Growth, Gas Exchange, and Boron Distribution Characteristics in Two Grape Species Plants under Boron Deficiency Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Conditions
2.2. Growth of Grape Seedlings Measurements
2.3. Determination of B Content and B-Related Parameters
2.4. Leaf Photosynthetic Pigment Determination
2.5. Leaf Gas Exchange Parameters
2.6. Leaf Stomata Observation
2.7. Statistical Analysis
3. Results
3.1. Plant Growth
3.2. Determination of B Content and B-Related Parameters
3.3. Leaf Photosynthetic Pigment
3.4. Gas Exchange Parameters
3.5. Leaf Stomata Characteristic Observation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldbach, H.E.; Yu, Q.; Wingender, R.; Schulz, M.; Wimmer, M.; Findeklee, P.; Baluška, F. Rapid response reactions of roots to boron deprivation. J. Plant Nutr. Soil Sci. 2001, 164, 173–181. [Google Scholar]
- Lu, Y.B.; Qi, Y.P.; Yang, L.T.; Lee, J.; Guo, P.; Ye, X.; Jia, M.Y.; Li, M.L.; Chen, L.S. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves. Front. Plant Sci. 2015, 6, 585. [Google Scholar] [PubMed] [Green Version]
- Shireen, F.; Nawaz, M.A.; Xiong, M.; Ahmad, A.; Sohail, H.; Chen, Z.; Abouseif, Y.; Huang, Y.; Bie, Z.L. Pumpkin rootstock improves the growth and development of watermelon by enhancing uptake and transport of boron and regulating the gene expression. Plant Physiol. Biochem. 2020, 154, 204–218. [Google Scholar] [PubMed]
- Maiara, A.B.; Trilicia, M.G.; Thalita, I.A.; Alberto, F.B.; Eduardo, S.; Chaves, C.P.; Vívian, M.B. Statement of Boron application impact on yield, composition and structural properties in Merlot grapes. Sci. Hortic. 2021, 288, 110364. [Google Scholar]
- Wu, X.W.; Muhammad, R.; Yan, L.; Du, C.Q.; Liu, Y.L.; Jiang, C.C. Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls. Front. Plant Sci. 2017, 8, 1–10. [Google Scholar]
- Khalaj, K.; Ahmadi, N.; Souri, M.K. Improvement of postharvest quality of Asian pear fruits by foliar application of boronand calcium. Horticulturae 2016, 3, 15. [Google Scholar]
- Gimeno, V.; Simón, I.; Nieves, M.; Martínez, v.; Cámara-Zapata, J.M.; García-Torres, A.L.; García-Sánchez, F. The physiological and nutritional responses to an excess of boron by Verna lemon trees that were grafted on four contrasting rootstocks. Trees 2012, 26, 1513–1526. [Google Scholar]
- Shireen, F.; Nawaz, M.A.; Chen, C.; Zhang, Q.; Zheng, Z.; Sohail, H.; Sun, J.; Cao, H.; Huang, Y.; Bie, Z. Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. Int. J. Mol. Sci. 2018, 19, 95–98. [Google Scholar]
- Diehn, T.A.; Bienert, M.D.; Pommerrening, B.; Liu, Z.J.; Spitzer, C.; Bernhardt, N.; Fuge, J.; Bieber, A.; Richet, N.; Chaumont, F.; et al. Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like Intrinsic Proteins and BOR1 transporters. Plant J. 2019, 100, 68–82. [Google Scholar]
- Garcia-Sanchez, F.; Simon-Grao, S.; Martinez-Nicolas, J.J.; Alfosea-Simon, M.; Liu, G.G.; Chatzissavvidis, C.; Perez-Perez, J.G.; Camara-Zapata, J.M. Multiple stresses occurring with boron toxicity and deficiency in plants. J. Hazard. Mater. 2020, 397, 122713. [Google Scholar]
- Latifi, Z.; Jalali, M. Trace element contaminants in mineral fertilizers used in Iran. Environ. Sci. Pollut. Res. 2018, 25, 31917–31928. [Google Scholar]
- Quiroga, G.; Erice, G.; Aroca, R.; Ruiz-Lozano, J.M. Elucidating the possible involvement of maize aquaporins in the plant boron transport and homeostasis mediated by Rhizophagus irregularis under drought stress conditions. Int. J. Mol. Sci. 2020, 21, 1748. [Google Scholar]
- Gupta, K.; Dey, A.; Gupta, B. Plant polyamines in abiotic stress responses. Acta Physiol. Plant 2013, 35, 2015–2036. [Google Scholar]
- Francisco, G.S.; Simón-Graoa, J.J.; Martínez-Nicolásb, M.A.; Pérez-Péreze, M. Multiple stresses occurring with boron toxicity and deficiency in plants. J. Hazard. Mater. 2006, 397, 122713. [Google Scholar]
- Camacho-Cristóbal, J.J.; Rexach, J.; Herrera-Rodríguez, M.B.; Navarro-Gochicoa, M.T.; González-Fontes, A. Boron deficiency and transcript level changes. Plant Sci. 2011, 181, 85–89. [Google Scholar]
- Liu, G.D.; Jiang, C.C.; Wang, Y.H. Distribution of boron and its forms in young ‘Newhall’ navel orange (Citrus sinensis Osb.) plants grafted on two rootstocks in response to deficient and excessive boron. Soil Sci. Plant Nutr. 2011, 57, 93–104. [Google Scholar]
- Huang, Z.A.; Su, S.W.; Shi, J.L.; Zhou, Y.H.; Huang, Y. Effect of different concentrations of boron on photosynthetic gas exchange, chlorophyll fluorescence and growth in seedling leaves of Brassica rapa L. Acta Agric. Zhejiangensis 2015, 27, 1403–1407. [Google Scholar]
- Huang, M.; Pan, X.J.; Zhang, W.E.; Zhou, J.Z. Effect of boron deficiency stress on boron efficiency, accumulation and distribution in different Vitis genotypes. Int. J. Fruit Sci. 2015, 32, 79–86. [Google Scholar]
- Pan, X.J.; Li, D.Y.; Zhang, W.E.; Fan, W.G.; Li, S.Y. Investigation and analysis of wild Vitis resources in Guizhou province. Int. J. Fruit Sci. 2010, 27, 898–901. [Google Scholar]
- Pan, X.J.; Li, D.Y.; Zhang, W.E. Analysis of habitat soil factor of wild Vitis plants originated in Karst regions in Guizhou province. J. Yunnan Agric. Univ. 2011, 26, 535–542. [Google Scholar]
- Pan, X.J.; Li, D.Y.; Zhang, W.E. Study on physiological characteristics of seed germination of Wild Grapevine Spinosa and Grapevine glandularis in Guizhou. North. Hortic. 2010, 06, 15–17. [Google Scholar]
- Pan, X.J.; Zhang, W.E.; Tang, D.M.; Luo, Q.W. Study on in vitro rapid propagation of seedless grape. South. China Fruits. 2007, 02, 44–46. [Google Scholar]
- Pan, X.J.; Wang, Y.J.; Zhang, J.P.; Zhang, W.E.; Jiang, S.P. Study on transplanting technique of grape embryo rescue seedling. Acta Bot. Sin. Northwest China 2004, 06, 1077–1082. [Google Scholar]
- Mao, D. Plant Nutrition Research Methods; China Agriculture University Press: Beijing, China, 2005; pp. 18–19. [Google Scholar]
- Zhou, J.Z.; Pan, X.J.; Huang, M. Effects of different boron supply levels on the growth of wild grapevine in vitro. Guangdong Agric. Sci. 2013, 40, 26–29. [Google Scholar]
- Tang, Y.Y.; Li, H.L.; Sun, Y.T.; Yang, Q.; Li, W.Y.; Han, L.L.; Wu, X.D.; Huan, F.Q. Research progress on determination of available boron in soil. Hunan Agric. Sci. 2019, 08, 120–123. [Google Scholar]
- Song, X.; Wang, X.L.; Song, B.Q.; Wu, Z.Z.; Zhao, X.Y.; Huang, W.G.; Riaz, M. Transcriptome analysis reveals the molecular mechanism of boron deficiency tolerance in leaves of boron-efficient Beta vulgaris seedlings. Plant Physiol. Biochem. 2021, 168, 294–304. [Google Scholar]
- Zhang, W.E.; Pan, X.J.; Zhao, Q.; Zhao, T. Plant Growth, Antioxidative Enzyme, and Cadmium Tolerance Responses to Cadmium Stress in Canna orchioides. Hort. J. 2021, 7, 256–266. [Google Scholar]
- Huo, Y.; Qiu, Y.Y.; Zhou, H.; Hu, Y.D.; Deng, P.H.; Wei, B.Y.; Gu, J.F.; Liu, J.; Liao, B.H. Effects of exogenous phosphorus on growth and Cadmium accumulation and transport in rice under Cadmium stress. Eur. PMC 2020, 41, 4719–4725. [Google Scholar]
- Dong, C.X. Different Response and Structure Change and Metabolic Mechanism of Different Citrus Rootstock under Boron Deficiency; Huazhong Agricultural University: Wuhan, China, 2016. [Google Scholar]
- Metwally, A.; Safronova, V.I.; Belimov, A.A.; Dietz, K. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Bot. 2005, 56, 167–178. [Google Scholar] [PubMed]
- Wilkins, D.A. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 1978, 80, 623–633. [Google Scholar]
- Zhang, X.Z. Determination of chlorophyll content in plants-acetone ethanol mixture method. Liaoning Agric. Sci. 1986, 3, 26–28. [Google Scholar]
- Zhou, Q. Plant Physiology Experiment Instructions; Chinese Agriculture Press: Beijing, China, 2003. [Google Scholar]
- Liu, Y.L.; Riaz, M.; Yan, L.; Zeng, Y.; Jiang, C.C. Boron and calcium deficiency disturbing the growth of trifoliate rootstock seedlings (Poncirus trifoliate L.) by changing root architecture and cell wall. Plant Physiol. Biochem. 2019, 144, 345–354. [Google Scholar]
- Xi, J.G.; Zeng, H.L.; Qi, H.; Sun, G.M. Effects of boron nutrition on root and shoot growth of Pineapple. Chin. J. Ecol. 2009, 10, 1417–1421. [Google Scholar]
- Geng, M.J.; Zhu, J.H.; Wu, L.S.; Liu, W.D. Differences in root parameters and root activity components of bleeding fluid of cotton varieties with different Boron efficiency. Soil Sci. Bull. 2006, 37, 744–747. [Google Scholar]
- Alves, M.; Moes, S.; Jeno, P.; Pinheiro, C.; Passarinho, J.; Ricardo, C.P. The analysis of Lupinus albus root proteome revealed cytoskeleton altered features due to long-term boron deficiency. J. Proteomics 2011, 74, 1351–1363. [Google Scholar]
- Liu, G.D.; Wang, R.D.; Liu, L.C.; Wu, L.S.; Jiang, C.C. Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron deficiency response. Plant Soil 2013, 370, 555–565. [Google Scholar]
- Boaretto, R.M.; Quaggio, J.A.; Filho, F.; Gine, M.F.; Boaretto, A.E. Absorption and mobility of boron in young citrus plants. Commun. Soil Sci. Plant Anal. 2008, 39, 2501–2514. [Google Scholar]
- Liu, G.D.; Jiang, C.C.; Wang, Y.H.; Peng, S.A.; Zeng, Q.L. Effects of two different rootstocks on leaf morphology of Newhall navel orange seedlings. J. Agric. Sci. Technol. 2011, 44, 982–989. [Google Scholar]
- Yang, L.; Xu, F.S. Characteristics of root boron nutrition confer high boron efficiency in Brassica napus cultivars. Plant Soil 2013, 371, 95–104. [Google Scholar]
- Stangoulis, J.; Tate, M.; Granham, R.; Bucknall, M.; Palmer, L.; Boughton, B.; Reid, R. The mechanism of boron mobility in wheat and canola phloem. Plant Physiol. 2010, 153, 876–881. [Google Scholar]
- Konsaeng, S.; Dell, B.; Rerkasem, B. Boron mobility in peanut (Arachis hypogaea L.). Plant Soil. 2010, 330, 281–289. [Google Scholar]
- Lu, J.L. Plant Nutrition; China Agricultural University Press: Beijing, China, 2003; Volume I, pp. 82–87. [Google Scholar]
- Oliveira, R.H.; Dias, C.R.; Moraes-Dallaqua, M.A.; Rosolem, C.A. Boron deficiency inhibits petiole and peduncle cell development and reduces growth of cotton. J. Plant Nutr. 2006, 29, 2035–2048. [Google Scholar]
- Liu, L.C.; Jiang, C.C.; Dong, X.C.; Wu, X.W.; Liu, G.D.; Lu, X.P. Effects of boron stress on cell structure in mature region of fine root tip and young leaves of Citrus Orange rootstock. Chin. Agric. Sci. 2015, 24, 4957–4964. [Google Scholar]
- Liu, G.D.; Dong, X.C.; Liu, L.C.; Wu, L.S.; Peng, S.A.; Jiang, C.C. Boron deficiency is correlated with changes in cell wall structure that led to growth defects in the leaves of navel orange plants. Sci. Hortic.-Amsterdam. 2014, 176, 54–62. [Google Scholar]
- Li, S.; Peng, S.; Liu, Y.Z.; Zhou, G.F.; Yang, C.Q. Molecular malformation of leaf veins and fruit vessels in Citrus due to boron deficiency. J. Plant Sci. 2012, 30, 624–630. [Google Scholar]
- Chen, L.S.; Han, S.; Qi, Y.P.; Yang, L.T. Boron stresses and tolerance in citrus. Afr. J. Biotech. 2012, 11, 5961–5969. [Google Scholar]
- Liu, G.D.; Dong, X.C.; Liu, L.C.; Wu, L.S.; Peng, S.A.; Jiang, C.C. Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency. Physiol. Plant. 2015, 153, 513–524. [Google Scholar]
Boron Concentrations | Microelement Nutrition 1/10 Hoagland | Microelement Nutrition Arnon | ||
---|---|---|---|---|
Chemicals | Contents | Chemicals | Contents | |
0.00 (B0) | KNO3 | 50.60 | MnCl2·4H2O | 1.81 |
0.25 (B1) | NH4NO3 | 8.00 | CuSO4·5H2O | 0.08 |
0.50 (control) | KH2PO4 | 13.60 | ZnSO4·7H2O | 0.22 |
MgSO4 | 49.30 | (NH4)6MoO24·4H2O | 0.02 | |
Ca(NO3)2·4H2O | 94.50 | Na2Fe-EDTA | 4.20 |
Genotypes | B Concentrations/(mg·L−1) | Plant Height/(cm) | Leaf Area/(cm2) | Total Root Length/(cm) | Root Number | Dry Biomass/ (g)/DW |
---|---|---|---|---|---|---|
‘Xishui-4’ | 0.00 (B0) | 17.94 ± 1.30c * | 16.45 ± 1.03c * | 191.64 ± 8.18b * | 372.17 ± 36.38a * | 0.354 ± 0.007b * |
0.25 (B1) | 19.41 ± 0.70b * | 18.53 ± 0.56b * | 203.27 ± 12.41b * | 396.00 ± 33.95a * | 0.379 ± 0.007a * | |
0.50 (control) | 21.57 ± 1.26a * | 20.59 ± 0.86a * | 222.90 ± 10.76a * | 417.67 ± 35.67a * | 0.389 ± 0.019a * | |
‘Crystal’ | 0.00 (B0) | 13.89 ± 0.86c | 9.24 ± 0.61c | 156.31 ± 7.99c | 352.17 ± 32.85a | 0.302 ± 0.006c |
0.25 (B1) | 16.33 ± 0.81b | 10.70 ± 0.31b | 170.21 ± 6.46b | 381.17 ± 34.17a | 0.332 ± 0.015b | |
0.50 (control) | 18.23 ± 1.30a | 12.90 ± 0.64a | 189.45 ± 9.63a | 394.17 ± 32.97a | 0.367 ± 0.015a |
Genotypes | B Concentrations/(mg·L−1) | Chl. a/(mg·g−1 FW) | Chl. b/(mg·g−1 FW) | Car/(mg·g−1 FW) | Chl. (a + b)/(mg·g−1 FW) | Chl. (a/b) |
---|---|---|---|---|---|---|
‘Xishui-4’ | 0.00 (B0) | 17.94 ± 1.30c * | 16.45 ± 1.03c * | 191.64 ± 8.18b * | 372.17 ± 36.38a * | 0.354 ± 0.007b * |
0.25 (B1) | 19.41 ± 0.70b * | 18.53 ± 0.56b * | 203.27 ± 12.41b * | 396.00 ± 33.95a * | 0.379 ± 0.007a * | |
0.50 (control) | 21.57 ± 1.26a * | 20.59 ± 0.86a * | 222.90 ± 10.76a * | 417.67 ± 35.67a * | 0.389 ± 0.019a * | |
‘Crystal’ | 0.00 (B0) | 13.89 ± 0.86c | 9.24 ± 0.61c | 156.31 ± 7.99c | 352.17 ± 32.85a | 0.302 ± 0.006c |
0.25 (B1) | 16.33 ± 0.81b | 10.70 ± 0.31b | 170.21 ± 6.46b | 381.17 ± 34.17a | 0.332 ± 0.015b | |
0.00 (B0) | 18.23 ± 1.30a | 12.90 ± 0.64a | 189.45 ± 9.63a | 394.17 ± 32.97a | 0.367 ± 0.015a |
Genotypes | B Concentrations/(mg·L−1) | Net Photosynthesis Rate (Pn)/(μmol·m−2·s−1) | Transpiration Rate (Tr)/(mmol·m−2·s−1) | Stomatal Conductance (Gs)/(mol·m−2·s−1) | Intercellular Carbon Dioxide Concentration (Ci)/(μmol·mol−1) |
---|---|---|---|---|---|
‘Xishui-4’ | 0.00 (B0) | 0.70 ± 0.01c | 0.28 ± 0.01b | 9.40 ± 0.50b | 273.33 ± 1.53c |
0.25 (B1) | 1.02 ± 0.04b | 0.31 ± 0.01a | 10.90 ± 0.60a | 285.67 ± 5.96b | |
0.50 (control) | 1.11 ± 0.01a | 0.33 ± 0.02a | 11.40 ± 0.40a | 300.67 ± 5.03a | |
‘Crystal’ | 0.00 (B0) | 1.98 ± 0.11c * | 0.61 ± 0.01c * | 16.43 ± 0.60b * | 505.33 ± 2.52c * |
0.25 (B1) | 2.72 ± 0.13b * | 0.65 ± 0.01b * | 19.40 ± 0.80a * | 539.00 ± 4.44b * | |
0.50 (control) | 3.23 ± 0.21a * | 0.74 ± 0.03a * | 20.10 ± 0.50a * | 564.67 ± 7.01a * |
Genotypes | B Concentrations/ (mg·L−1) | Stomatal Length/ μm | Stomatal Width/ μm | Stomatal Density/ Number·mm2 |
---|---|---|---|---|
‘Xishui-4’ | 0.00 (B0) | 7.16 ± 1.25a | 4.94 ± 0.81a | 50.03 ± 3.15c |
0.25 (B1) | 7.66 ± 1.61a | 5.19 ± 0.79a | 84.81 ± 3.91b * | |
0.50 (control) | 7.78 ± 1.84a | 5.43 ± 0.67a | 92.32 ± 2.56a | |
‘Crystal’ | 0.00 (B0) | 9.63 ± 0.56a * | 5.93 ± 0.56a * | 55.20 ± 6.77c * |
0.25 (B1) | 9.51 ± 0.98a * | 5.93 ± 0.79a * | 78.98 ± 11.05b | |
0.50 (control) | 9.75 ± 0.93a * | 5.80 ± 1.08a * | 102.76 ± 10.89a * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, R.; Huang, M.; Huang, D.; Zhou, J.; Pan, X.; Zhang, W. Growth, Gas Exchange, and Boron Distribution Characteristics in Two Grape Species Plants under Boron Deficiency Condition. Horticulturae 2022, 8, 374. https://doi.org/10.3390/horticulturae8050374
Wei R, Huang M, Huang D, Zhou J, Pan X, Zhang W. Growth, Gas Exchange, and Boron Distribution Characteristics in Two Grape Species Plants under Boron Deficiency Condition. Horticulturae. 2022; 8(5):374. https://doi.org/10.3390/horticulturae8050374
Chicago/Turabian StyleWei, Rong, Mei Huang, Dong Huang, Jinzhong Zhou, Xuejun Pan, and Wen’e Zhang. 2022. "Growth, Gas Exchange, and Boron Distribution Characteristics in Two Grape Species Plants under Boron Deficiency Condition" Horticulturae 8, no. 5: 374. https://doi.org/10.3390/horticulturae8050374
APA StyleWei, R., Huang, M., Huang, D., Zhou, J., Pan, X., & Zhang, W. (2022). Growth, Gas Exchange, and Boron Distribution Characteristics in Two Grape Species Plants under Boron Deficiency Condition. Horticulturae, 8(5), 374. https://doi.org/10.3390/horticulturae8050374