Impact of Irrigation with Treated Domestic Wastewater on Squash (Cucurbita pepo L.) Fruit and Seed under Semi-Arid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Fruit Growth
2.3. Heavy Metal Accumulation in Soil, Fruit and Seed
2.4. Chemical Analysis of the Seeds
2.5. Mineral Composition of the Seeds
2.6. Statistical Analysis
3. Results and Discussion
3.1. Fruit Growth
3.2. Heavy Metal Accumulation in Soil, Fruit and Seed
3.3. Seed Proximate Analysis
3.4. Mineral Composition of the Seeds
3.5. Effect of Treated Wastewater on Fruit and Seed of Mycotoxin Availability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasheed, F.; Zafar, Z.; Waseem, Z.A.; Rafay, M.; Abdullah, M.; Salam, M.M.A.; Mohsin, M.; Khan, W.R. Phytoaccumulation of Zn, Pb, and Cd in Conocarpus lancifolius irrigated with wastewater: Does physiological response influence heavy metal uptake? Int. J. Phytoremediat. 2020, 22, 287–294. [Google Scholar] [CrossRef]
- Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination 2015, 364, 17–32. [Google Scholar] [CrossRef]
- Farhadkhani, M.; Nikaeen, M.; Yadegarfar, G.; Hatamzadeh, M.; Pourmohammadbagher, H.; Sahbaei, Z.; Rahmani, H.R. Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water Res. 2018, 144, 356–364. [Google Scholar] [CrossRef]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Mkhinini, M.; Boughattas, I.; Hattab, S.; Amamou, C.; Banni, M. Effect of treated wastewater irrigation on physiological and agronomic properties of beans Vicia faba. Int. J. Environ. Agric. Biotechnol. 2018, 3, 1414–1420. [Google Scholar] [CrossRef]
- Atamaleki, A.; Yazdanbakhsh, A.; Fakhri, Y.; Mahdipour, F.; Khodakarim, S.; Khaneghah, A.M. The concentration of potentially toxic elements (PTEs) in the onion and tomato irrigated by wastewater: A systematic review; meta-analysis and health risk assessment. Food Res. Int. 2019, 125, 108518. [Google Scholar] [CrossRef] [PubMed]
- Fatta-Kassinos, D.; Kalavrouziotis, I.K.; Koukoulakis, P.H.; Vasquez, M.I. The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci. Total Environ. 2011, 409, 3555–3563. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Alvarez-Ruiz, R.; Alfarhan, A.H.; El-Sheikh, M.A.; Alobaid, S.M.; Barceló, D. Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia). Sci. Total Environ. 2019, 652, 562–572. [Google Scholar] [CrossRef]
- Mohawesh, O.; Albalasmeh, A.; Al-Hamaiedeh, H.; Qaraleh, S.; Maaitah, O.; Bawalize, A.; Almajali, D. Controlled land application of olive mill wastewater (OMW): Enhance soil indices and barley growth performance in arid environments. Water Air Soil Pollut. 2020, 231. [Google Scholar] [CrossRef]
- Mohawesh, O.; Al-Hamaiedeh, H.; Albalasmeh, A.; Qaraleh, S.; Haddadin, M. Effect of olive mill wastewater (OMW) application on soil properties and wheat growth performance under rain-fed conditions. Water Air Soil Pollut. 2019, 230, 160. [Google Scholar] [CrossRef]
- Albalasmeh, A.; Gharaibeh, M.; Alghzawi, M.; Morbidelli, R.; Saltalippi, C.; Ghezzehei, T.; Flammini, A. Using wastewater in irrigation: The effects on infiltration process in a clayey soil. Water 2020, 12, 968. [Google Scholar] [CrossRef] [Green Version]
- Tunc, T.; Sahin, U. Yield and heavy metal content of wastewater-irrigated cauliflower and soil chemical properties. Commun. Soil Sci. Plant Anal. 2017, 48, 1194–1211. [Google Scholar] [CrossRef]
- Gatta, G.; Gagliardi, A.; Disciglio, G.; Lonigro, A.; Francavilla, M.; Tarantino, E.; Giuliani, M. Irrigation with treated municipal wastewater on artichoke crop: Assessment of soil and yield heavy metal content and human risk. Water 2018, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- Gharaibeh, M.A.; Eltaif, N.I.; Al-Abdullah, B. Impact of field application of treated wastewater on hydraulic properties of vertisols. Water Air Soil Pollut. 2007, 184, 347–353. [Google Scholar] [CrossRef]
- Prazeres, A.R.; Rivas, J.; Almeida, M.A.; Patanita, M.; Dôres, J.; Carvalho, F. Agricultural reuse of cheese whey wastewater treated by NaOH precipitation for tomato production under several saline conditions and sludge management. Agric. Water Manag. 2016, 167, 62–74. [Google Scholar] [CrossRef]
- Albalasmeh, A.A.; Ghezzehei, T.A. Interplay between soil drying and root exudation in rhizosheath development. Plant Soil 2014, 374, 739–751. [Google Scholar] [CrossRef]
- Gharaibeh, M.A.; Ghezzehei, T.A.; Albalasmeh, A.A.; Alghzawi, M.Z. Alteration of physical and chemical characteristics of clayey soils by irrigation with treated waste water. Geoderma 2016, 276, 33–40. [Google Scholar] [CrossRef]
- Khawla, K.; Besma, K.; Enrique, M.; Mohamed, H. Accumulation of trace elements by corn (Zea mays) under irrigation with treated wastewater using different irrigation methods. Ecotoxicol. Environ. Saf. 2019, 170, 530–537. [Google Scholar] [CrossRef]
- Inyinbor, A.A.; Bello, O.S.; Oluyori, A.P.; Inyinbor, H.E.; Fadiji, A.E. Wastewater conservation and reuse in quality vegetable cultivation: Overview, challenges and future prospects. Food Control 2019, 98, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Almuktar, S.A.A.A.N.; Scholz, M. Mineral and biological contamination of soil and Capsicum annuum irrigated with recycled domestic wastewater. Agric. Water Manag. 2016, 167, 95–109. [Google Scholar] [CrossRef]
- Gatta, G.; Libutti, A.; Gagliardi, A.; Disciglio, G.; Beneduce, L.; d’Antuono, M.; Rendina, M.; Tarantino, E. Effects of treated agro-industrial wastewater irrigation on tomato processing quality. Ital. J. Agron. 2015, 10, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Di Baccio, D.; Pietrini, F.; Bertolotto, P.; Pérez, S.; Barcelò, D.; Zacchini, M.; Donati, E. Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen: Removal, metabolism and morpho-physiological traits for biomonitoring of emerging contaminants. Sci. Total Environ. 2017, 584, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Dudley, S.; Sun, C.; Jiang, J.; Gan, J. Metabolism of sulfamethoxazole in Arabidopsis thaliana cells and cucumber seedlings. Environ. Pollut. 2018, 242, 1748–1757. [Google Scholar] [CrossRef]
- Fu, Q.; Ye, Q.; Zhang, J.; Richards, J.; Borchardt, D.; Gan, J. Diclofenac in Arabidopsis cells: Rapid formation of conjugates. Environ. Pollut. 2017, 222, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. Sci. Total Environ. 2018, 636, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, N.; Postigo, C.; Lonigro, A.; Perez, S.; Barceló, D. Development and validation of an analytical method based on liquid chromatography–tandem mass spectrometry detection for the simultaneous determination of 13 relevant wastewater-derived contaminants in lettuce. Anal. Bioanal. Chem. 2017, 409, 5375–5387. [Google Scholar] [CrossRef]
- Picó, Y.; Alvarez-Ruiz, R.; Wijaya, L.; Alfarhan, A.; Alyemeni, M.; Barceló, D. Analysis of ibuprofen and its main metabolites in roots, shoots, and seeds of cowpea (Vigna unguiculata L. Walp) using liquid chromatography-quadrupole time-of-flight mass spectrometry: Uptake, metabolism, and translocation. Anal. Bioanal. Chem. 2018, 410, 1163–1176. [Google Scholar] [CrossRef]
- Sun, C.; Dudley, S.; McGinnis, M.; Trumble, J.; Gan, J. Acetaminophen detoxification in cucumber plants via induction of glutathione S-transferases. Sci. Total Environ. 2019, 649, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Dudley, S.; Trumble, J.; Gan, J. Pharmaceutical and personal care products-induced stress symptoms and detoxification mechanisms in cucumber plants. Environ. Pollut. 2018, 234, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Naser, H.M.; Rahman, M.Z.; Sultana, S.; Quddus, M.A.; Hossain, M.A. Heavy metal accumulation in leafy vegetables grown in industrial areas under varying levels of pollution. Bangladesh J. Agric. Res. 2018, 43, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Brar, M.S.; Malhi, S.S.; Singh, A.P.; Arora, C.L.; Gill, K.S. Sewage water irrigation effects on some potentially toxic trace elements in soil and potato plants in northwestern India. Can. J. Soil Sci. 2000, 80, 465–471. [Google Scholar] [CrossRef]
- Fazeli, M.S.; Khosravan, F.; Hossini, M.; Sathyanarayan, S.; Satish, P.N. Enrichment of heavy metals in paddy crops irrigated by paper mill effluents near Nanjangud, Mysore District, Karnatake, India. Environ. Geol. 1998, 34, 297–302. [Google Scholar] [CrossRef]
- Al-Ansari, N.; Aldardor, W.; Siergieiev, D.; Knutsson, S. Effect of treated wastewater irrigation on vegetables. J. Environ. Hydrol. 2013, 21. [Google Scholar] [CrossRef]
- Abbruzzini, T.F.; Silva, C.A.; de Andrade, D.A.; de Oliveira Carneiro, W.J. Influence of digestion methods on the recovery of Iron, Zinc, Nickel, Chromium, Cadmium and Lead contents in 11 organic residues. Rev. Bras. Ciência Solo 2014, 38, 166–176. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1999. [Google Scholar]
- Williams, J.P.; Adams, P.B. Flame spectrophotometric analysis of glasses and ores: I, Lithium, Sodium, Potassium, Rubidium, and Cesium. J. Am. Ceram. Soc. 1954, 37, 306–311. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, F. Ammonium vandate-molybdate method for determination of phosphorus. In Methods of Analysis for Soils, Plants and Water; California University—Agriculture Division: Oakland, CA, USA, 1961; pp. 184–203. [Google Scholar]
- Maurer, M.A.; Davies, F.S.; Graetz, D.A. Reclaimed wastewater irrigation and fertilization of mature ‘‘redblush’’ grapefruit trees on spodosols in florida. J. Am. Soc. Hortic. Sci. 1995, 120, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M.J.; Mazahreh, N. Changes in soil fertility parameters in response to irrigation of forage crops with secondary treated wastewater. Commun. Soil Sci. Plant Anal. 2003, 34, 1281–1294. [Google Scholar] [CrossRef]
- Kumar, V.; Thakur, R.K.; Kumar, P. Assessment of heavy metals uptake by cauliflower (Brassica oleracea var. botrytis) grown in integrated industrial effluent irrigated soils: A prediction modeling study. Sci. Hortic. 2019, 257, 108682. [Google Scholar] [CrossRef]
- Al-Lahham, O.; El Assi, N.M.; Fayyad, M. Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit. Agric. Water Manag. 2003, 61, 51–62. [Google Scholar] [CrossRef]
- Naz, H.; Naz, A.; Ashraf, S. Impact of heavy metal toxicity to plant growth and nodulation in Chickpea grown under heavy metal stress. Int. J. Res. Emerg. Sci. Technol. 2015, 2, 248–260. [Google Scholar]
- Zavadil, J. The effect of municipal wastewater irrigation on the yield and quality of vegetables and crops. Soil Water Res. 2009, 4, 91–103. [Google Scholar] [CrossRef]
- Hussain, A.; Priyadarshi, M.; Dubey, S. Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Appl. Water Sci. 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Kiziloglu, F.; Turan, M.; Sahin, U.; Kuslu, Y.; Dursun, A. Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcareous soil in Turkey. Agric. Water Manag. 2008, 95, 716–724. [Google Scholar] [CrossRef]
- Kim, H.K.; Jang, T.I.; Kim, S.M.; Park, S.W. Impact of domestic wastewater irrigation on heavy metal contamination in soil and vegetables. Environ. Earth Sci 2015, 73, 2377–2383. [Google Scholar] [CrossRef]
- Day, A.; Taher, F.; Katterman, F. Influence of treated municipal wastewater on growth fiber, acid soluble nucleotide, protein and amino acid content in wheat grain. J. Environ. Qual. 1975, 4, 167–169. [Google Scholar] [CrossRef]
- Seleiman, M.; Al-Suhaibani, N.; El-Hendawy, S.; Abdella, K.; Alotaibi, M. Impacts of long- and short-term of irrigation with treated wastewater and synthetic fertilizers on the growth, biomass, heavy metal content, and energy traits of three potential bioenergy crops in arid regions. Energies 2021, 14, 3037. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Saridakis, C.; Chrysargyris, A. Treated wastewater and fertigation applied for greenhouse tomato cultivation grown in municipal solid waste compost and soil mixtures. Sustainability 2020, 12, 4287. [Google Scholar] [CrossRef]
- Mousavi, S.; Galavi, M.; Eskandari, H. Effects of treated municipal wastewater on fluctuation trend of leaf area index and quality of Maize (Zea Mays). Water Sci. Technol. 2013, 67, 797–802. [Google Scholar] [CrossRef]
- Aghtape, A.; Ghanbari, A.; Sirousmehr, A.; Siahsar, B.; Asgharipour, M.; Tavssoli, A. Effect of irrigation with wastewater and foliar fertilizer application on some forage characteristics of foxtail millet (Setaria italica). Int. J. Plant. Physiol. Biochem. 2011, 3, 34–42. [Google Scholar]
- Ghanbari, A.; Abedi, K.; Taei, S. Effect of irrigation with treated wastewater of municipal on yield and quality of wheat and some soil characteristics in sistan region. J. Agric. Sci. Tech. Natur. Res. 2006, 4, 47–59. [Google Scholar]
- Kiziloglu, F.; Tuean, M.; Sahin, U.; Angin, I.; Anapali, O.; Okuroglu, M. Effects of wastewater irrigation on soil and cabbage- plant (Brassica olereacea var. capitate cv. Yavola-1) chemical properties. J. Plant. Nutr. Soil Sci. 2007, 170, 166–172. [Google Scholar] [CrossRef]
- Khan, M.; Shaukat, S.; Khan, M. Growth, yield and nutrient content of sunflower (Helianthus annuus L.) using treated wastewater from waste stabilization ponds. Pak. J. Bot. 2009, 41, 1391–1399. [Google Scholar]
- Omeir, M.; Jafari, A.; Shirmardi, M.; Roosta, H. Effects of irrigation with fish farm effluent on nutrient content of Basil and Purslane. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 825–831. [Google Scholar] [CrossRef]
- European Commission. Commission regulation (EC) No. 1881/2006 of 19 December 2006—Setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5. [Google Scholar]
Parameter | Unit | TWW | FW |
---|---|---|---|
pH | - | 7.8 | 7.4 |
EC | dS m−1 | 1.5 | 0.6 |
Na | mg L−1 | 161.3 | 22.9 |
NO3− | 38.3 | 20.1 | |
PO42− | 4.0 | udl | |
K | 37.7 | 3.5 | |
Ca | 70.1 | 25.1 | |
Mg | 41.3 | 30.8 | |
Cl | 255.8 | 51.3 | |
DOM | 70 | nd | |
TSS | 30 | nd | |
TDS | 1050 | 500 | |
BOD | 15 | nd | |
COD | 57 | nd | |
Cd | <0.0003 | <0.0003 | |
Zn | 0.017 | 0.020 | |
Cu | 0.018 | 0.010 | |
Pb | 0.004 | <0.0003 | |
Cr | udl | Udl |
FW (SE 2) | TWW (SE) | p-Value | |
---|---|---|---|
Fruit mean 1 length (cm) | 20.7 (1.602) | 25.0 (1.954) | 0.151 |
Fruit mean 1 diameter (cm) | 8.8 (0.708) | 10.2 (0.835) | 0.253 |
Oven-dried mean 1 weight (g) | 27.5 (0.143) | 41.9 (0.128) | <0.001 * |
Heavy Metal | Unit | Soil | Fruits | Seeds | |||
---|---|---|---|---|---|---|---|
FW | TWW | FW | TWW | FW | TWW | ||
Ni | ppm | 0.028 | 0.032 | 0.003 | 0.003 | 0.003 | 0.002 |
Zn | 0.081 | 0.079 | 0.044 | 0.052 | 0.114 | 0.116 | |
Cu | 0.022 | 0.021 | 0.026 | 0.039 | 0.038 | 0.042 | |
Mn | 0.303 | 0.329 | 0.000 | 0.000 | 0.026 | 0.040 | |
Fe | 42.339 | 42.632 | 0.150 | 0.183 | 0.153 | 0.437 | |
Cd | ppb | 7.032 | 7.893 | 0.770 | 1.232 | 0.158 | 0.295 |
Cr | 205.205 | 204.376 | 0.913 | 1.304 | 0.254 | 1.859 | |
As | 653.236 | 625.004 | 2.056 | 3.782 | 1.509 | 2.292 |
F.W | T.W.W | |||||
---|---|---|---|---|---|---|
Mean | SE 4 | Mean | SE | p-Value | ||
Whole | Actual DM 1 | 87.96 | 3.719 | 90.23 | 4.807 | 0.730 |
CP% 2 | 33.57 | 1.574 | 35.85 | 0.525 | 0.254 | |
CF% 3 | 28.45 | 1.628 | 29.84 | 1.165 | 0.549 | |
Naked | Actual DM | 66.43 | 1.569 | 68.18 | 6.325 | 0.743 |
CP% | 39.44 | 1.349 | 41.28 | 0.837 | 0.309 | |
CF% | 36.89 | 0.444 | 34.57 | 1.775 | 0.246 |
Na | K | Ca | p | ||
---|---|---|---|---|---|
mg/L | |||||
Whole | TWW | 730.49 | 5957.4 | 114.21 | 3.64 |
FW | 537.5 | 3545.5 | 136.36 | 2.03 | |
Naked | TWW | 628.57 | 4350.3 | 149.73 | 3.58 |
FW | 571.79 | 3876.7 | 114.66 | 1.29 |
FW | TWW | ||||
---|---|---|---|---|---|
Aflatoxin | Mean | SE | Mean | SE | p-Value |
B1 | 0.357 | 0.0049 | 0.361 | 0.0102 | 0.723 |
B2 | BDL | BDL | BDL | - | - |
G1 | 0.365 | 0.0041 | 0.359 | 0.0032 | 0.260 |
G2 | BDL | BDL | BDL | - | - |
M1 | 0.097 | 0.0635 | BDL | - | 0.170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhadmeh, I.M.; Gharaiebeh, S.F.; Albalasmeh, A.A. Impact of Irrigation with Treated Domestic Wastewater on Squash (Cucurbita pepo L.) Fruit and Seed under Semi-Arid Conditions. Horticulturae 2021, 7, 226. https://doi.org/10.3390/horticulturae7080226
Makhadmeh IM, Gharaiebeh SF, Albalasmeh AA. Impact of Irrigation with Treated Domestic Wastewater on Squash (Cucurbita pepo L.) Fruit and Seed under Semi-Arid Conditions. Horticulturae. 2021; 7(8):226. https://doi.org/10.3390/horticulturae7080226
Chicago/Turabian StyleMakhadmeh, Ibrahim M., Seba F. Gharaiebeh, and Ammar A. Albalasmeh. 2021. "Impact of Irrigation with Treated Domestic Wastewater on Squash (Cucurbita pepo L.) Fruit and Seed under Semi-Arid Conditions" Horticulturae 7, no. 8: 226. https://doi.org/10.3390/horticulturae7080226
APA StyleMakhadmeh, I. M., Gharaiebeh, S. F., & Albalasmeh, A. A. (2021). Impact of Irrigation with Treated Domestic Wastewater on Squash (Cucurbita pepo L.) Fruit and Seed under Semi-Arid Conditions. Horticulturae, 7(8), 226. https://doi.org/10.3390/horticulturae7080226