A Detailed Comparative Study on Some Physicochemical Properties, Volatile Composition, Fatty Acid, and Mineral Profile of Different Almond (Prunus dulcis L.) Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Analysis of Proximate Composition
2.2.2. Total Phenolic Content Analysis
2.2.3. Analysis of Mineral Composition of the Samples
2.2.4. Fatty Acid Profile of Almond Oil Samples
2.2.5. Volatile Profile of Almond Samples
2.2.6. Statistical Analysis
3. Results
3.1. Some Physicochemical Properties of Almond Samples
3.2. Fatty Acid Profile of Almond Oil Samples
3.3. Mineral Contents of the Almond Samples
3.4. Volatile Composition of the Almond Samples
3.5. Principal Component and Correlation Analysis
3.6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karaat, F. Organic vs conventional almond: Market quality, fatty acid composition and volatile aroma compounds. Appl. Ecol. Environ. Res. 2019, 17, 7793. [Google Scholar] [CrossRef]
- Simsek, M. Chemical, Mineral, and Fatty Acid Compositions of Various Types of Walnut (Juglans regia L.) in Turkey. Bulg. Chem. Commun. 2016, 48, 6670. [Google Scholar]
- Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Parker, T.L.; Connelly, P.W.; Qian, W.; Haight, J.S.; Faulkner, D.; Vidgen, E.; Lapsley, K.G.; et al. Dose Response of Almonds on Coronary Heart Disease Risk Factors: Blood Lipids, Oxidized Low-Density Lipoproteins, Lipoprotein(a), Homocysteine, and Pulmonary Nitric Oxide. Circulation 2002, 106, 1327–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreca, D.; Nabavi, S.M.; Sureda, A.; Rasekhian, M.; Raciti, R.; Silva, A.S.; Annunziata, G.; Arnone, A.; Tenore, G.C.; Süntar, İ.; et al. Almonds (Prunus dulcis Mill. DA web): A Source of Nutrients and Health-Promoting Compounds. Nutrients 2020, 12, 672. [Google Scholar] [CrossRef] [Green Version]
- Barreira, J.C.M.; Casal, S.; Ferreira, I.C.F.R.; Peres, A.M.; Pereira, J.A.; Oliveira, M.B.P.P. Supervised Chemical Pattern Recognition in Almond (Prunus dulcis) Portuguese PDO Cultivars: PCA- and LDA-Based Triennial Study. J. Agric. Food Chem. 2012, 60, 9697–9704. [Google Scholar] [CrossRef]
- Beyhan, Ö.; Aktaş, M.; Yilmaz, N.; Şimşek, N.; Gerçekçioğlu, R. Determination of Fatty Acid Compositions of Some Important Almond (Prunus amygdalus L.) Varieties Selected from Tokat Province and Eagean Region of Turkey. J. Med. Plant Res. 2011, 5, 4907–4911. [Google Scholar]
- Askin, M.A.; Balta, M.F.; Tekintas, F.E.; Kazankaya, A.; Balta, F. Fatty Acid Composition Affected by Kernel Weight in Almond [Prunus dulcis (Mill.) D. A. Webb.] Genetic Resources. J. Food Compos. Anal. 2007, 20, 7–12. [Google Scholar] [CrossRef]
- Yada, S.; Huang, G.; Lapsley, K. Natural Variability in the Nutrient Composition of California-Grown Almonds. J. Food Compos. Anal. 2013, 30, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Kodad, O.; Company, R.S. Variability of Oil Content and of Major Fatty Acid Composition in Almond (Prunus amygdalus Batsch) and Its Relationship with Kernel Quality. J. Agric. Food Chem. 2008, 56, 4096–4101. [Google Scholar] [CrossRef]
- Nizamlıoğlu, N.M.; Nas, S. Physical and Chemicial Properties of a Type of Almond Called” Akbadem” Grown in the Aegean Region in Turkey. Int. J. Second Metabol. 2017, 4, 134–141. [Google Scholar] [CrossRef]
- Yıldırım, A.; Mavi, A.; Kara, A.A. Determination of Antioxidant and Antimicrobial Activities of Rumex crispus L. Extracts. J. Agric. Food Chem. 2001, 49, 4083–4089. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, G.; Alpaslan, M. Antioxidant properties of roasted apricot (Prunus armeniaca L.) kernel. Food Chem. 2007, 100, 1177–1181. [Google Scholar] [CrossRef]
- Mertens, D. AOAC official method 922.02. Plants preparation of laboratuary sample. In Official Methods of Analysis, 18th ed.; Horwitz, W., Latimer, G.W., Eds.; AOAC Intl.: Gaitherburg, MA, USA, 2005; Chapter 3; pp. 1–2. [Google Scholar]
- Mertens, D. AOAC official method 975.03. Metal in plants and pet foods. In Official Methods of Analysis, 18th ed.; Horwitz, W., Latimer, G.W., Eds.; Chapter 3; AOAC Intl.: Gaitherburg, MA, USA, 2005; pp. 3–4. [Google Scholar]
- Doguer, C.; Yıkmış, S.; Levent, O.; Turkol, M. Anticancer Effects of Enrichment in the Bioactive Components of the Functional Beverage of Turkish Gastronomy by Supplementation with Purple Basil (Ocimum basilicum L.) and the Ultrasound Treatment. J. Food Process. Preserv. 2021, 45, e15436. [Google Scholar] [CrossRef]
- Gradziel, T.M. Almond Quality: A Breeding Perspective Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Zarogaza, Spain, 2008; Volume 34. [Google Scholar]
- García-López, C.; Grané-Teruel, N.; Berenguer-Navarro, V.; García-García, J.E.; Martín-Carratalá, M.L. Major Fatty Acid Composition of 19 Almond Cultivars of Different Origins. A Chemometric Approach. J. Agric. Food Chem. 1996, 44, 1751–1755. [Google Scholar] [CrossRef]
- Ruggeri, S.; Cappelloni, M.; Gambelli, L.; Carnovale, E. Chemical Composition and Nutritive Value of Nuts Grown in Italy. Ital. J. Food Sci. 1998, 10, 243–252. [Google Scholar]
- Nizamlioğlu, N.M. Kavurma ve Depolama Koşullarının Bademin Bazı Fiziksel, Kimyasal ve Duyusal Özellikleri Üzerine Etkisi. Ph.D. Thesis, Pamukkale University, Pamukkale, Turkey, 2015. [Google Scholar]
- Milbury, P.E.; Chen, C.-Y.; Dolnikowski, A.G.G.; Blumberg, J.B. Determination of Flavonoids and Phenolics and Their Distribution in Almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef]
- Esfahlan, A.J.; Jamei, R.; Esfahlan, R.J. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem. 2010, 120, 349–360. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Sineiro, J.; Núñez, M. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 2004, 85, 267–273. [Google Scholar] [CrossRef]
- Beltrán Sanahuja, A.; Maestre Pérez, S.E.; Grané Teruel, N.; Valdés García, A.; Prats Moya, M.S. Variability of Chemical Profile in Almonds (Prunus dulcis) of Different Cultivars and Origins. Foods 2021, 10, 153. [Google Scholar] [CrossRef]
- Zhu, Y.; Taylor, C.; Sommer, K.; Wilkinson, K.; Wirthensohn, M. Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis). Food Chem. 2015, 173, 821–826. [Google Scholar] [CrossRef]
- Celik, F.; Balta, M.F. Kernel Fatty Acid Composition of Turkish Almond (Prunus dulcis L.) Gen-otypes: A Regional Comparison. J. Food Agric. Environ. 2011, 9, 171–174. [Google Scholar]
- Simşek, M.; Kizmaz, V. Determination of Chemical and Mineral Compositions of Promising Almond (Prunus amygdalus L.) Genotypes from Beyazsu (Mardin) Region. Int. J. Agric. Wild Sci. 2017, 3, 6–11. [Google Scholar]
- Roncero, J.M.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Rabadán, A.; Pardo, J.E. Review about Non-Lipid Components and Minor Fat-Soluble Bioactive Compounds of Almond Kernel. Foods 2020, 9, 1646. [Google Scholar] [CrossRef] [PubMed]
- Piscopo, A.; Romeo, F.; Petrovicova, B.; Poiana, M. Effect of the harvest time on kernel quality of several almond varieties (Prunus dulcis (Mill.) D.A. Webb). Sci. Hortic. 2010, 125, 41–46. [Google Scholar] [CrossRef]
- Drogoudi, P.D.; Pantelidis, G.; Bacchetta, L.; De Giorgio, D.; Duval, H.; Metzidakis, I.; Spera, D. Protein and Mineral Nutrient Contents in Kernels from 72 Sweet Almond Cultivars and Acces-sions Grown in France, Greece and Italy. Int. J. Food Sci. Nutr. 2013, 64, 202–209. [Google Scholar] [CrossRef]
- Simsek, M.; Gulsoy, E.; Yavic, A.; Arikan, B.; Yildirim, Y.; Olmez, N.; Erdogmus, B.; Boguc, F. Fatty acid, Mineral and Proximate Compositions of Various Genotypes and Commercial Cultivars of Sweet Almond from the Same Ecological Conditions. Appl. Ecol. Environ. Res. 2018, 16, 2957–2971. [Google Scholar] [CrossRef]
- Xiao, L.; Lee, J.; Zhang, G.; Ebeler, S.E.; Wickramasinghe, N.; Seiber, J.; Mitchell, A.E. HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chem. 2013, 151, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Mexis, S.F.; Badeka, A.V.; Chouliara, E.; Riganakos, K.A.; Kontominas, M.G. Effect of C-Irradiation on the Physicochemical and Sensory Properties of Raw Unpeeled Almond Kernels (Prunus dulcis). Innov. Food Sci. Emerg. Technol. 2009, 10, 87–92. [Google Scholar] [CrossRef]
- Erten, E.S.; Cadwallader, K.R. Identification of predominant aroma components of raw, dry roasted and oil roasted almonds. Food Chem. 2017, 217, 244–253. [Google Scholar] [CrossRef]
- Agila, A.; Barringer, S. Effect of Roasting Conditions on Color and Volatile Profile Including HMF Level in Sweet Almonds (Prunus dulcis). J. Food Sci. 2012, 77, C461–C468. [Google Scholar] [CrossRef]
- Beck, J.J.; Mahoney, N.E.; Cook, D.; Gee, W.S. Volatile analysis of ground almonds contami-nated with naturally occurring fungi. J. Agric. Food Chem. 2011, 59, 6180–6187. [Google Scholar] [CrossRef] [PubMed]
- Valdés, A.; Beltrán, A.; Karabagias, I.; Badeka, A.; Kontominas, M.G.; Garrigós, M.C. Monitoring the oxidative stability and volatiles in blanched, roasted and fried almonds under normal and accelerated storage conditions by DSC, thermogravimetric analysis and ATR-FTIR. Eur. J. Lipid Sci. Technol. 2015, 117, 1199–1213. [Google Scholar] [CrossRef]
Samples δ | Protein (%) | Oil (%) | Ash (%) | TPC (mg GAE/100 g) |
---|---|---|---|---|
FS | 18.85 ± 0.04 bcd | 41.43 ± 1.19 a | 3.15 ± 0.07 ab | 79.21 ± 1.23 b |
FL | 18.55 ± 0.47 cd | 33.78 ± 1.09 cde | 3.3 ± 0.14 a | 101.03 ± 1.96 a |
MA | 17.64 ± 0.66 d | 32.99 ± 0.33 cde | 3.25 ± 0.07 ab | 71.41 ± 1.17 c |
LU | 19.61 ± 0.07 ab | 30.84 ± 1.34 e | 3.4 ± 0.14 a | 65.07 ± 1.5 cd |
YS | 17.43 ± 0.34 d | 39.49 ± 2.57 ab | 3.15 ± 0.07 ab | 38.7 ± 1.63 g |
NL | 22.72 ± 0.32 a | 33.67 ± 0.5 cde | 3.05 ± 0.07 ab | 56.41 ± 0.88 ef |
TX | 20.11 ± 0.16 b | 36.92 ± 1.01 abcd | 3.1 ± 0.00 ab | 41.51 ± 1.27 g |
GU | 17.7 ± 0.42 d | 37.76 ± 1.22 abc | 2.9 ± 0.14 b | 81.1 ± 1.65 b |
NU | 20.23 ± 0.36 b | 32.1 ± 1.58 de | 3.05 ± 0.07 ab | 50.18 ± 0.76 f |
BA | 19.85 ± 0.48 ab | 34.29 ± 1.09 bcde | 3.05 ± 0.07 ab | 62.35 ± 2.92 de |
Samples δ | PA (C16:0) | PLA (C16:1) | SA (C18:0) | OA (C18:1) | LA (C18:2) | SFA | MUSFA | PUSFA |
---|---|---|---|---|---|---|---|---|
FS | 6.57 ± 0.04 ab | 0.75 ± 0.05 a | 2.13 ± 0.03 bcd | 77.18 ± 0.75 ab | 13.38 ± 0.73 b | 8.70 | 77.93 | 13.38 |
FL | 6.64 ± 0.06 ab | 0.74 ± 0.06 a | 1.97 ± 0.02 cd | 76.16 ± 1.00 abc | 14.51 ± 0.98 b | 8.60 | 76.89 | 14.50 |
MA | 6.62 ± 0.03 ab | 0.61 ± 0.01 ab | 2.28 ± 0.04 bc | 71.23 ± 0.37 bcd | 19.28 ± 0.31 bc | 8.89 | 71.83 | 19.28 |
LU | 6.93 ± 0.05 ab | 0.65 ± 0.01 ab | 2.36 ± 0.04 b | 69.96 ± 0.99 d | 20.12 ± 1.00 abc | 9.28 | 70.61 | 20.11 |
YS | 7.48 ± 1.36 b | 0.53 ± 0.04 bc | 1.87 ± 0.19 de | 70.8 ± 2.11 cd | 19.33 ± 3.71 bc | 9.34 | 71.33 | 19.33 |
NL | 8.15 ± 0.85 a | 0.76 ± 0.07 a | 2.18 ± 0.11 bcd | 61.22 ± 2.6 e | 27.69 ± 3.63 a | 10.33 | 61.98 | 27.69 |
TX | 6.50 ± 0.11 ab | 0.43 ± 0.00 c | 1.36 ± 0.03 f | 69.35 ± 1.48 d | 22.37 ± 1.4 ab | 7.85 | 69.78 | 22.37 |
GU | 6.87 ± 0.10 ab | 0.66 ± 0.03 ab | 3.73 ± 0.10 a | 69.6 ± 0.74 d | 19.15 ± 0.52 bc | 10.60 | 70.26 | 19.14 |
NU | 5.59 ± 0.20 b | 0.41 ± 0.01 c | 2.42 ± 0.08 b | 77.63 ± 1.67 a | 13.96 ± 1.39 b | 8.00 | 78.04 | 13.96 |
BA | 7.04 ± 0.06 ab | 0.51 ± 0.04 bc | 1.58 ± 0.08 ef | 72.12 ± 2.08 abcd | 18.76 ± 2.14 bc | 8.62 | 72.63 | 18.76 |
Samples δ | K | Mg | Ca | P | Zn | Mn | Cu | Fe | Na |
---|---|---|---|---|---|---|---|---|---|
FS | 8590.31 ± 15.41 cd | 2199 ± 41.8 c | 887.35 ± 44.68 b | 5248.46 ± 75.27 bc | 52.13 ± 1.46 a | 19.09 ± 1.28 bc | 14.27 ± 0.06 ab | 45.99 ± 2.6 a | 37.42 ± 3.67 c |
FL | 9196.78 ± 435.17 bcd | 2303.85 ± 7.18 bc | 883.81 ± 67.8 b | 5527.03 ± 77.64 ab | 52.34 ± 3.53 a | 17.37 ± 0.69 bcd | 14.34 ± 0.31 ab | 47.35 ± 0.13 a | 39.79 ± 1.21 bc |
MA | 9788.69 ± 231.49 abc | 2280.6 ± 68.86 bc | 928.35 ± 13.64 ab | 4978.78 ± 94.58 c | 41.91 ± 3.81 abcd | 17.73 ± 1.32 bcd | 11.33 ± 0.16 c | 35.58 ± 0.87 b | 42.55 ± 0.04 bc |
LU | 9775.08 ± 494.44 abc | 2372.97 ± 37.04 bc | 835.66 ± 3.97 bc | 5252.74 ± 184.83 bc | 46.16 ± 4.29 abc | 18.05 ± 1.03 bc | 11.88 ± 0.59 c | 41.95 ± 1.5 ab | 44.48 ± 4.04 bc |
YS | 8956.48 ± 16.5 cd | 2284.41 ± 54.69 bc | 581.35 ± 48.45 de | 4784.42 ± 159.25 c | 39.07 ± 0.81 cd | 15.1 ± 0.04 cd | 14.9 ± 0.01 a | 25.65 ± 0.59 c | 45.92 ± 2.41 bc |
NL | 11,046.05 ± 205.75 a | 2444.33 ± 100.94 abc | 719.11 ± 39.24 cd | 4965.88 ± 185.29 c | 50.04 ± 3.53 ab | 19.04 ± 2.11 bc | 15.28 ± 0.85 a | 35.46 ± 0.37 b | 43.11 ± 0.18 bc |
TX | 6192.08 ± 8.39 e | 2251.05 ± 39.99 bc | 1069.6 ± 30.51 a | 4971.58 ± 41.13 c | 33.78 ± 0.23 d | 24.18 ± 0.04 a | 12.66 ± 0.31 bc | 36.05 ± 3.51 b | 41.87 ± 0.79 bc |
GU | 10,364.24 ± 683.13 ab | 2342.57 ± 163.79 bc | 930.63 ± 31.93 ab | 5151.56 ± 80.73 bc | 49.56 ± 1.62 ab | 21.4 ± 0.34 ab | 13.72 ± 0.75 ab | 36.73 ± 1.94 b | 48.63 ± 3.63 b |
NU | 7945.02 ± 67.71 d | 2657.19 ± 6.79 a | 459.34 ± 26.28 e | 5037.35 ± 72.41 bc | 41.45 ± 2.45 bcd | 12.95 ± 0.62 d | 8.33 ± 0.35 d | 46.05 ± 0.93 a | 61.29 ± 1.68 a |
BA | 6232.97 ± 288.2 e | 2527.92 ± 3.42 ab | 662.72 ± 13.38 d | 5173.36 ± 313.29 a | 51.09 ± 0.53 ab | 17.23 ± 2.2 bcd | 14.12 ± 0.25 ab | 41.88 ± 0.2 ab | 43.8 ± 1.47 ab |
No. | Compound | RI | FS | FL | MA | LU | YS | NL | TX | GU | NU | BA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Butanal | 833 | 6.4 ± 0.42 a | 3.15 ± 0.35 b | n.d | 2.1 ± 0.42 ab | 0.6 ± 0.28 de | n.d | n.d | 1.1 ± 0.57 cde | 1.3 ± 0.28 bcd | 1.85 ± 0.35 abc |
2 | 2-Methylbutanal | 894 | n.d | n.d | n.d | n.d | n.d | 0.45 ± 0.07 a | 0.3 ± 0.14 a | n.d | n.d | 0.35 ± 0.07 a |
3 | 3-Methylbutanal | 920 | n.d | n.d | n.d | n.d | n.d | 0.15 ± 0.07 b | n.d | n.d | 0.15 ± 0.07 b | 0.45 ± 0.21 a |
4 | Ethanol | 942 | n.d | n.d | n.d | n.d | n.d | 3.45 ± 0.92 a | 2.15 ± 0.49 ab | n.d | 0.9 ± 0.28 bc | n.d |
5 | 3-Methyl-2-pentanone | 1023 | n.d | 0.4 ± 0.14 a | 0.65 ± 0.07 a | n.d | 0.25 ± 0.07 a | n.d | n.d | n.d | n.d | n.d |
6 | α-pinene | 1025 | n.d | n.d | n.d | n.d | 0.55 ± 0.2 bc | 1.05 ± 0.21 b | 2.15 ± 0.35 a | 0.25 ± 0.07 c | 1.1 ± 0.28 b | n.d |
7 | Toluene | 1044 | 161.45 ± 9.55 b | 201.05 ± 7.57 a | 103.1 ± 7.92 c | 145.6 ± 8.2 b | 64.3 ± 5.52 f | 85.9 ± 6.22 cdef | 69.1 ± 2.4 ef | 95.1 ± 7.5 cde | 75.3 ± 5.37 def | 101.4 ± 6.65 cd |
8 | Butyl acetate | 1070 | 74.85 ± 3.18 a | 87.05 ± 6.29 a | 18.95 ± 1.63 def | 57.2 ± 6.08 b | 27.7 ± 2.26 de | 15.9 ± 3.68 ef | 11.6 ± 2.55 f | 26.65 ± 3.89 def | 45.85 ± 3.75 bc | 31.9 ± 1.7 cd |
9 | Hexanal | 1084 | n.d | n.d | 10.6 ± 1.13 c | n.d | n.d | 18.05 ± 2.33 b | 23.2 ± 2.26 a | 8.3 ± 1.27 c | n.d | 11.05 ± 0.35 c |
10 | 2-Methyl-1-propanol | 1088 | 6.4 ± 0.71 a | 6.9 ± 0.85 a | n.d | 2.15 ± 0.35 b | n.d | n.d | 1.35 ± 0.21 bc | n.d | 0.55 ± 0.21 c | n.d |
11 | 6-hepten-3-one-4-methyl | 1115 | 3.2 ± 0.14 b | n.d | n.d | n.d | 1.55 ± 0.35 d | n.d | 4.7 ± 0.28 a | n.d | n.d | 2.45 ± 0.35 c |
12 | isoamyl acetate | 1122 | n.d | 1.6 ± 0.28 a | 1.15 ± 0.07 b | n.d | n.d | n.d | n.d | n.d | n.d | n.d |
13 | Ethylbenzene | 1126 | 23.45 ± 1.06 b | 22.1 ± 1.7 bc | 17.6 ± 1.56 cd | 28.9 ± 1.7 a | 23.4 ± 1.27 b | n.d | n.d | 10.25 ± 0.64 e | 17.15 ± 1.48 d | 8.6 ± 1.13 e |
14 | 2.5-Dimethyl-3-hexanone | 1144 | 24.55 ± 2.47 a | 26.55 ± 1.63 a | n.d | n.d | n.d | 16.1 ± 2.4 b | 10.85 ± 0.49 c | n.d | 6.55 ± 0.21 c | 27.2 ± 0.57 a |
15 | butyl isobutyrate | 1150 | n.d | 2.15 ± 0.49 a | n.d | 1.15 ± 0.35 b | n.d | n.d | n.d | n.d | 0.650.21 bc | n.d |
16 | butanol | 1155 | 12.4 ± 0.99 cd | 14.65 ± 0.64 bc | 7.9 ± 0.57 ef | 17.8 ± 1.56 b | 5.45 ± 0.92 f | 22.6 ± 1.13 a | 15.45 ± 0.92 bc | 10.05 ± 0.64 de | 12.55 ± 0.92 cd | 8.9 ± 0.42 def |
17 | 3-heptanone | 1158 | 7.35 ± 0.64 b | 9.25 ± 0.78 a | n.d | 10.05 ± 0.92 a | n.d | n.d | n.d | 3.3 ± 0.28 c | n.d | 2.6 ± 0.28 c |
18 | 2-heptanone | 1184 | n.d | n.d | n.d | n.d | 2.1 ± 0.28 b | n.d | 1.6 ± 0.14 b | n.d | 3.05 ± 0.35 a | n.d |
19 | Limonene | 1195 | n.d | n.d | 3.85 ± 0.49 a | n.d | n.d | 1.65 ± 0.21 c | n.d | 2.6 ± 0.28 b | 0.75 ± 0.21 | n.d |
20 | 3-Methyl-butanol | 1195 | 1.05 ± 0.35 c | n.d | n.d | 1.7 ± 0.14 c | 5.4 ± 0.42 a | n.d | 3.9 ± 0.28 b | n.d | n.d | n.d |
21 | butyl butyrate | 1206 | n.d | 1.4 ± 0.28 b | n.d | 2.25 ± 0.21 a | n.d | n.d | n.d | n.d | n.d | n.d |
22 | 2-hexanol | 1220 | 1.6 ± 0.28 c | n.d | 2.25 ± 0.21 ab | n.d | 0.7 ± 0.14 d | n.d | 2.75 ± 0.21 a | 0.8 ± 0.14 d | 1.45 ± 0.21 c | 1.85 ± 0.07 bc |
23 | 4-octanone | 1230 | 334.55 ± 8.27 a | 318.5 ± 6.79 a | 56.7 ± 3.68 de | 129.8 ± 7.5 c | 143.65 ± 5.44 c | 40.45 ± 2.62 ef | 29.35 ± 1.2 f | 75.25 ± 5.59 d | 83.45 ± 8.7 d | 172.65 ± 12.09 b |
24 | 3-octanone | 1254 | 1.7 ± 0.28 a | 2.05 ± 0.35 a | n.d | n.d | n.d | n.d | 0.75 ± 0.21 b | 0.55 ± 0.21 bc | n.d | n.d |
25 | m-Cymene | 1262 | n.d | 2.75 ± 0.49 b | n.d | 4.55 ± 0.21 a | 0.5 ± 0.14 cd | n.d | 1.05 ± 0.21 c | n.d | n.d | n.d |
26 | butyl valerate | 1299 | 1.05 ± 0.21 a | 0.85 ± 0.35 a | n.d | n.d | 0.65 ± 0.21 a | n.d | n.d | n.d | n.d | n.d |
27 | 2-heptenal | 1332 | n.d | n.d | 2.4 ± 0.28 a | n.d | n.d | 1.6 ± 0.28 bc | n.d | 2.4 ± 0.14 a | 1.2 ± 0.14 c | 1.85 ± 0.21 ab |
28 | Pinacol | 1336 | 120.65 ± 11.38 ab | 130.1 ± 8.91 a | 40.2 ± 2.69 g | 87.1 ± 5.09 cd | 73.4 ± 3.25 de | 62.75 ± 2.05 ef | 30.45 ± 0.92 g | 50.55 ± 1.06 fg | 103.15 ± 4.17 bc | 40.6 ± 1.13 g |
29 | 1-hexanol | 1357 | 0.3 ± 0.14 b | n.d | n.d | n.d | 0.25 ± 0.07 b | n.d | 1.05 ± 0.35 a | n.d | n.d | n.d |
30 | 2-nonanone | 1396 | 11.45 ± 0.78 bc | 14.1 ± 1.84 b | 8.15 ± 0.35 cde | 21.65 ± 2.05 a | n.d | 7.05 ± 0.35 de | 12.85 ± 0.64 b | 10.85 ± 0.64 bc | 4.7 ± 0.57 e | 13.55 ± 0.78 b |
31 | 2-methylpentanal | 1451 | 296.55 ± 15.91 bc | 327.6 ± 9.62 ab | 175.8 ± 10.75 cd | 368.25 ± 16.76 a | 94.05 ± 6.15 f | 131.15 ± 4.74 f | 110.9 ± 10.32 f | 202.05 ± 7.71 c | 136.75 ± 4.74 de | 262.8 ± 16.12 c |
32 | Benzaldehyde | 1541 | n.d | n.d | 4.7 ± 0.28 d | 1.55 ± 0.35 ef | 3.25 ± 0.49 de | 15.6 ± 0.71 a | 12.55 ± 0.92 b | 6.8 ± 0.42 c | n.d | 7.15 ± 0.64 c |
33 | Isobutyric acid | 1577 | 35.45 ± 3.32 a | 37.6 ± 3.11 | n.d | 11.75 ± 2.33 b | n.d | n.d | n.d | n.d | n.d | n.d |
34 | γ-butyrolactone | 1625 | n.d | n.d | 0.35 ± 0.07 a | n.d | n.d | n.d | n.d | n.d | 0.4 ± 0.14 a | n.d |
35 | 2-Decenal | 1646 | n.d | n.d | 0.8 ± 0.14 bc | n.d | 0.45 ± 0.07 cd | 1.1 ± 0.14 ab | 1.55 ± 0.21 a | 1.25 ± 0.21 ab | n.d | 1.3 ± 0.14 a |
36 | Phenylacetaldehyde | 1668 | n.d | n.d | 4.05 ± 0.49 b | 1.15 ± 0.21 c | n.d | 5.8 ± 0.57 a | n.d | 4.75 ± 0.64 ab | n.d | n.d |
37 | valeric acid | 1719 | 2.05 ± 0.21 a | 1.1 ± 0.28 bc | n.d | n.d | 1.45 ± 0.21 ab | n.d | 1.05 ± 0.35 bc | n.d | 1.05 ± 0.21 bc | 0.55 ± 0.07 cd |
38 | 2-Phenyl-2-propanol | 1768 | 10.15 ± 0.64 b | 8.65 ± 0.64 ab | 2.75 ± 0.21 e | 13.7 ± 1.13 a | 2.2 ± 0.42 e | 3.6 ± 0.28 de | 7.05 ± 0.49 bc | 4.2 ± 0.42 de | 5.35 ± 0.64 cd | 8.45 ± 0.92 ab |
39 | γ-decalactone | 2185 | 11.1 ± 0.85 b | n.d | 15.55 ± 1.2 a | n.d | n.d | n.d | n.d | 7.9 ± 0.42 c | 1.65 ± 0.21 de | 2.65 ± 0.35 d |
40 | γ-undecalactone | 2246 | 2.85 ± 0.49 b | 5.2 ± 0.42 a | n.d | 2.6 ± 0.28 b | 0.3 ± 0.14 c | n.d | 0.5 ± 0.14 c | n.d | n.d | n.d |
41 | Diethyl Phthalate | 2374 | 0.35 ± 0.07 bc | 5.75 ± 0.64 a | 1.1 ± 0.42 b | n.d | n.d | 1.05 ± 0.21 b | n.d | n.d | 1.05 ± 0.21 b | 0.65 ± 0.07 bc |
Total (µg/kg) | ||||||||||||
Esters | 76.25 | 98.8 | 21.2 | 60.6 | 28.35 | 16.95 | 11.6 | 26.65 | 47.55 | 32.55 | ||
Alcohols | 152.55 | 160.3 | 53.1 | 122.45 | 87.4 | 92.4 | 64.15 | 65.6 | 123.95 | 59.8 | ||
Aldehydes | 302.95 | 330.75 | 198.35 | 373.05 | 98.35 | 173.9 | 148.5 | 226.65 | 139.4 | 286.8 | ||
Ketones | 396.75 | 376.05 | 81.4 | 164.1 | 147.85 | 63.6 | 60.6 | 97.85 | 99.8 | 221.1 | ||
Acids | 37.5 | 38.7 | 0 | 11.75 | 1.45 | 0 | 1.05 | 0 | 1.05 | 0.55 | ||
Terpenes | 0 | 2.75 | 3.85 | 4.55 | 1.05 | 2.7 | 3.2 | 2.85 | 1.85 | 0 | ||
Others | 184.9 | 223.15 | 120.7 | 174.5 | 87.7 | 85.9 | 69.1 | 105.33 | 92.45 | 110 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levent, O. A Detailed Comparative Study on Some Physicochemical Properties, Volatile Composition, Fatty Acid, and Mineral Profile of Different Almond (Prunus dulcis L.) Varieties. Horticulturae 2022, 8, 488. https://doi.org/10.3390/horticulturae8060488
Levent O. A Detailed Comparative Study on Some Physicochemical Properties, Volatile Composition, Fatty Acid, and Mineral Profile of Different Almond (Prunus dulcis L.) Varieties. Horticulturae. 2022; 8(6):488. https://doi.org/10.3390/horticulturae8060488
Chicago/Turabian StyleLevent, Okan. 2022. "A Detailed Comparative Study on Some Physicochemical Properties, Volatile Composition, Fatty Acid, and Mineral Profile of Different Almond (Prunus dulcis L.) Varieties" Horticulturae 8, no. 6: 488. https://doi.org/10.3390/horticulturae8060488
APA StyleLevent, O. (2022). A Detailed Comparative Study on Some Physicochemical Properties, Volatile Composition, Fatty Acid, and Mineral Profile of Different Almond (Prunus dulcis L.) Varieties. Horticulturae, 8(6), 488. https://doi.org/10.3390/horticulturae8060488