R.; Ari, N.; Sahin, A.; Buyuktas, D. Assessment of different irrigation strategies on yield and quality characteristics of drip irrigated pomegranate. Irrig. Sci. 2018, 36, 87–96. [Google Scholar] [CrossRef]
- Aydin, Y.; Mikail, N.; Pakyürek, M.; Saltuk, B.; Seven, M. Water-yield relationship of Zivzik pomegranate under deficit irrigation conditions. Land Reclam. Earth Obs. Surv. Environ. Eng. 2017, 6, 81–86. [Google Scholar]
- Galindo, A.; Rodriguez, P.; Collado-Gonzàles, J.; Cruz, Z.N.; Torrecillas, E.; Ondoňo, S.; Correl, M.; Moriana, A.; Torrecillas, E. Rainfall intensifies fruit peel cracking in water stressed pomegranate trees. Agric. For. Meteorol. 2014, 194, 29–35. [Google Scholar] [CrossRef]
- Meshram, D.T.; Gorantiwar, S.D.; Jaime, A.; da Silva Vilas, T.; Jadhav, T. Water management in pomegranate. In Fruit, Vegetable and Cereal Science and Biotechnology; ©Global Science Books: London, UK, 2010; Volume 4, pp. 106–112. [Google Scholar]
- Taha, A.M. Assessment of different eto-dependent irrigation levels for pomegranate on saving water and energy and maximizing farm income. J. Soil Sci. Agric. Eng. 2018, 15, 657–665. [Google Scholar] [CrossRef]
Month | Tmax | Tmin | RHmax | RHmin | Ws | Rad | p | ETo | SAa | Kca | ETc | (ETc-0.70 p) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | (°C) | (%) | (%) | (m·s−1) | (W·m−2) | (mm) | (mm) | % | (mm) | (mm) | (mm) | |
2017 | ||||||||||||
April | 21.3 | 9.7 | 90.1 | 47.0 | 3.1 | 172.8 | 82.0 | 138.9 | 5.5 | 0.20 | 27.8 | −29.6 |
May | 26.1 | 12.1 | 95.1 | 44.1 | 2.4 | 232.4 | 94.1 | 170.3 | 8.6 | 0.30 | 51.1 | −14.8 |
June | 33.2 | 17.6 | 83.8 | 30.4 | 2.7 | 262.5 | 1.0 | 205.0 | 10.6 | 0.30 | 61.5 | +60.5 |
July | 34.1 | 20.4 | 85.5 | 31.0 | 3.0 | 329.3 | 24.0 | 215.6 | 11.2 | 0.30 | 64.7 | +40.7 |
Aug | 35.0 | 19.2 | 78.0 | 26.8 | 2.7 | 314.6 | 14.6 | 201.9 | 11.2 | 0.30 | 60.6 | +50.4 |
Sept | 26.1 | 14.9 | 80.0 | 34.1 | 3.5 | 189.7 | 72.0 | 149.0 | 11.2 | 0.30 | 44.7 | −5.7 |
Mean | 29.3 | 15.7 | 85.4 | 35.6 | 2.9 | 250.2 | 9.7 | 0.28 | ||||
Total | 287.7 | 1080.7 | 310.4 | 100.9 | ||||||||
2018 | ||||||||||||
April | 21.3 | 12.9 | 94.6 | 37.6 | 2.8 | 235.3 | 54.0 | 159.8 | 8.7 | 0.20 | 31.9 | −6.2 |
May | 26.1 | 13.4 | 95.2 | 49.1 | 2.4 | 275.8 | 58.3 | 170.6 | 15.4 | 0.30 | 51.2 | +10.4 |
June | 30.0 | 12.1 | 89.5 | 40.3 | 3.4 | 289.6 | 88.2 | 180.7 | 21.3 | 0.40 | 72.3 | +10.3 |
July | 33.3 | 19.6 | 83.6 | 35.4 | 3.0 | 318.7 | 16.8 | 206.3 | 22.6 | 0.40 | 82.5 | +70.8 |
Aug | 32.7 | 20.1 | 71.3 | 28.3 | 2.1 | 285.7 | 39.1 | 187.3 | 22.6 | 0.40 | 74.9 | +47.5 |
Sept | 29.1 | 17.1 | 81.3 | 30.0 | 3.7 | 193.6 | 80.0 | 156.4 | 22.6 | 0.40 | 62.6 | +6.6 |
Mean | 28.7 | 15.9 | 85.9 | 36.8 | 2.9 | 266.5 | 18.9 | 0.35 | ||||
Total | 366.4 | 1061.1 | 375.4 | 140.3 | ||||||||
2019 | ||||||||||||
April | 20.6 | 8.2 | 94.4 | 51.0 | 3.7 | 190.2 | 40.3 | 131.6 | 18.0 | 0.30 | 39.5 | +11.3 |
May | 21.3 | 10.2 | 95.3 | 56.3 | 4.0 | 232.9 | 86.7 | 150.5 | 25.4 | 0.40 | 60.2 | −0.49 |
June | 33.2 | 17.5 | 85.9 | 35.1 | 3.7 | 252.2 | 9.2 | 200.3 | 25.8 | 0.50 | 110.0 | +103.6 |
July | 33.7 | 19.5 | 84.0 | 33.9 | 3.7 | 258.8 | 30.0 | 207.0 | 30.2 | 0.55 | 113.8 | +92.8 |
Aug | 34.8 | 20.3 | 79.9 | 33.9 | 3.6 | 225.6 | 5.7 | 198.9 | 30.5 | 0.55 | 109.4 | +105.4 |
Sept | 29.5 | 16.8 | 88.7 | 42.6 | 3.6 | 175.5 | 3.8 | 156.4 | 30.5 | 0.55 | 86.0 | +83.3 |
Mean | 28.9 | 15.4 | 88.0 | 42.5 | 3.7 | 222.5 | 26.7 | 0.47 | ||||
Total | 175.7 | 1044.7 | 518.9 | 395.9 |
Year | Seasonal Irrigation Volume (mm) | Watering | |||
---|---|---|---|---|---|
ETc100 | ETc75 | ETc50 | ETc25 | (n.) | |
2017 | 101 | 83 | 55 | 27 | 11 |
2018 | 140 | 105 | 70 | 35 | 12 |
2019 | 395 | 296 | 197 | 124 | 14 |
Treatment | Year | North | East | South | West | Mean |
---|---|---|---|---|---|---|
ETc100 | 2018 | 22.6 ± 9.1 b | 14.3 ± 3.7 b | 13.3 ± 2.9 b | 9.0 ± 3.6 b | 14.8 ± 6.9 b |
2019 | 52.3 ± 24.8 a | 44.3 ± 6.0 a | 42.6 ± 2.5 a | 55.7 ± 9.3 a | 48.7 ± 10.6 a | |
ETc75 | 2018 | 18.3 ± 7.5 b | 9.1 ± 6.9 b | 15.3 ± 5.5 b | 14.6 ± 9.8 b | 14.3 ± 7.4 b |
2019 | 51.6 ± 11.5 a | 34.7 ± 13.8 a | 48.3 ± 7.6 a | 52.0 ± 3.6 a | 46.7 ± 9.1 a | |
ETc50 | 2018 | 17.0 ± 8.2 b | 11.0 ± 5.7 b | 9.7 ± 2.1 b | 11.3 ± 1.5 b | 12.2 ± 4.3 b |
2019 | 43.3 ± 9.2 a | 24.3 ± 9.2 a | 43.3 ± 10.4 a | 45.6 ± 10.2 a | 39.1 ± 7.2 a | |
ETc25 | 2018 | 6.0 ± 0.3 b | 12.0 ± 0.6 b | 12.7 ± 0.6 b | 10.7 ± 4.0 b | 10.3 ± 1.3 b |
2019 | 41.3 ± 3.5 a | 30.6 ± 10.6 a | 35.0 ± 5.0 a | 28.3 ± 10.6 | 33.8 ± 8.7 a |
Treatment | Seasonal Water Consumption (Including Rainfall) (m3·ha−1) | Fruits Per Tree | Fruit Yield | WUE | ||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
ETc100 | 1766 | 4216 | 11.6 ± 1.8 a | 26.3 ± 2.6 a | 3.67 ± 0.40 a | 5.94 ± 0.77 a | 2.08 ± 0.33 | 1.41 ± 0.8 |
ETc75 | 1416 | 3130 | 10.5 ± 1.3 a | 19.7 ± 1.2 b | 2.79 ± 0.51 a | 4.10 ± 0.15 b | 1.97 ± 0.30 | 1.31 ± 0.10 |
ETc50 | 1066 | 2146 | 8.8 ± 1.2 ab | 15.7 ± 1.7 c | 2.22 ± 0.40 b | 2.97 ± 0.38 c | 2.08 ± 0.25 | 1.37 ± 0.18 |
ETc25 | 716 | 1166 | 6.5 ± 1.3 b | 14.0 ± 1.4 c | 1.32 ± 0.35 c | 1.57 ±0.19 d | 1.85 ± 0.28 | 1.35 ± 0.25 |
Treatment | Fruit Weight (g) | Fruit Diameter (mm) | Fruit Length (mm) | |||
---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
ETc100 | 522.7 ± 90.7 a | 496.2 ± 107.9 a | 95.6 ± 4.7 a | 94.2 ± 5.0 a | 83.8 ± 4.7 a | 85.0 ± 7.0 a |
ETc75 | 432.7 ± 95.0 ab | 358.4 ± 43.5 a | 89.1 ± 8.2 ab | 88.2 ± 3.6 ab | 80.2 ± 6.5 ab | 76.0 ± 3.7 ab |
ETc50 | 378.7 ± 110.3 ab | 361.7 ± 102.1 a | 84.7 ± 9.0 ab | 85.9 ± 7.0 ab | 76.3 ± 9.6 ab | 75.4 ± 5.8 ab |
ETc25 | 332.5 ± 85.6 b | 304.1 ± 107.5 a | 81.8 ± 6.7 b | 80.4 ± 8.1 b | 70.3 ± 7.3 b | 73.4 ± 4.2 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantino, A.; Frabboni, L.; Disciglio, G. Water-Yield Relationship and Vegetative Growth of Wonderful Young Pomegranate Trees under Deficit Irrigation Conditions in Southeastern Italy. Horticulturae 2021, 7, 79. https://doi.org/10.3390/horticulturae7040079
Tarantino A, Frabboni L, Disciglio G. Water-Yield Relationship and Vegetative Growth of Wonderful Young Pomegranate Trees under Deficit Irrigation Conditions in Southeastern Italy. Horticulturae. 2021; 7(4):79. https://doi.org/10.3390/horticulturae7040079
Chicago/Turabian StyleTarantino, Annalisa, Laura Frabboni, and Grazia Disciglio. 2021. "Water-Yield Relationship and Vegetative Growth of Wonderful Young Pomegranate Trees under Deficit Irrigation Conditions in Southeastern Italy" Horticulturae 7, no. 4: 79. https://doi.org/10.3390/horticulturae7040079
APA StyleTarantino, A., Frabboni, L., & Disciglio, G. (2021). Water-Yield Relationship and Vegetative Growth of Wonderful Young Pomegranate Trees under Deficit Irrigation Conditions in Southeastern Italy. Horticulturae, 7(4), 79. https://doi.org/10.3390/horticulturae7040079