Vertical Greenery as Natural Tool for Improving Energy Efficiency of Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Terminology
2.3. External Surface Temperature and Microclimatic Monitoring
2.4. Determination of Thermal Properties
2.5. Electricity Saving
2.6. Saved CO2 Emissions
2.7. Statistical Analysis
3. Results
3.1. Microclimate Monitoring
3.2. Surface Temperature on Unvegetated and Vegetated Façades
3.3. Dependence of Surface Temperature Difference on Global Radiation
3.4. Thermal Transmittance (U)
3.5. Hourly Heat Fluxes through Unvegetated and Vegetated Façades
3.6. Monthly Heat Fluxes through Unvegetated and Vegetated Façades
3.7. Elaboration of Green Factor for Green Vertical Cover Detached from Building Wall
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adriadapt. Improving Thermal Comfort in Buildings. Published on 15 January 2022. Available online: https://adriadapt.eu/adaptation-options/improving-thermal-comfort-in-buildings/ (accessed on 12 June 2022).
- International Energy Agency (IEA). The Future of Cooling. Opportunities for Energy-Efficient Air Conditioning; Technology Report; IEA Publications: Paris, France, May 2018; Available online: https://iea.blob.core.windows.net/assets/0bb45525-277f-4c9c-8d0c-9c0cb5e7d525/The_Future_of_Cooling.pdf (accessed on 12 June 2022).
- European Commission (EU). Green Infrastructure (GI)-Enhancing Europe’s Natural Capital; Commission Document COM(2013) 249 final; European Commission (EU): Brussels, Belgium, 2013.
- European Commission. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2021/27/EU on Energy Efficiency; L156/75-91; European Commission (EU): Brussels, Belgium, 2018.
- De la Sota, C.; Ruffato-Ferreira, V.J.; Ruiz-García, L.; Alvarez, S. Urban green infrastructure as a strategy of climate change mitigation. A case study in northern Spain. Urban For. Urban Green. 2019, 40, 145–151. [Google Scholar] [CrossRef]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.K.E. How Might the Evolution of Urban Agriculture Advance Sustainable Agriculture in the Future? (A Foresight Study Looking at Food Security through the Lens of Urban Rooftop Agriculture and Sustainable Water Management). Available online: http://openresearch.ocadu.ca/id/eprint/259/1/Mitchell_Robert_2015_MDes_SFIN_MRP.pdf (accessed on 12 June 2022).
- Perini, K.; Bazzocchi, F.; Croci, L.; Cattaneo, E. The use of vertical greening systems to reduce the energy demand for air conditioning. Field monitoring in Mediterranean climate. Energy Build. 2017, 143, 35–42. [Google Scholar] [CrossRef]
- Besir, A.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Kontoleon, K.J.; Eumorfopoulou, E.A. The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone. Build. Environ. 2010, 45, 1287–1303. [Google Scholar] [CrossRef]
- Pérez, G.; Rincón, L.; Vila, A.; González, J.M.; Cabeza, L.F. Green vertical systems for buildings as passive systems for energy savings. Appl. Energy 2011, 88, 4854–4859. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Fraaij, A.L.A.; Haas, E.M.; Raiteri, R. Vertical greening systems and the effect on air flow and temperature on the building envelope. Build. Environ. 2011, 46, 2287–2294. [Google Scholar] [CrossRef]
- Vox, G.; Blanco, I.; Campiotti, C.A.; Giagnacovo, G.; Schettini, E. Vertical Green Systems for Buildings Climate Control. In Proceedings of the 43rd International Symposium–Actual Tasks on Agricultural Engineering, Opatija, Croatia, 24–27 February 2015; pp. 723–732. Available online: https://www.academia.edu/18003407/VERTICAL_GREEN_SYSTEMS_FOR_BUILDINGS_CLIMATE_CONTROL (accessed on 12 June 2022).
- Schettini, E.; Blanco, I.; Scarascia Mugnozza, G.; Campiotti, C.A.; Vox, G. Contribution of green walls to building microclimate control. In Proceedings of the 2nd International Symposium on Agricultural Engineering (ISAE 2015), Belgrade, Serbia, 9–10 October 2015; pp. V-53–V-60. Available online: http://isae.agrif.bg.ac.rs/archive/Proceedings_ISAE_2015.pdf (accessed on 12 June 2022).
- Raji, B.; Tenpierik, M.J.; Van Den Dobbelsteen, A. The impact of greening systems on building energy performance: A literature review. Renew. Sustain. Energy Rev. 2015, 45, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Pérez, G.; Coma, J.; Martorell, I.; Cabeza, L.F. Vertical Greenery System (VGS) for energy saving in buildings: A review. Renew. Sustain. Energy Rev. 2014, 39, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Schettini, E.; Blanco, I.; Campiotti, C.A.; Bibbiani, C.; Fantozzi, F.; Vox, G. Green control of microclimate in buildings. Agric. Agric. Sci. Procedia 2016, 8, 576–582. [Google Scholar] [CrossRef]
- Vox, G.; Blanco, I.; Fuina, S.; Campiotti, C.A.; Scarascia Mugnozza, G.; Schettini, E. Evaluation of wall surface temperatures in green facades. In Proceedings of the Institution of Civil Engineers. Proc. Inst. Civ. Eng.-Eng. Sustain. 2017, 170, 334–344. [Google Scholar] [CrossRef]
- Schettini, E.; Campiotti, C.A.; Scarascia Mugnozza, G.; Blanco, I.; Vox, G. Green walls for building microclimate control. ISHS Acta Hortic. 2018, 1215, 73–76. [Google Scholar] [CrossRef]
- Sheweka, S.M.; Nourhan, M.M. Green facades as a new sustainable approach towards climate change. Energy Procedia 2012, 18, 507–520. [Google Scholar] [CrossRef] [Green Version]
- Susorova, I.; Azimi, P.; Brent, S. The effects of climbing vegetation on the local microclimate, thermal performance, and air infiltration of four building facade orientations. Build. Environ. 2014, 76, 113–124. [Google Scholar] [CrossRef]
- Andric, I.; Kamal, A.; Al-Ghamd, S.G. Efficiency of green roofs and green walls as climate change mitigation measures in extremely hot and dry climate: Case study of Qatar. Energy Rep. 2020, 6, 2476–2489. [Google Scholar] [CrossRef]
- Tilley, D.; Price, J.; Matt, S.; Marrow, B. Vegetated Walls: Thermal and Growth Properties of Structured Green Façades. Final Report to Green Roofs for Healthy Cities. Green Walls Group. 29 March 2012. Available online: https://www.researchgate.net/publication/328267296_Vegetated_Walls_Thermal_and_Growth_Properties_of_Structured_Green_Facades (accessed on 12 June 2022).
- Wong, N.H.; Kwang Tan, A.Y.; Chen, Y.; Sekar, K.; Tan, P.Y.; Chan, D.; Chiang, K.; Wong, N.C. Thermal evaluation of vertical greenery systems for building walls. Build. Environ. 2020, 45, 663–672. [Google Scholar] [CrossRef]
- Manso, M.; Teotònio, I.; Matos Silva, C.; Oliveira Cruz, C. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Ariaudo, F.; Corgnati, S.; Fracastoro, G.V.; Raimondo, D. Cooling Load Reduction by Green Walls: Results from an Experimental Campaign. In Proceedings of the 4th International Building Physics Conference (IBPC), Istanbul, Turkey, 15–18 June 2009; Available online: https://www.academia.edu/67354764/Cooling_load_reduction_by_green_walls_results_from_an_experimental_campaign (accessed on 12 June 2022).
- Campiotti, C.A.; Bibbiani, C.; Alonzo, G.; Giagnacovo, G.; Ragona, R.; Viola, C. Green Roofs and Facades Agriculture (GRF) for Supporting Building Energy Efficiency. J. Sustain. Energy 2011, II, 24–29. Available online: http://www.energy-cie.ro/archives/2011/nr_3/v2-n3-4.pdf (accessed on 12 June 2022).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Campiotti, C.A.; Consorti, L.; Giagnacovo, G.; Latini, A.; Puglisi, G.; Scoccianti, M.; Viola, C. Caratterizzazione di Tipologie di Sistemi Vegetali per Migliorare L’efficienza Energetica Degli Edifici Nella Città Metropolitana; Project Report RdS/PAR2015/141; Accordo di Programma Ministero dello Sviluppo Economico—ENEA: Rome, Italy, 2016. Available online: https://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/adp-mise-enea-2015-2017/edifici-intelligenti/rds_par2015-141.pdf (accessed on 12 June 2022).
- Campiotti, C.A.; Giagnacovo, G.; Latini, A.; Margiotta, F.; Nencini, L.; Puglisi, G. Le Coperture Vegetali per la Sostenibilità Energetica ed Ambientale Degli Edifici; Project Report RdS/PAR2016/075; Accordo di Programma Ministero dello Sviluppo Economico—ENEA: Rome, Italy, 2017. Available online: https://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/adp-mise-enea-2015-2017/edifici-intelligenti/rds_par2016_075.pdf (accessed on 12 June 2022).
- ISPRA. Fattori di Emissione Atmosferica di Gas a Effetto Serra Nel Settore Elettrico Nazionale e Nei Principali Paesi Europei; ISPRA Report 317/2020; ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale): Rome, Italy, 2020; ISBN 978-88-448-0992-8. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/resolveuid/7e78bd7229e946ebbf5b104c7f95f7a8 (accessed on 12 June 2022).
- Juaidi, A.; Abdallah, R.; Ayadi, O.; Salameh, T.; Hasan, A.A.; Ibrik, I. Chapter 1-Solar Cooling Research and Technology. In Recent Advances in Renewable Energy Technologies; Jeguirim, M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–44. ISBN 9780323910934. [Google Scholar] [CrossRef]
- Bibbiani, C.; Gargari, C.; Campiotti, C.A.; Salvadori, G.; Fantozzi, F. Evaluation of greenwalls efficiency for building energy saving. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production; Coppola, A., Di Renzo, G., Altieri, G., D’Antonio, P., Eds.; MID-TERM AIIA 2019 Lecture Notes in Civil Engineering; Springer: Cham, Switzerland, 2020; Volume 67, pp. 169–177. [Google Scholar] [CrossRef]
- Afshari, A. A new model of urban cooling demand and heat island–Application to vertical greenery systems (VGS). Energy Build. 2017, 157, 204–210. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; de Gracia, A.; Burés, S.; Urrestarazu, M.; Cabeza, L.F. Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Build. Environ. 2017, 111, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Tollefson, J. What the war in Ukraine means for energy, climate and food. Nature 2022, 604, 232–233. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulos, M.N.; De Masi, R.F.; de Rossi, F.; Papadaki, D.; Ruggiero, S. Green wall design approach towards energy performance and indoor comfort improvement: A case study in Athens. Sustainability 2020, 12, 3772. [Google Scholar] [CrossRef]
- Vox, G.; Blanco, I.; Schettini, E. Green façadas to control wall surface temperature in buildings. Build. Environ. 2018, 129, 154–166. [Google Scholar] [CrossRef]
- Charoenkit, S.; Yiemwattana, S.; Rachapradit, N. Plant characteristics and the potential for living walls to reduce temperatures and sequester carbon. Energy Build. 2020, 225, 110286. [Google Scholar] [CrossRef]
- Ascione, F.; De Masi, R.F.; Mastellone, M.; Ruggiero, S.; Vanoli, G.P. Green walls, a critical review: Knowledge gaps, design parameters, thermal performances and multi-criteria design approaches. Energies 2020, 13, 2296. [Google Scholar] [CrossRef]
- Alexandri, A.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Kumar, V.; Mahalle, A.M. Investigation of the thermal performance of green roof on a mild wild climate. Int. J. Renew. Energy Res. 2016, 6, 487–493. [Google Scholar] [CrossRef]
- Widiastuti, R.; Zaini, J.; Caesarendra, W.; Kokogiannakis, G.; Binti Suhulian, S.N.N. Thermal insulation of green façades based on calculation of heat transfer and long wave infrared radiative exchange. Measurement 2022, 188, 110555. [Google Scholar] [CrossRef]
- Available online: https://www.srsgroup.co.nz/blog/co2-removal-by-living-walls-some-key-facts/ (accessed on 12 June 2022).
- Available online: https://ethicalunicorn.com/2021/07/20/how-green-walls-help-the-environment-clean-the-air-improve-wellbeing/ (accessed on 12 June 2022).
- Wesolowska, M.; Laska, M. The use of green walls and the impact on air quality and life standard. E3S Web Conf. 2019, 116, 00096. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Blanuša, T. Green infrastructure and ecosystem services–Is the devil in the detail? Ann. Bot. 2016, 118, 377–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, E. Quantifying CO2 removal by living walls: A Case Study of the Center for Design Research. J. Undergrad. Res. 2014, 2014, 20–29. Available online: https://kuscholarworks.ku.edu/bitstream/handle/1808/15038/Rivera_jur14.pdf;sequence=1 (accessed on 12 June 2022).
- Manso, M.; Sousa, V.; Matos Silva, C.; Oliveira Cruz, C. The role of green roofs in post COVID-19 confinement: An analysis of willingness to pay. J. Build. Eng. 2021, 44, 103388. [Google Scholar] [CrossRef]
Analysis of Variance | Parameters Estimated | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Effect | DF | SS | MS | F Value | Prob. | Parameter | Estimate | SE | T Value | Prob. |
Model | 1 | 46,137.49017 | 46,137.49017 | 10,647.3099 | 0 | Intercept (a) | 0.701 | 0.054492826 | 12.86966468 | 9.967 × 10−37 |
Error | 2457 | 10,646.80323 | 4.333253247 | GRext | 0.022 | 0.000210841 | 103.1858028 | 0 | ||
Total | 2458 | 56,784.2934 | 23.10182807 | |||||||
R-square: 0.81 | ||||||||||
Model | 1 | 14,497.3 | 14,497.3 | 1344.50 | 3.4 × 10−192 | Intercept (a) | 1.08 | 0.13 | 8.09 | 1.56 × 10−15 |
Error | 1086 | 11,710.0 | 10.8 | GRgap | 0.10 | 0.00 | 36.67 | 3.43 × 10−192 | ||
Total | 1087 | 26,207.4 | 24.1 | |||||||
R-square: 0.55 |
Wall Stratigraphy Elements | Thickness (m) | Conductivity, λ (Wm−1K−1) | Thermal Resistance, R (W−1m2K) | Thermal Transmittance, U (Wm−2K−1) |
---|---|---|---|---|
Adductance (internal heat resistance) | 0.100 | |||
Internal plaster | 0.020 | 0.650 | 0.031 | |
Hollow bricks | 0.080 | 0.230 | 0.348 | |
Air gap | 0.055 | 0.260 | 0.212 | |
Hollow bricks exterior | 0.120 | 0.230 | 0.522 | |
Exterior plaster | 0.020 | 0.650 | 0.031 | |
Adductance (external heat resistance) | ||||
Thermal resistance of the building wall (R) | 1.243 * | |||
Thermal transmittance of the building wall (U) | 0.80 |
Year | Month | HFuf (kWhthm−2) | HFvf (kWhthm−2) | ΔHF (kWhthm−2) |
---|---|---|---|---|
2019 | May | 1.02 | 0.07 | 0.95 |
June | 3.00 | 0.73 | 2.27 | |
July | 3.39 | 0.95 | 2.44 | |
August | 3.91 | 1.37 | 2.54 | |
Total | 11.62 | 3.41 | 8.20 | |
2020 | May | 1.70 | 0.13 | 1.57 |
June | 1.94 | 0.4 | 1.54 | |
July | 3.47 | 1.37 | 2.09 | |
August | 3.68 | 1.71 | 1.97 | |
Total | 10.79 | 3.61 | 7.18 |
Month | |||
---|---|---|---|
2019 | 2020 | 2021 | |
May | 0.89 ± 0.09 | 0.80 ± 0.11 | 0.83 ± 0.13 |
June | 0.92 ± 0.08 | 0.84 ± 0.12 | 0.91 ± 0.10 |
July | 0.96 ± 0.15 | 0.86 ± 0.12 | 0.94 ± 0.05 |
August | 0.89 ± 0.09 | 0.74 ± 0.08 | 0.86 ± 0.12 |
September | 0.80 ± 0.14 | 0.67 ± 0.11 | 0.82 ± 0.12 |
Year | Month | HFvf (kWhthm−2) | (kWhthm−2) |
---|---|---|---|
2019 | May | 0.07 | 0.00 |
June | 0.73 | 1.01 | |
July | 0.95 | 1.29 | |
August | 1.37 | 1.62 | |
Total | 3.41 | 4.34 | |
2020 | May | 0.13 | 0.00 |
June | 0.4 | 0.21 | |
July | 1.37 | 1.34 | |
August | 1.71 | 1.57 | |
Total | 3.61 | 3.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campiotti, C.A.; Gatti, L.; Campiotti, A.; Consorti, L.; De Rossi, P.; Bibbiani, C.; Muleo, R.; Latini, A. Vertical Greenery as Natural Tool for Improving Energy Efficiency of Buildings. Horticulturae 2022, 8, 526. https://doi.org/10.3390/horticulturae8060526
Campiotti CA, Gatti L, Campiotti A, Consorti L, De Rossi P, Bibbiani C, Muleo R, Latini A. Vertical Greenery as Natural Tool for Improving Energy Efficiency of Buildings. Horticulturae. 2022; 8(6):526. https://doi.org/10.3390/horticulturae8060526
Chicago/Turabian StyleCampiotti, Carlo Alberto, Lorenzo Gatti, Alessandro Campiotti, Luciano Consorti, Patrizia De Rossi, Carlo Bibbiani, Rosario Muleo, and Arianna Latini. 2022. "Vertical Greenery as Natural Tool for Improving Energy Efficiency of Buildings" Horticulturae 8, no. 6: 526. https://doi.org/10.3390/horticulturae8060526
APA StyleCampiotti, C. A., Gatti, L., Campiotti, A., Consorti, L., De Rossi, P., Bibbiani, C., Muleo, R., & Latini, A. (2022). Vertical Greenery as Natural Tool for Improving Energy Efficiency of Buildings. Horticulturae, 8(6), 526. https://doi.org/10.3390/horticulturae8060526