De Novo Shoot Development of Tropical Plants: New Insights for Syngonium podophyllum Schott.
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Principles for Starting In Vitro Micropropagation of Syngonium podophyllum Schott. Cv. ‘White Butterfly’
3.2. Micropropagation Protocol Review
3.2.1. In Vitro Culture Initiation
3.2.2. Micropropagation and Culture Media Testing
3.3. Callus Induction and Development
3.3.1. Wound Stress and Callus Initiation
3.3.2. Experimental Design
3.3.3. Total Peroxidase Activity
- Effects of 2,4-D:
- Effects of salicylic acid:
- Effects of 2,4-D and salicylic acid:
3.3.4. Callus Initiation from Fragmented Petioles and Leaves
3.4. Review of Histological Studies on Syngonium Calli Obtained with Different Media Compositions
3.4.1. Experimental Design and Histological Method
3.4.2. Histological Analysis of Callus: Xylematic Elements and Protocorms
3.4.3. Histological Analysis of Callus: Parenchymatic Cells Full of Starch Inclusions
3.4.4. Biochemical Analysis
3.5. Effects of the Vitamins MS62 and N69 on the De Novo Proliferation of Shoots
3.6. Effects of Cysteine on Callus Formation in N69 Medium
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duclercq, J.; Sangwan-Norreel, B.; Catterou, M.; Sangwan, R.S. De novo shoot organogenesis: From art to science. Trends Plant Sci. 2011, 16, 597–606. [Google Scholar] [CrossRef]
- Haberlandt, G. Uber die Statolithefunktion der Starkekoner. Ber. Dtsch. Bot. Ges. 1902, 20, 189–195. [Google Scholar]
- Avery, G.S. Differential distribution of a phytohormone in the developing leaf of Nicotiana, and its relation to polarized growth. Bull. Torrey Bot. Club 1935, 62, 313–330. [Google Scholar] [CrossRef]
- Koepfli, J.B.; Thimann, K.V.; Went, F.W. Phytohormones: Structure and physiological activity. I. J. Biol. Chem. 1938, 122, 763–780. [Google Scholar] [CrossRef]
- Skoog, F. Plant Growth Substances; Skoog, F., Ed.; University of Wisconsin: Madison, WI, USA; William Byrd Press, Inc.: Richmond, VA, USA, 1951; pp. 123–140. [Google Scholar]
- White, P.R. Cultivation of excised roots of dicotyledonous plants. Am. J. Bot. 1938, 25, 348–356. [Google Scholar] [CrossRef]
- White, P.R. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 1934, 9, 585–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussey, G. Totipotency in tissue explants and callus of some members of the Liliaceae, Iridaceae, and Amaryllidaceae. J. Exp. Bot. 1975, 26, 253–262. [Google Scholar] [CrossRef]
- Krakowsky, M.D.; Lee, M.; Garay, L.; Woodman-Clikeman, W.; Long, M.J.; Sharopova, N.; Frame, B.; Wang, K. Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theor. Appl. Genet. 2006, 113, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Vasil, I.K.; Vasil, V. Totipotency and embryogenesis in plant cell and tissue cultures. Vitr. 1972, 8, 117–125. [Google Scholar] [CrossRef]
- Steward, F.C.; Ammirato, P.V.; Mapes, M.O. Growth and development of totipotent cells: Some problems, procedures, and perspectives. Ann. Bot. 1970, 34, 761–787. [Google Scholar] [CrossRef]
- Fehér, A. Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology? Front. Plant Sci. 2019, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Skoog, F.; Miller, C.O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 1957, 11, 118–130. [Google Scholar] [PubMed]
- Sugimoto, K.; Gordon, S.P.; Meyerowitz, E.M. Regeneration in plants and animals: Dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol. 2011, 21, 212–218. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, C.; Xu, J. Control of cell fate reprogramming towards de novo shoot organogenesis. Plant Cell Physiol. 2018, 59, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Rosspopoff, O.; Chelysheva, L.; Saffar, J.; Lecorgne, L.; Gey, D.; Caillieux, E.; Colot, V.; Roudier, F.; Hilson, P.; Berthomé, R.; et al. Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development. Development 2017, 144, 1187–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang, Y.L.; Cheng, Z.J.; Zhang, X.S. Plant stem cells and de novo organogenesis. New Phytol. 2018, 218, 1334–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheres, B.; Heidstra, R.; Pijnenburg, M.C.C.; De Both, M.T.J. U.S. Genes for Hormone-Free Plant. Regeneration. Patent Application No. 17/081,832, 2021. [Google Scholar]
- Deng, J.; Sun, W.; Zhang, B.; Sun, S.; Xia, L.; Miao, Y.; He, L.; Lindsey, K.; Yang, X.; Zhang, X. GhTCE1-GhTCEE1 dimers regulate transcriptional reprogramming during wound-induced callus formation in cotton. Plant Cell 2022, 34, koac252. [Google Scholar] [CrossRef]
- Beals, C.M. An histological study of regenerative phenomena in plants. Ann. Mo. Bot. Gard. 1923, 10, 369–384. [Google Scholar] [CrossRef]
- Sachs, T. The control of the patterned differentiation of vascular tissues. In Advances in Botanical Research; Woolhouse, H.W., Ed.; Academic Press: London, UK; John Innes Institute: Norwich, UK, 1981; Volume 9, pp. 151–262. [Google Scholar] [CrossRef]
- Miller, L.R.; Murashige, T. Tissue culture propagation of tropical foliage plants. Vitr. -Plant 1976, 12, 797–813. [Google Scholar] [CrossRef]
- Croat, T.B. A revision of Syngonium (Araceae). Ann. Mo. Bot. Gard. 1981, 68, 565–651. [Google Scholar] [CrossRef]
- GBIF Secretariat. Syngonium podophyllum Schott GBIF Backbone Taxonomy. In Checklist Dataset; GBIF Secretariat: Copenhagen, Denmark, 2021; Available online: https://doi.org/10.15468/39omeiaccessedviaGBIF.org (accessed on 6 October 2022).
- Chen, J.; McConnell, D.B.; Henny, R.J. The world foliage plant industry. Chron. Hortic. 2005, 45, 9–15. [Google Scholar]
- Bhatt, D. Commercial Micropropagation of Some Economically Important Crops. In Agricultural Biotechnology: Latest Research and Trends; Kumar Srivastava, D., Kumar Thakur, A., Kumar, P., Eds.; Springer: Singapore, 2021; pp. 1–36. [Google Scholar] [CrossRef]
- Kumar, S.; Dwivedi, A.; Kumar, R.; Pandey, A.K. Preliminary evaluation of biological activities and phytochemical analysis of Syngonium podophyllum leaf. Natl. Acad. Sci. Lett. 2015, 38, 143–146. [Google Scholar] [CrossRef]
- Hossain, M.S.; Uddin, M.S.; Kabir, M.T.; Begum, M.M.; Koushal, P.; Herrera-Calderon, O. In vitro screening for phytochemicals and antioxidant activities of Syngonium podophyllum l.: An incredible therapeutic plant. Biomed. Pharmacol. J. 2017, 10, 1267–1277. [Google Scholar] [CrossRef]
- Uddin, M.S.; Hossain, M.S.; Kabir, M.T.; Rahman, I.; Tewari, D.; Jamiruddin, M.R.; Al Mamun, A. Phytochemical screening and antioxidant profile of Syngonium podophyllum schott stems: A fecund phytopharmakon. J. Pharm. Nutr. Sci. 2018, 8, 120–128. [Google Scholar] [CrossRef]
- Brunel, S. Pathway analysis: Aquatic plants imported in 10 EPPO countries. EPPO Bull. 2009, 39, 201–213. [Google Scholar] [CrossRef]
- Antofie, M.M.; Brezeanu, A.; Maximilian, C.; Angheluta, R. Histological and biochemical analysis of morphogenetic callus from Syngonium podophyllum Schott. Acta Horti Bot. Bucur. 1998, 27, 123–130. [Google Scholar]
- Antofie, M.M.; Carasan, M.E.; Brezeanu, A. Total cellulare peroxidase activity associated with wounding stress on Syngonium podophyllum (SCHOTT) in vitro tissue culture. Proc. Inst. Biol. Suppl. Rev. Roum. Biol. 1999, II, 339–348. [Google Scholar]
- Antofie, M.M.; Brezeanu, A. In vitro developmental peculiarities of Syngonium. Aroideana 2004, 27, 174–181. [Google Scholar]
- Antofie, M.M. Study of Factors Involved in Morphogenetic Potential Expression of Some In Vitro Cultured Ornamental Plant Species. Ph.D. Thesis, Bucharest University, Bucharest, Romania, 2002; p. 239. [Google Scholar]
- Google Scholar. Advanced Scholar Search Tips. 2022. Available online: http://scholar.google.com/scholar/refinesearch.html (accessed on 8 October 2022).
- The International Plant Names Index. 2016. Available online: http://www.ipni.org (accessed on 23 August 2022).
- Kew, Royal Botanic Gardens. Medicinal Plant Names Services. 2022. Available online: http://mpns.kew.org/mpns-portal/ (accessed on 30 October 2022).
- The Plant List, 2013, Version 1.1. Available online: http://www.theplantlist.org/ (accessed on 10 November 2022).
- Şandru, D. Criza din 1929–1933 şi criza actuală. Sfera Politicii 2009, 133, 53–60. [Google Scholar]
- Sava, C.S.; Antofie, M.M. The first clustering centre on plant biotechnology in Romania. Studia Univ. Babes-Bolyai Biol. 2016, 61, 125–131. [Google Scholar]
- De Fossard, R.A. Principles of plant tissue culture. In Tissue Culture as A Plant Production System for Horticultural Crops; Zimmerman, R.H., Griesbach, R.J., Hammerschlag, F.A., Lawson, R.H., Eds.; Springer: Dordrecht, The Netherlands, 1986; pp. 1–13. [Google Scholar]
- Kozai, T.; Smith, M.A.L. Environmental control in plant tissue culture—General introduction and overview. In Automation and Environmental Control in Plant Tissue Culture; Aitken-Christie, J., Kozai, T., Smith, M.A.L., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 301–318. [Google Scholar]
- Murashige, T.; Skoog, F.A. Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Pop, I.V.; Sandu, C.; Constantinovici, D. Results regarding the development and experimentation of a system for production of virus-free propagating material in carnation. Acta Hortic. 1994, 377, 335–340. [Google Scholar] [CrossRef]
- Levin, R.; Stav, R.; Alper, Y.; Watad, A.A. In vitro multiplication in liquid culture of Syngonium contaminated with Bacillus spp. and Rathayibacter tritici. Plant Cell Tissue Organ Cult. 1996, 45, 277–280. [Google Scholar] [CrossRef]
- Scaramuzzi, F.; Apollonio, G.; Giodice, L.; D’Emerico, S. Propagation in vitro de deux especes de la famille des Araceae, Syngonium podophyllum Schott et Scindapsus aureus Engl., par culture et repiquages repetes de divers explants vegetatifs. Comptes Rendus Séances Soc. Biol. Ses Fil. 1992, 186, 125–138. [Google Scholar]
- Salame, N.; Zieslin, N. Peroxidase activity in leaves of Syngonium podophyllum following transition from in vitro to ex vitro conditions. Biol. Plant 1994, 36, 619–622. [Google Scholar] [CrossRef]
- Watad, A.A.; Raghothama, K.G.; Kochba, M.; Nissim, A.; Gaba, V. Micropropagation of Spathiphyllum and Syngonium is facilitated by use of interfacial membrane rafts. HortScience 1997, 1, 307–308. [Google Scholar] [CrossRef]
- Rajeevan, P.K.; Sheeja, K.; Rangan, V.V.; Murali, T.P. Direct organogenesis in Syngonium podophyllum. Floriculture research trend in India. In Proceedings of the National Symposium on Indian Floriculture in the New Millennium, Indian Society of Ornamental Horticulture, Lal-Bagh, Bangalore, India, 25–27 February 2002; pp. 353–354. [Google Scholar]
- Chan, L.K.; Tan, C.M.; Chew, G.S. Micropropagation of the Araceae ornamental plants. Acta Hortic. 2003, 616, 383–390. [Google Scholar] [CrossRef]
- Schwertner, A.B.S.; Zaffari, G.R. Micropropagação de singônio. Rev. Bras. Hortic. Ornam. 2003, 9, 135–142. [Google Scholar]
- Hassanein, A.M. A study on factors affecting propagation of shade plant-Syngonium podophyllum. J. Appl. Hortic. 2004, 6, 30–34. [Google Scholar] [CrossRef]
- Chen, J.; Henny, R.J. Somaclonal variation: An important source for cultivar development of floriculture crops. Floric. Ornam. Plant Biotech 2006, 2, 244–253. [Google Scholar]
- Zhang, Q.; Chen, J.; Henny, R.J. Regeneration of Syngonium podophyllum ‘Variegatum’through direct somatic embryogenesis. Plant Cell Tissue Organ Cult. 2006, 84, 181–188. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Nie, Q.; Li, J.; Chen, J.; Henny, R.J. In vitro culture of Epipremnum aureum, Syngonium podophyllum, and Lonicera macranthodes, three important medicinal plants. Acta Hortic. 2007, 756, 155–162. [Google Scholar] [CrossRef]
- Cui, J.; Liu, J.; Deng, M.; Chen, J.; Henny, R.J. Plant regeneration through protocorm-like bodies induced from nodal explants of Syngonium podophyllum ‘White Butterfly’. HortScience 2008, 43, 2129–2133. [Google Scholar] [CrossRef] [Green Version]
- Rajesh, A.M.; Yathindra, H.A.; Reddy, P.V.; Sathyanarayana, B.N.; Harshavardhan, M.; Kantharaj, Y. In vitro regeneration and ex vitro studies in syngonium (Syngonium podophyllum). J. Ecobiol. 2011, 20, 103–106. [Google Scholar]
- Teixeira Da Silva, J.A.; Giang, D.T.; Dobránszki, J.; Zeng, S.; Tanaka, M. Ploidy analysis of Cymbidium, Phalaenopsis, Dendrobium and Paphiopedillum (Orchidaceae), and Spathiphyllum and Syngonium (Araceae). Biologia 2014, 69, 750–755. [Google Scholar] [CrossRef]
- Kalimuthu, K.; Prabakaran, R. In vitro Micropropagation of Syngonium podophyllum. Int. J. Pure App. Biosci. 2014, 2, 88–92. [Google Scholar]
- Da Silva, J.A.T. Response of Syngonium podophyllum L. “White Butterfly” shoot cultures to alternative media additives and gelling agents, and flow cytometric analysis of regenerants. Nusant. Biosci. 2015, 7, 26–32. [Google Scholar] [CrossRef]
- Moumita, M.; Pinaki, A.; Sukanta, B. Micropropagation of commercially feasible foliage ornamental plants. Indian Agric. 2016, 60, 39–44. [Google Scholar]
- Kane, M.E. Micropropagation of Syngonium by shoot culture. In Plant Tissue Culture Concepts and Laboratory Exercises, 2nd ed.; Trigiano, R.N., Gray, D.J., Eds.; Routledge: Boca Raton, FL, USA, 2018; pp. 87–95. [Google Scholar] [CrossRef]
- Sharifi, A.; Moradiyan, M.; Khadem, A.; Kharrazi, M. Optimization Plant Growth Regulation Type and Culture Medium Salts in the Micropropagation of Syngonium (Syngonium podophyllum L.). J. Hortic. Sci. 2022, 35, 647–660. [Google Scholar]
- Cline, M.G. Apical dominance. Bot. Rev. 1991, 57, 318–358. [Google Scholar] [CrossRef]
- Pena-Cortés, H.; Albrecht, T.; Prat, S.; Weiler, E.W.; Willmitzer, L. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 1993, 191, 123–128. [Google Scholar] [CrossRef]
- Klessig, D.F.; Malamy, J. The salicylic acid signal in plants. Plant Mol. Biol. 1994, 26, 1439–1458. [Google Scholar] [CrossRef] [PubMed]
- Torrey, J.G.; Thimann, K.V. Application of herbicides to cut stumps of a woody tropical weed. Bot. Gaz. 1949, 111, 184–192. [Google Scholar] [CrossRef]
- Hildebrandt, A.C.; Riker, A.J.; Duggar, B.M. Growth in vitro of excised tobacco and sunflower tissue with different temperatures, hydrogen-ion concentrations and amounts of sugar. Am. J. Bot. 1945, 32, 357–361. [Google Scholar] [CrossRef]
- Stewart, W.S.; Ebeling, W. Preliminary Results with the use of 2, 4-Dichlorophenoxy-Acetic Acid as a Spray-Oil Amendment. Bot. Gaz. 1946, 108, 286–294. [Google Scholar] [CrossRef]
- Livingston, G.A. In vitro tests of abscission agents. Plant Physiol. 1950, 25, 711–721. [Google Scholar] [CrossRef] [Green Version]
- Iordăchescu, D.; Dumitru, I.F. Edit. Univ. Bucureşti București Rom. 1988, 106–107, 133–137. [Google Scholar]
- Kevers, C.; Coumans, M.; Coumans-Gillès, M.F.; Caspar, T.H. Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiol. Plant 1984, 61, 69–74. [Google Scholar] [CrossRef]
- Gaspar, T.; Franck, T.; Bisbis, B.; Kevers, C.; Jouve, L.; Hausman, J.F.; Dommes, J. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul. 2002, 37, 263–285. [Google Scholar] [CrossRef]
- Anike, F.N.; Konan, K.; Olivier, K.; Dodo, H. Efficient shoot organogenesis in petioles of yam (Dioscorea spp.). Plant Cell Tissue Organ Cult. 2012, 111, 303–313. [Google Scholar] [CrossRef]
- Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Tran Thanh Van, K.M. Control of morphogenesis in in vitro cultures. Annu. Rev. Plant Physiol. 1981, 32, 291–311. [Google Scholar] [CrossRef]
- Pieron, S.; Boxus, P.; Dekegel, D. Histological study of nodule morphogenesis from Cichorium intybus L. leaves cultivated in vitro. Vitr. Cell Dev. Biol.-Plant 1998, 34, 87–93. [Google Scholar] [CrossRef]
- Sujatha, M.; Mukta, N. Morphogenesis and plant regeneration from tissue cultures of Jatropha curcas. Plant Cell Tissue Organ Cult. 1996, 44, 135–141. [Google Scholar] [CrossRef]
- Nitsch, J.P.; Nitsch, C. Haploid plants from pollen grains. Science 1969, 163, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedin, L.O.; Brookshire, E.J.; Menge, D.N.; Barron, A.R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 613–635. [Google Scholar] [CrossRef] [Green Version]
- Darlington, C.D.; La Cour, L.F. The Handling of Chromosomes, 3rd ed.; George Allen & Unwin Ltd.: London, UK, 1960; p. 141. [Google Scholar]
- Johansen, D.A. Plant Microtechnique; McGraw-Hill Book Company, Inc.: London, UK, 1940; 530p. [Google Scholar]
- Baima, S.; Nobili, F.; Sessa, G.; Lucchetti, S.; Ruberti, I.; Morelli, G. The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 1995, 121, 4171–4182. [Google Scholar] [CrossRef] [PubMed]
- Harvey-Gibson, R.J.; Horsman, E. XIX.—Contributions towards a Knowledge of the Anatomy of the Lower Dicotyledons. II. The Anatomy of the Stem of the Berberidaceæ. Earth Environ. Sci. Trans. R. Soc. Edinb. 1920, 52, 501–515. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, J.; Ckurshumova, W.; Berleth, T. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol. 2003, 131, 1327–1339. [Google Scholar] [CrossRef] [Green Version]
- Klee, H.J.; Horsch, R.B.; Hinchee, M.A.; Hein, M.B.; Hoffmann, N.L. The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev. 1987, 1, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Berleth, T.; Mattsson, J.; Hardtke, C.S. Vascular continuity and auxin signals. Trends Plant Sci. 2000, 5, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Zhai, N.; Xu, L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat. Plants 2021, 7, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, R.S.; Harada, H. Chemical regulation of callus growth, organogenesis, plant regeneration, and somatic embryogenesis in Antirrhinum majus tissue and cell cultures. J. Exp. Bot. 1975, 26, 868–881. [Google Scholar] [CrossRef]
- Al-Mayahi, A.M.W. Effect of calcium and boron on growth and development of callus and shoot regeneration of date palm ‘Barhee’. Can J. Plant Sci. 2019, 100, 357–364. [Google Scholar] [CrossRef]
- Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Day, S.; Aasim, M. Role of boron in growth and development of plant: Deficiency and toxicity perspective. In Plant Micronutrients; Aftab, T., Hakeem, K.R., Eds.; Springer: New York, NY, USA, 2020; pp. 435–453. [Google Scholar] [CrossRef]
- Lewis, D.H. Boron, lignification and the origin of vascular plants—A unified hypothesis. New Phytol. 1980, 84, 209–229. [Google Scholar] [CrossRef]
- Lovatt, C.J. Evolution of xylem resulted in a requirement for boron in the apical meristems of vascular plants. New Phytol. 1985, 99, 509–522. [Google Scholar] [CrossRef]
- Miguel, J.F. Influence of High Concentrations of Copper Sulfate on In vitro Adventitious Organogenesis of Cucumis sativus L. bioRxiv 2021, 1–13. [Google Scholar] [CrossRef]
- Garcia, R.; Pacheco, G.; Falcao, E.; Borges, G.; Mansur, E. Influence of type of explant, plant growth regulators, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa L. (Passifloraceae). Plant Cell Tissue Organ Cult. 2011, 106, 47–54. [Google Scholar] [CrossRef]
- Webb, K.J. Growth and Morphogenesis of Tissue Cultures of Pinus contorta and Picea sitchensis. Doctoral Thesis, University of Leicester, Leicester, UK, 1978. [Google Scholar]
- Simola, L.K. Structure of cell organelles and cell wall in tissue cultures of trees. In Cell and Tissue Culture in Forestry. Forestry Sciences; Bonga, J.M., Durzan, D.J., Eds.; Springer: Dordrecht, The Netherlands, 1987; Volume 24–26, pp. 389–418. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, S.; Zhou, H.; Yuan, Z.; Zhou, T.; Zhang, Y.; Xiang, S.; Yang, F.; Shen, X.; Zhang, D. Transcriptome sequencing analysis of sorghum callus with various regeneration capacities. Planta 2021, 254, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bon, M.C.; Gendraud, M.; Franclet, A. Roles of phenolic compounds on micropropagation of juvenile and mature clones of Sequoiadendron giganteum: Influence of activated charcoal. Sci. Hortic. 1988, 34, 283–291. [Google Scholar] [CrossRef]
- Ruffoni, B.; Massabò, F.; Costantino, C.; Arena, V.; Damiano, C. Micropropagation of Acacia “mimosa”. Acta Hortic. 1992, 300, 95–102. [Google Scholar] [CrossRef]
- Johansson, L. Effects of activated charcoal in anther cultures. Physiol. Plant 1983, 59, 397–403. [Google Scholar] [CrossRef]
- Zaid, A. In vitro browning of tissues and media with special emphasis to date palm cultures—A review. Symposium on In vitro Problems Related to Mass Propagation of Horticultural Plants. Acta Hortic. 1987, 212, 561–566. [Google Scholar] [CrossRef]
- Lorenzo, J.C.; de los Angeles Blanco, M.; Peláez, O.; González, A.; Cid, M.; Iglesias, A.; González, B.; Escalona, M.; Espinosa, P.; Borroto, C. Sugarcane micropropagation and phenolic excretion. Plant Cell Tissue Organ Cult. 2001, 65, 1–8. [Google Scholar] [CrossRef]
- Alzubi, H.; Yepes, L.M.; Fuchs, M. Enhanced micropropagation and establishment of grapevine rootstock genotypes. Int. J. Plant Dev. Biol. 2012, 6, 9–14. [Google Scholar]
- Sonibare, M.A.; Adeniran, A.A. Comparative micromorphological study of wild and micropropagated Dioscorea bulbifera Linn. Asian Pac. J. Trop. Biomed. 2014, 4, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Arce, J.P.; Medina, M.C. Micropropagation of Prosopis Species (Mesquites). In High-Tech and Micropropagation V. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 39, pp. 367–380. [Google Scholar] [CrossRef]
- Allavena, A.; Rossetti, L. Micropropagation of bean (Phaseolus vulgaris L.); effect of genetic, epigenetic and environmental factors. Sci. Hortic. 1986, 30, 37–46. [Google Scholar] [CrossRef]
- Lewandowski, I. Micropropagation of Miscanthus× giganteus. In High-Tech and Micropropagation V. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 39, pp. 239–255. [Google Scholar] [CrossRef]
- Hajihashemi, S.; Jahantigh, O. Nitric Oxide Effect on Growth, Physiological and Biochemical Processes, Flowering, and Postharvest Performance of Narcissus tazzeta. J. Plant Growth Regul. 2022, 1–16. [Google Scholar] [CrossRef]
- Serk, H.; Gorzsás, A.; Tuominen, H.; Pesquet, E. Cooperative lignification of xylem tracheary elements. Plant Signal. Behav. 2015, 10, e1003753. [Google Scholar] [CrossRef] [PubMed]
- Hajihashemi, S.; Noedoost, F.; Geuns, J.M.; Djalovic, I.; Siddique, K.H. Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Front. Plant Sci. 2018, 9, 1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, L.W. Physical factors, hormones, and differentiation. In Vascular Differentiation and Plant Growth Regulators; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1988; pp. 89–105. [Google Scholar] [CrossRef]
- Lovisolo, C.; Schubert, A. Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J. Exp. Bot. 1998, 49, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Ben-Nissan, G.; Lee, J.Y.; Borohov, A.; Weiss, D. GIP, a Petunia hybrida GA-induced cysteine-rich protein: A possible role in shoot elongation and transition to flowering. Plant J. 2004, 37, 229–238. [Google Scholar] [CrossRef]
- Wigoda, N.; Ben-Nissan, G.; Granot, D.; Schwartz, A.; Weiss, D. The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Plant J. 2006, 48, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Hirase, K.; Molin, W.T. Effect of inhibitors of pyridoxal-5′-phosphate-dependent enzymes on cysteine synthase in Echinochloa crus-galli L. Pestic. Biochem. Phys. 2001, 70, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Speiser, A.; Haberland, S.; Watanabe, M.; Wirtz, M.; Dietz, K.J.; Saito, K.; Hell, R. The significance of cysteine synthesis for acclimation to high light conditions. Front. Plant Sci. 2015, 5, 776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, N.; Malagoli, M.; Wirtz, M.; Hell, R. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biol. 2016, 16, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Molina, A.; Kleine, T.; Schneider, K.; Mühlhaus, T.; Lehmann, M.; Leister, D. Translational components contribute to acclimation responses to high light, heat, and cold in Arabidopsis. iScience 2020, 23, 101331. [Google Scholar] [CrossRef] [PubMed]
References | Plant Growth Regulators for Initiation (mg/L) | Plant Growth Regulators for Multiplication (mg/L) | Observations |
---|---|---|---|
Miller and Murashige 1976 [22] | 3 mg/L IAA + 2 mg/L 2iP | 2 mg/L IAA + 30 mg/L 2iP | No callus described; solidified and liquid culture media; complete technology described |
Scaramuzzi et al., 1992 [46] | 1 mg/L IAA + 5 mg/L Kin | 1 mg/L IAA + 5 mg/L BAP | Callus formation induced by high levels of cytokinins; cytological and histological studies; complete technology described |
Salame and Zieslin 1994 [47] | 3 mg/L IAA + 2 mg/L 2iP | 2 mg/L IAA + 30 mg/L 2iP | Peroxidase analysis for in vitro plant wound-stress study |
Watad et al., 1997 [48] | 3 mg/L IAA + 2 mg/L 2iP | 2 mg/L Kin | Using interfacial membrane rafts for liquid culture media |
Rajeevan et al., 2002 [49] | 0.5–2 mg/L BAP | 2 mg/L BAP + 0.5–2 mg/L Kin | Callus was also induced at high cytokinin levels |
Chan et al., 2003 [50] | Not specified | 2 mg/L BAP or 2 mg/L IBA + 2 mg/L BAP | No callus described |
Schwertner and Zaffari 2003 [51] | 1 mg/L BAP + 1 mg/L IAA | 1–4 mg/L BAP | The best multiplication rate for 4 mg/L BAP; callus was obtained when 4 mg of BAP was added |
Hassanein 2004 [52] | 1 mg/L BAP | 1 mg/L BAP | Shoot multiplication |
Chen and Henny 2006 [53] | Citing Miller and Murashige 1976 [22] | Citing Miller and Murashige 1976 [22] | Review of scientific literature on the micropropagation of Syngonium |
Zhang et al., 2006 [54] | 80 mg/L adenine | 0.2 mg/L NAA + 2 mg/L BAP | No callus formation; the study is relevant for somatic embryogenesis |
Wang et al., 2007 [55] | 80 mg/L adenine | 0.2 mg/L NAA + 2 mg/L BAP | No callus formation; the study is relevant for somatic embryogenesis |
Cui et al., 2008 [56] | 0.1 mg/L NAA + 0.2 mg/L TDZ | 1 mg/L NAA + 2 mg/L CPPU or 2 mg/L TDZ | Callus description; protocorms and histological study; the study is relevant for industry |
Rajesh et al., 2011 [57] | Not specified | 20 mg/L BAP | The average shoot formation was similar to our results: 9.5 shoots/explant |
Teixeira Da Silva et al., 2014 [58] | Not specified | Not specified | Ploidy study of in vitro plantlets |
Kalimuthu and Prabakaran 2014 [59] | 0.5–3 mg/L BAP + 200 mg/L NaH2PO4/0.2 mg/L NAA/0.2 mg/L TDZ | 0.5–3 mg/L BAP + 200 mg/L NaH2PO4/0.2 mg/L NAA/0.2 mg/L TDZ | The best results were obtained for the combination 1 mg/L BAP + 200 mg/L NaH2PO4 |
Teixeira Da Silva 2015 [60] | Citing Wang et al., 2007 [55] | Citing Cui et al., 2008 [56] | Ploidy study of in vitro plantlets |
Moumita et al., 2016 [61] | MS62 | 2 mg/L BAP + 0.5 mg/L NAA | The best formula for shoot multiplication |
Kane 2018 [62] | Citing Miller and Murashige 1976 [22] | Citing Miller and Murashige 1976 [22] | The chapter provides an activity for students’ education |
Sharifi et al., 2022 [63] | MS62; not in English | 1 mg/L BAP + 3 mg/L Kin | The authors focused on testing shooting success |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sand, C.S.; Antofie, M.-M. De Novo Shoot Development of Tropical Plants: New Insights for Syngonium podophyllum Schott. Horticulturae 2022, 8, 1105. https://doi.org/10.3390/horticulturae8121105
Sand CS, Antofie M-M. De Novo Shoot Development of Tropical Plants: New Insights for Syngonium podophyllum Schott. Horticulturae. 2022; 8(12):1105. https://doi.org/10.3390/horticulturae8121105
Chicago/Turabian StyleSand, Camelia Sava, and Maria-Mihaela Antofie. 2022. "De Novo Shoot Development of Tropical Plants: New Insights for Syngonium podophyllum Schott." Horticulturae 8, no. 12: 1105. https://doi.org/10.3390/horticulturae8121105
APA StyleSand, C. S., & Antofie, M. -M. (2022). De Novo Shoot Development of Tropical Plants: New Insights for Syngonium podophyllum Schott. Horticulturae, 8(12), 1105. https://doi.org/10.3390/horticulturae8121105