Effect of NaCl or Macronutrient-Imposed Salinity on Basil Crop Yield and Water Use Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Measurements
2.3. Calculations
2.4. Statistical Analysis
3. Results
3.1. Water Status and Nutrient Solution Analysis
3.2. Yield Measurements
3.2.1. Crop Height Evolution
3.2.2. Number of Leaves
3.2.3. Chlorophyll Content
3.2.4. Fresh and Dry Matter
3.2.5. Leaf Nutrient Analysis
3.3. Water Use Efficiency
4. Discussion
4.1. Effects of Salinity on Nutrient Absorption
4.2. Effect of Salinity on Basil’s Yield
4.3. Solution Absorption Rate and Water Use Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Toop, T.A.; Ward, S.; Oldfield, T.; Hull, M.; Kirby, M.E.; Theodorou, M.K. AgroCycle-Developing a circular economy in agriculture. Energy Proc. 2017, 123, 76–80. [Google Scholar] [CrossRef]
- Elvanidi, A.; Reascos, C.M.B.; Gourzoulidou, E.; Kunze, A.; Max, J.F.J.; Katsoulas, N. Implementation of the circular economy concept in greenhouse hydroponics for ultimate use of water and nutrients. Horticulturae 2020, 6, 83. [Google Scholar] [CrossRef]
- Munoz, P.; Paranjpe, A.; Montero, J.I.; Antón, A. Cascade crops: An alternative solution for increasing sustainability of greenhouse tomato crops in Mediterranean zone. Acta Hortic. 2012, 927, 801–805. [Google Scholar] [CrossRef]
- Attia, H.; Ouhibi, C.; Ellili, A.; Msilini, N.; Bouzaïen, G.; Karray, N.; Lachaâl, M. Analysis of salinity effects on basil leaf surface area, photosynthetic activity, and growth. Acta Physiol. Plant. 2011, 33, 823–833. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Klados, E.; Tzortzakis, N. Effects of substrate and salinity in hydroponically grown Cichorium spinosum. J. Soil Sci. Plant Nutr. 2014, 14, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Van Os, E.A.; Blok, C.; Voogt, W.; Waked, L. Water Quality and Salinity Aspects in Hydroponic Cultivation; WUR Glastuinbouw: Wageningen, The Netherlands, 2016. [Google Scholar]
- Menezes, R.V.; Azevedo Neto, A.D.; Gheyi, H.R.; Cova, A.M.W.; Silva, H.H.B. Tolerance of Basil Genotypes to Salinity. J. Agric. Sci. 2017, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, J.F.; Filho, M.A.C.; Cruz, J.L.; Soares, T.M.; Cruz, A.M.L. Growth, water consumption and basil production in the hydroponic system under salinity. Rev. Ceres 2019, 66, 45–53. [Google Scholar] [CrossRef]
- Scagel, C.F.; Lee, J.; Mitchell, J.N. Salinity from NaCl changes the nutrient and polyphenolic composition of basil leaves. Ind. Crops Prod. 2019, 127, 119–128. [Google Scholar] [CrossRef]
- Farsaraei, S.; Moghaddam, M.; Pirbalouti, A.G. Changes in growth and essential oil composition of sweet basil in response of salinity stress and superabsorbents application. Sci. Hortic. 2020, 271, 109465. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Rosellini, I.; Pezzarossa, B. Uptake and partitioning of selenium in basil (Ocimum basilicum L.) plants grown in hydroponics. Sci. Hortic. 2017, 225, 271–276. [Google Scholar] [CrossRef]
- Kjeldahl, J. A New Method for the Determination of Nitrogen in Organic Matter. Z. Anal. Chemie 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- IBM. SPSS Statistics 21 Guide; IBM Corporation: Armonk, NY, USA, 2012. [Google Scholar]
- Attia, H.; Karray, N.; Ellili, A.; Msilini, N.; Lachaâl, M. Sodium transport in basil. Acta Physiol. Plant. 2009, 31, 1045–1051. [Google Scholar] [CrossRef]
- Hajibagheri, M.A.; Harvey, D.M.R.; Flowers, T.J. Quntitative Ion Distribution within Root Cells of Salt-Sensitive and Salt-Tolerant Maize Varieties. New Phytol. 1987, 105, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Katsoulas, N.; Voogt, W. Recent trends in salinity control for soilless growing systems management. Acta Hortic. 2014, 1034, 433–442. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Response of tomatoes (Lycopersicon esculentum) to an unequal distribution of nutrients in the root environment. Plant Soil 1990, 124, 251–256. [Google Scholar] [CrossRef]
- Ahmad, P.; Prasad, M.N.V. Abiotic Stress Responses in Plants: Metabolism, Productivity, and Sustainability; Springer Science Business Media: New York, NY, USA, 2011. [Google Scholar]
- Elhindi, K.M.; Al-Amri, S.M.; Abdel-Salam, E.M.; Al-Suhaibani, N.A. Effectiveness of salicylic acid in mitigating salt-induced adverse effects on different physio-biochemical attributes in sweet basil (Ocimum basilicum L.). J. Plant Nutr. 2017, 40, 908–919. [Google Scholar] [CrossRef]
- Scagel, C.F.; Bryla, D.R.; Lee, J. Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 salinity in ‘Siam Queen’ Basil. HortScience 2017, 52, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Zhou, Z.; Lin, X.; Zhao, F.; Wang, B.; Lin, F.; Ge, Y.; Eissa, M.A. Biochar impacts on NH3-volatilization kinetics and growth of sweet basil (Ocimum basilicum L.) under saline conditions. Ind. Crops Prod. 2020, 157, 112903. [Google Scholar] [CrossRef]
- Maia, S.S.S.; da Silva, R.C.P.; de Oliveira, F.d.A.; da Silva, O.M.d.P.; da Silva, A.C.; Candido, W.d.S. Responses of basil cultivars to irrigation water salinity. Rev. Bras. Eng. Agric. Ambient. 2017, 21, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, S.Q.; Liu, Y.F.; Liu, P.; Lei, G.; He, S.J.; Ma, B.; Zhang, W.-K.; Zhang, J.-S.; Chen, S.-Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J. 2010, 62, 316–329. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Savvas, D.; Lenz, F. Effects of NaCl or nutrient-induced salinity on growth, yield, and composition of eggplants grown in rockwool. Sci. Hortic. 2000, 84, 37–47. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environ. Sci. Pollut. Res. 2017, 24, 12700–12712. [Google Scholar] [CrossRef]
- Savvas, D.; Mantzos, N.; Barouchas, P.E.; Tsirogiannis, I.L.; Olympios, C.; Passam, H.C. Modelling salt accumulation by a bean crop grown in a closed hydroponic system in relation to water uptake. Sci. Hortic. 2007, 111, 311–318. [Google Scholar] [CrossRef]
- Avdouli, D.; Max, J.F.J.; Katsoulas, N.; Levizou, E. Basil as Secondary Crop in Cascade Hydroponics: Exploring Salinity Tolerance Limits in Terms of Growth, Amino Acid Profile, and Nutrient Composition. Horticulturae 2021, 7, 203. [Google Scholar] [CrossRef]
- Heidari, A. Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. African J. Biotechnol. 2012, 11, 379–384. [Google Scholar] [CrossRef]
- Heidari, A.; Bandehagh, A.; Toorchi, M. Effects of NaCl Stress on Chlorophyll Content and Chlorophyll Fluorescence in Sunflower (Helianthus annuus L.) Lines. Yuz. Yıl Univ. Tarım Bilim. Derg. 2014, 24, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Papp, J.C.; Ball, M.C.; Terry, N. A comparative study of the effects of NaCl salinity on respiration, photosynthesis, and leaf extension growth in Beta vulgaris L. (sugar beet). Plant. Cell Environ. 1983, 6, 675–677. [Google Scholar] [CrossRef]
Treatments | NO3− | P | K | Ca | Mg | Na |
---|---|---|---|---|---|---|
G-NS2 a | 28.5 ± 18.9 a 1 | 0.05 ± 0.0 b | 8.7 ± 5.7 c | 6.3 ± 3.0 b | 4.3 ± 1.8 a | 10.0 ± 7.1 a |
G-NS4 | 29.2 ± 14.3 a * | 0.06 ± 0.0 b | 9.6 ± 4.3 bc | 5.9 ± 2.2 bc | 3.3 ± 0.9 a | 10.8 ± 11.1 a |
G-NS6 | 39.5 ± 15.9 a * | 0.16 ± 0.1 a * | 14.5 ± 5.8 ab * | 7.8 ± 2.6 ab * | 3.9 ± 1.0 a * | 13.0 ± 12.5 a |
G-NS8 | 43.5 ± 23.9 a * | 0.25 ± 0.2 a * | 16.0 ± 9.0 a * | 9.2 ± 4.4 a * | 4.2 ± 1.5 a * | 8.3 ± 4.6 a |
G-SS2 b | 23.5 ± 18.5 a | 0.03 ± 0.0 a | 7.3 ± 5.8 a | 5.6 ± 2.9 a | 3.8 ± 1.6 a | 9.8 ± 6.1 c |
G-SS4 | 12.5 ± 7.5 a | 0.04 ± 0.0 a | 4.0 ± 2.2 a | 3.7 ± 1.2 a | 2.7 ± 0.7 ab | 21.5 ± 10.5 b * |
G-SS6 | 16.4 ± 8.4 a | 0.04 ± 0.0 a | 5.5 ± 2.8 a | 3.7 ± 1.1 a | 2.7 ± 0.7 ab | 34.1 ± 15.0 a * |
G-SS8 | 15.7 ± 11.2 a | 0.04 ± 0.0 a | 5.3 ± 3.8 a | 3.7 ± 1.3 a | 2.5 ± 0.6 b | 36.2 ± 18.1 a * |
DAT | Treatments | Fresh Matter (g m−2) | Dry Matter (g m−2) | ||
---|---|---|---|---|---|
Leaves | Stems | Leaves | Stems | ||
13 | G-NS2 a | 12.0 ± 1.25 a 1 | 5.70 ± 1.55 a | 1.57 ± 0.43 a | 0.53 ± 0.17 a |
G-NS4 | 9.79 ± 5.14 a | 4.01 ± 2.36 c | 1.15 ± 0.59 a | 0.41 ± 0.26 a | |
G-NS6 | 7.81 ± 4.07 a | 3.32 ± 2.53 d | 0.96 ± 0.54 a | 0.42 ± 0.34 a | |
G-NS8 | 9.62 ± 3.15 a | 4.29 ± 2.00 b | 1.19 ± 0.41 a | 0.54 ± 0.26 a | |
27 | G-NS2 | 71.0 ± 17.2 a | 42.2 ± 7.53 a | 10.1 ± 2.07 a | 5.79 ± 1.93 a |
G-NS4 | 52.5 ± 13.0 a | 27.0 ± 7.97 ab | 6.96 ± 1.61 a | 4.50 ± 1.32 a | |
G-NS6 | 27.4 ± 12.3 b | 14.0 ± 4.05 b | 5.65 ± 1.98 b | 3.89 ± 1.06 a | |
G-NS8 | 27.0 ± 15.7 b | 16.0 ± 11.3 b | 5.21 ± 1.86 b | 3.40 ± 1.72 a | |
41 | G-NS2 | 190.8 ± 21.9 a | 125.8 ± 13.2 a | 25.7 ± 3.28 a | 21.8 ± 3.02 a |
G-NS4 | 129.1 ± 25.1 b | 68.3 ± 15.6 b | 16.5 ± 3.34 b | 13.2 ± 3.74 b | |
G-NS6 | 89.0 ± 49.6 bc | 36.9 ± 17.6 c | 11.1 ± 5.32 c | 7.1 ± 2.35 c | |
G-NS8 | 77.1 ± 28.9 c | 34.0 ± 9.20 c | 11.1 ± 3.71c | 7.1 ± 2.25 c |
DAT | Treatments | Fresh Matter (g m−2) | Dry Matter (g m−2) | ||
---|---|---|---|---|---|
Leaves | Stems | Leaves | Stems | ||
13 | G-SS2 a | 9.96 ± 2.93 a 1 | 4.67 ± 1.19 b | 1.29 ± 0.16 a | 0.42 ± 0.10 a |
G-SS4 | 5.85 ± 2.45 a | 2.43 ± 1.26 c | 0.67 ± 0.24 a | 0.22 ± 0.10 a | |
G-SS6 | 4.93 ± 1.39 a | 2.08 ± 0.54 c | 0.58 ± 0.16 a | 0.22 ± 0.05 a | |
G-SS8 | 10.19 ± 5.96 a | 5.26 ± 3.62 a | 1.22 ± 0.70 a | 0.53 ± 0.41 a | |
27 | G-SS2 | 55.2 ± 15.1 a | 34.6 ± 7.83 a | 7.47 ± 0.83 a | 4.59 ± 0.96 a |
G-SS4 | 44.2 ± 15.3 ab | 26.6 ± 10.3 ab | 5.76 ± 1.86 ab | 4.06 ± 1.79 a | |
G-SS6 | 22.2 ± 10.0 b | 12.2 ± 5.48 b | 2.59 ± 1.57 b | 1.74 ± 1.13 a | |
G-SS8 | 22.8 ± 9.94 b | 13.6 ± 7.44 b | 3.11 ± 1.23 b | 2.12 ± 1.36 a | |
41 | G-SS2 | 170.5 ± 27.8 a | 127.0 ± 18.1 a | 25.3 ± 4.34 a | 22.4 ± 4.53 a |
G-SS4 | 80.1 ± 15.6 b | 48.0 ± 10.9 b | 10.9 ± 2.43 b | 9.2 ± 3.52 b | |
G-SS6 | 44.8 ± 22.1 bc | 23.9 ± 12.5 c | 5.64 ± 2.84 c | 4.4 ± 2.35 b | |
G-SS8 | 37.4 ± 10.6 c | 19.3 ± 6.82 c | 5.10 ± 1.59 c | 3.9 ± 1.59 b |
DAT | Treatments | Fresh Matter (g m−2) | Dry Matter (g m−2) | ||
---|---|---|---|---|---|
Leaves | Stems | Leaves | Stems | ||
25 | NFT-SS2 a | 287.2 ± 54.7 1 | 208.2 ± 57.3 | 24.5 ± 8.7 | 20.7 ± 5.5 |
NFT-SS4 | 275.0 ± 95.0 | 179.5 ± 56.6 | 25.3 ± 5.7 | 20.3 ± 7.8 | |
NFT-SS6 | 294.3 ± 59.6 | 169.8 ± 19.4 | 27.2 ± 3.2 | 20.8 ± 2.0 | |
NFT-SS8 | 310.3 ± 15.9 | 173.2 ± 20.3 | 29.8 ± 1.5 | 23.3 ± 4.0 | |
35 | NFT-SS2 | 406.8 ± 13.4 | 322.3 ± 23.5 | 35.3 ± 12.5 | 37.8 ± 10.4 |
NFT-SS4 | 420.3 ± 44.5 | 290.8 ± 64.7 | 34.6 ± 5.3 | 40.3 ± 5.6 | |
NFT-SS6 | 463.6 ± 60.1 | 281.3 ± 56.5 | 35.9 ± 2.7 | 42.9 ± 3.6 | |
NFT-SS8 | 454.2 ± 59.4 | 283.3 ± 60.8 | 38.1 ± 3.9 | 47.9 ± 3.9 |
Period | Treatments | N | P | K | Ca | Mg |
---|---|---|---|---|---|---|
First period | G-NS2 a | 36.3 ± 2.9 b 1 | 4.9 ± 1.2 b | 42.9 ± 6.4 b | 21.6 ± 4.0 a | 7.6 ± 1.0 a |
G-NS4 | 43.0 ± 4.7 a * | 11.9 ± 1.9 a * | 60.8 ± 9.4 b | 21.3 ± 3.5 a | 6.4 ± 0.9 ab | |
G-NS6 | 40.8 ± 3.9 ab | 6.3 ± 1.3 b | 86.9 ± 15.8 a * | 25.0 ± 2.8 a * | 5.9 ± 0.7 b | |
G-NS8 | 41.6 ± 12.5 ab | 6.9 ± 1.9 b | 86.2 ± 15.8 a * | 23.7 ± 3.1 a * | 5.7 ± 0.9 b | |
G-SS2 b | 38.0 ± 2.9 b | 5.4 ± 0.8 b | 40.6 ± 4.6 b | 20.7 ± 3.5 a | 7.3 ± 0.8 b | |
G-SS4 | 35.6 ± 4.7 b | 7.1 ± 2.0 a | 48.3 ± 6.9 b | 17.5 ± 3.6 bc | 9.9 ± 1.2 a * | |
G-SS6 | 37.3 ± 3.0 b | 6.5 ± 1.3 ab | 45.0 ± 4.0 b | 19.4 ± 2.4 ab | 8.7 ± 0.9 ab * | |
G-SS8 | 48.9 ± 12.5 a | 6.4 ± 1.1 ab | 56.0 ± 8.4 a | 16.1 ± 2.2 c | 10.4 ± 1.1 a * | |
Second period | NFT-SS2 c | 37.5 ± 2.7 a | 9.8 ± 1.9 a | 45.1 ± 4.7 b | 30.1 ± 1.9 a | 7.7 ± 0.7 a |
NFT-SS4 | 36.1 ± 2.7 a | 7.3 ± 1.1 b | 45.8 ± 9.7 b | 26.3 ± 3.4 ab | 7.0 ± 1.2 a | |
NFT-SS6 | 38.1 ± 2.9 a | 7.4 ± 1.6 b | 52.6 ± 3.6 a | 24.1 ± 3.7 b | 6.7 ± 0.8 a | |
NFT-SS8 | 35.9 ± 3.6 a | 6.5 ± 1.3 b | 52.9 ± 8.8 a | 24.3 ± 3.4 ab | 7.0 ± 0.5 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faliagka, S.; Elvanidi, A.; Spanoudaki, S.; Kunze, A.; Max, J.F.J.; Katsoulas, N. Effect of NaCl or Macronutrient-Imposed Salinity on Basil Crop Yield and Water Use Efficiency. Horticulturae 2021, 7, 296. https://doi.org/10.3390/horticulturae7090296
Faliagka S, Elvanidi A, Spanoudaki S, Kunze A, Max JFJ, Katsoulas N. Effect of NaCl or Macronutrient-Imposed Salinity on Basil Crop Yield and Water Use Efficiency. Horticulturae. 2021; 7(9):296. https://doi.org/10.3390/horticulturae7090296
Chicago/Turabian StyleFaliagka, Sofia, Angeliki Elvanidi, Stella Spanoudaki, Alexander Kunze, Johannes F.J. Max, and Nikolaos Katsoulas. 2021. "Effect of NaCl or Macronutrient-Imposed Salinity on Basil Crop Yield and Water Use Efficiency" Horticulturae 7, no. 9: 296. https://doi.org/10.3390/horticulturae7090296
APA StyleFaliagka, S., Elvanidi, A., Spanoudaki, S., Kunze, A., Max, J. F. J., & Katsoulas, N. (2021). Effect of NaCl or Macronutrient-Imposed Salinity on Basil Crop Yield and Water Use Efficiency. Horticulturae, 7(9), 296. https://doi.org/10.3390/horticulturae7090296