Phytochemical Composition of Red-Fleshed Apple Cultivar ‘Baya Marisa’ Compared to Traditional, White-Fleshed Apple Cultivar ‘Golden Delicious’
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Flesh Firmness, Soluble Solid Content, and Fruit Color
2.3. Extraction of Sugars, Organic Acids, and Phenolic Compounds
2.4. HPLC Analysis of Organic Acids and Sugars
2.5. HPLC-Mass Spectrometry Analysis for Phenolic Compounds
2.6. Chemicals
2.7. Statistical Analysis
3. Results and Discussion
3.1. Flesh Firmness, Fruit Color, and Soluble Solid Content
3.2. Content of Organic Acids and Sugars
3.3. Identification of Individual Phenolic Compounds
3.4. Quantification of Individual Phenolic Compounds and Total Analyzed Phenolic Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koutsos, A.; Riccadonna, S.; Ulaszewska, M.M.; Franceschi, P.; Trošt, K.; Galvin, A.; Braune, T.; Fava, F.; Perenzoni, D.; Mattivi, F.; et al. Two apples a day lower serum cholesterol and improve cardiometabolic biomarkers in mildly hypercholesterolemic adults: A randomized, controlled, crossover trial. Am. J. Clin. Nutr. 2020, 111, 307–318. [Google Scholar] [CrossRef]
- Harker, F.R.; Gunson, F.A.; Jaeger, S.R. The case for fruit quality: An interpretive review of consumer attitudes, and preferences for apples. Postharvest Biol. Technol. 2003, 28, 333–347. [Google Scholar] [CrossRef]
- Ceymann, M.; Arrigoni, E.; Schärer, H.; Bozzi Nising, A.; Hurrell, R.F. Identification of apples rich in health-promoting flavan-3-ols and phenolic acids by measuring the polyphenol profile. J. Food Compos. Anal. 2012, 26, 128–135. [Google Scholar] [CrossRef]
- Ban, Y.; Honda, C.; Hatsuyama, Y.; Igarashi, M.; Bessho, H.; Moriguchi, T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 2007, 48, 958–970. [Google Scholar] [CrossRef]
- Funke, K.; Blanke, M. Spatial and temporal enhancement of color development in apples subjected to reflective material in the southern hemisphere. Horticulturae 2021, 7, 2. [Google Scholar] [CrossRef]
- Łata, B.; Trampczynska, A.; Paczesna, J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic. 2009, 121, 176–181. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of polyphenols in different apple varieties. J. Agric. Food Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef]
- Ubi, B.E.; Honda, C.; Bessho, H.; Kondo, S.; Wada, M.; Kobayashi, S.; Moriguchi, T. Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci. 2006, 170, 571–578. [Google Scholar] [CrossRef]
- Van Nocker, S.; Berry, G.; Najdowski, J.; Michelutti, R.; Luffman, M.; Forsline, P.; Alsmairat, N.; Beaudry, R.; Nair, M.G.; Ordidge, M. Genetic diversity of red-fleshed apples (Malus). Euphytica 2012, 185, 281–293. [Google Scholar] [CrossRef]
- Espley, R.V.; Hellens, R.P.; Putterill, J.; Stevenson, D.E.; Kutty-Amma, S.; Allan, A.C. Red coloration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 2007, 49, 414–427. [Google Scholar] [CrossRef] [Green Version]
- Djekic, I.; Radivojevic, D.; Milivojevic, J. Quality perception throughout the apple fruit chain. J. Food Meas. Charact. 2019, 13, 3106–3118. [Google Scholar] [CrossRef]
- Faramarzi, S.; Pacifico, S.; Yadollahi, A.; Lettieri, A.; Nocera, P.; Piccolella, S. Red-fleshed apples: Old autochthonous fruits as a novel source of anthocyanin antioxidants. Plant Foods Hum. Nutr. 2015, 70, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Bars-Cortina, D.; Macià, A.; Iglesias, I.; Romero, M.P.; Motilva, M.J. Phytochemical profiles of new red-fleshed apple varieties compared with traditional and new white-fleshed varieties. J. Agric. Food Chem. 2017, 65, 1684–1696. [Google Scholar] [CrossRef] [PubMed]
- Bars-Cortina, D.; Macià, A.; Iglesias, I.; Garanto, X.; Badiella, L.; Motilva, M.J. Seasonal variability of the phytochemical composition of new red-fleshed apple varieties compared with traditional and new white-fleshed varieties. J. Agric. Food Chem. 2018, 66, 10011–10025. [Google Scholar] [CrossRef] [PubMed]
- Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5. [Google Scholar] [CrossRef]
- Medic, A.; Hudina, M.; Veberic, R. The effect of cane vigour on the kiwifruit (Actinidia chinensis) and kiwiberry (Actinidia arguta) quality. Sci. Rep. 2021, 11, 12749. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Schmitzer, V.; Stampar, F.; Veberic, R.; Koron, D. Chemical profile of black currant fruit modified by different degree of infection with black currant leaf spot. Sci. Hortic. 2013, 150, 399–409. [Google Scholar] [CrossRef]
- Medic, A.; Zamljen, T.; Grohar, M.C.; Slatnar, A.; Hudina, M.; Veberic, R. Using HPLC–MS/MS to Assess the quality of beet, mizuna, lettuce and corn salad after juglone and walnut leaf extract treatments. Agronomy 2022, 12, 347. [Google Scholar] [CrossRef]
- Bizjak, J.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Changes in primary metabolites and polyphenols in the peel of “Braeburn” apples (Malus Domestica Borkh.) during advanced maturation. J. Agric. Food Chem. 2013, 61, 10283–10292. [Google Scholar] [CrossRef]
- Contessa, C.; Botta, R. Comparison of physicochemical traits of red-fleshed, commercial and ancient apple cultivars. Hortic. Sci. 2016, 43, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Espley, R.V.; Bovy, A.; Bava, C.; Jaeger, S.R.; Tomes, S.; Norling, C.; Crawford, J.; Rowan, D.; McGhie, T.K.; Brendolise, C.; et al. Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol. J. 2012, 11, 408–419. [Google Scholar] [CrossRef]
- Bureau, S.; Ścibisz, I.; Le Bourvellec, C.; Renard, C.M.G.C. Effect of sample preparation on the measurement of sugars, organic acids, and polyphenols in apple fruit by mid-infrared spectroscopy. J. Agric. Food Chem. 2012, 60, 3551–3563. [Google Scholar] [CrossRef]
- Jing, C.; Ma, C.; Zhang, J.; Jing, S.; Jiang, X.; Yang, Y.; Zhao, Z. Effect of debagging time on pigment patterns in the peel and sugar and organic acid contents in the pulp of “Golden Delicious” and “Qinguan” apple fruit at mid and late stages of development. PLoS ONE 2016, 11, e0165050. [Google Scholar] [CrossRef] [PubMed]
- Ticha, A.; Salejda, A.M.; Hyšpler, R.; Matejicek, A.; Paprstein, F.; Zadak, Z. Sugar composition of apple cultivars and its relationship to sensory evaluation. Zywn. Nauk. Technol. Jakosc. 2015, 22, 137–150. [Google Scholar] [CrossRef]
- Hudina, M.; Štampar, F. Influence of frost damage on the sugars and organic acids contents in apple and pear flowers. Eur. J. Hortic. Sci. 2006, 71, 161–164. [Google Scholar]
- Begic-Akagic, A.; Spaho, N.; Gasi, F.; Drkenda, P.; Vranac, A.; Meland, M. Sugar and organic acid profiles of the traditional and international apple cultivars for processing. J. Hyg. Eng. Des. 2014, 7, 190–196. [Google Scholar]
- Wagner, A.; Dussling, S.; Scansani, S.; Bach, P.; Ludwig, M.; Steingass, C.B.; Will, F.; Schweiggert, R. Comparative evaluation of juices from red-fleshed apples after production with different dejuicing systems and subsequent storage. Molecules 2022, 27, 2459. [Google Scholar] [CrossRef]
- Farr, J.E.; Giusti, M.M. Investigating the interaction of ascorbic acid with anthocyanins and pyranoanthocyanins. Molecules 2018, 23, 744. [Google Scholar] [CrossRef] [PubMed]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Chinnici, F.; Bendini, A.; Gaiani, A.; Riponi, C. Radical scavenging activities of peels and pulps from cv. Golden Delicious apples as related to their phenolic composition. J. Agric. Food Chem. 2004, 52, 4684–4689. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Liang, D.; Zou, Y.; Li, P.; Ma, F. Phenolic compounds and antioxidant activity in red-fleshed apples. J. Funct. Foods 2015, 18, 1086–1094. [Google Scholar] [CrossRef]
- Gosch, C.; Halbwirth, H.; Stich, K. Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry 2010, 71, 838–843. [Google Scholar] [CrossRef]
- Ju, Z.; Liu, C.; Yuan, Y. Activities of chalcone synthase and UDPGal: Flavonoid-3-O-Glycosyltransferase in relation to anthocyanin synthesis in apple. Sci. Hortic. 1995, 63, 175–185. [Google Scholar] [CrossRef]
- Ceci, A.T.; Bassi, M.; Guerra, W.; Oberhuber, M.; Robatscher, P.; Mattivi, F.; Franceschi, P. Metabolomic characterization of commercial, old, and red-fleshed apple varieties. Metabolites 2021, 11, 378. [Google Scholar] [CrossRef]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Liu, Y.; Shi, X.; Wang, Y.; Zhang, C.; Zhao, Z. The effect of fruit bagging on the color, phenolic compounds and expression of the anthocyanin biosynthetic and regulatory genes on the “Granny Smith” apples. Eur. Food Res. Technol. 2013, 237, 875–885. [Google Scholar] [CrossRef]
- Henry-Kirk, R.A.; McGhie, T.K.; Andre, C.M.; Hellens, R.P.; Allan, A.C. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. J. Exp. Bot. 2012, 63, 5437–5450. [Google Scholar] [CrossRef]
- Joshi, A.P.K.; Rupasinghe, H.P.V.; Khanizadeh, S. Impact of drying processes on bioactive phenolics, vitamin c and antioxidant capacity of red-fleshed apple slices. J. Food Process. Preserv. 2011, 35, 453–457. [Google Scholar] [CrossRef]
- Umemura, H.; Otagaki, S.; Wada, M.; Kondo, S.; Matsumoto, S. Expression and functional analysis of a novel MYB gene, MdMYB110a_JP, responsible for red flesh, not skin color in apple fruit. Planta 2013, 238, 65–76. [Google Scholar] [CrossRef]
- Chagné, D.; Lin-Wang, K.; Espley, R.V.; Volz, R.K.; How, N.M.; Rouse, S.; Brendolise, C.; Carlisle, C.M.; Kumar, S.; de Silva, N.; et al. An Ancient Duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 2013, 161, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Sadilova, E.; Stintzing, F.C.; Carle, R. Chemical quality parameters and anthocyanin pattern of red-fleshed Weirouge apples. J. Appl. Bot. Food Qual. 2006, 80, 82–87. [Google Scholar]
Compounds | ‘Baya Marisa’ | ‘Golden Delicious’ |
---|---|---|
Organic acids | ||
Citric acid | 0.898 ± 0.034 a | 0.570 ± 0.047 b |
Malic acid | 9.685 ± 342.2 a | 7.801 ± 0.153 b |
Ascorbic acid | 0.026 ± 0.005 a | 0.009 ± 0.002 b |
Sugars | ||
Sucrose | 43.674 ± 1.445 a | 42.561 ± 0.593 a |
Glucose | 15.958 ± 1.445 a | 17.035 ± 0.696 a |
Fructose | 51.234 ± 1.311 b | 57.896 ± 0.847 a |
Sorbitol | 6.669 ± 0.518 a | 5.376 ± 0.248 a |
Phenolic Compounds | Rt (min) | [M − H]− (m/z) | [M + H]+ (m/z) | MS2 (m/z) | MS3 (m/z) | Expressed as | ‘Baya Marisa’ | ‘Golden Delicious’ | ||
---|---|---|---|---|---|---|---|---|---|---|
Skin | Flesh | Skin | Flesh | |||||||
Anthocyanins | ||||||||||
Cyanidin-3-O-galactoside | 8.9 | 449 | 287 | cyanidin-3-O-galactoside | X | X | ||||
Cyanidin-3-O-arabinoside | 11.9 | 419 | 287 | cyanidin-3-O-arabinoside | X | X | ||||
Peonidin-3-O-galactoside | 11.0 | 463 | 301 | peonidin-3-O-galactoside | X | X | ||||
Dihydrochalcones | ||||||||||
Phloridzin | 23.9 | 481 | 435,273 | phloridzin | X | X | X | X | ||
Phloretin-2-O-xyloside | 22.2 | 567 | 273,167 | phloridzin | X | X | X | X | ||
Hydroxycinnamic acids | ||||||||||
p-coumaric acid hexoside derivative 1 | 10.1 | 371 | 325,163 | p-coumaric acid | X | X | X | |||
p-coumaric acid hexoside derivative 2 | 12.3 | 371 | 325,163 | p-coumaric acid | X | |||||
p-coumaroyl hexoside derivative | 13.8 | 363 | 325,235,119 | p-coumaric acid | X | |||||
p-coumaric acid hexoside | 13.1 | 325 | 265,235,163 | p-coumaric acid | X | |||||
p-coumaric acid hexoside 1 | 15.3 | 325 | 265,235,163 | p-coumaric acid | X | X | ||||
p-coumaric acid hexoside 2 | 16.6 | 325 | 265,235,163 | p-coumaric acid | X | X | ||||
Caffeic acid derivative | 15.8 | 335 | 179,135 | caffeic acid | X | X | ||||
Caffeic acid derivative 2 | 12.9 | 311 | 179 | caffeic acid | X | X | ||||
Dicaffeic acid derivative | 19.4 | 403 | 279,179,135 | caffeic acid | X | |||||
Dicaffeic acid derivative 1 | 10.8 | 457 | 179,135 | caffeic acid | X | X | ||||
Dicaffeic acid derivative 2 | 19.3 | 403 | 233,179,135 | caffeic acid | X | X | ||||
Dicaffeic acid derivative 3 | 22.6 | 429 | 249,205,179,135 | caffeic acid | X | X | ||||
Caffeic acid hexoside 1 | 11.8 | 341 | 179,135 | caffeic acid | X | X | ||||
Caffeic acid hexoside 2 | 11.9 | 341 | 179,135 | caffeic acid | X | |||||
Dihydrodicaffeic acid derivative | 20.4 | 405 | 225,181 | caffeic acid | X | X | X | |||
4-O-p-coumaroylquinic acid | 16.0 | 337 | 191,173,163 | chlorogenic acid | X | X | ||||
5-O-p-coumaroylquinic acid | 16.5 | 337 | 191,163,119 | chlorogenic acid | X | X | ||||
Chlorogenic acid (5-caffeoylquinic acid) | 13.4 | 353 | 191,179 | chlorogenic acid | X | X | X | X | ||
Caffeoylferuoylquinic acid | 14.2 | 563 | 385,205 | 191,193 | chlorogenic acid | X | X | |||
Feruloylquinic acid gallate | 11.0 | 658 | 385,272,193 | chlorogenic acid | X | X | ||||
Ferulic acid hexoside | 14.3 | 355 | 193 | ferulic acid | X | |||||
Ferulic acid hexoside derivative | 11.6 | 401 | 355 | 265,235,193 | ferulic acid | X | X | |||
Cryptochlorogenic acid (4-caffeoylquinic acid) | 14.7 | 353 | 191,179 | cryptochlorogenic acid | X | X | ||||
Flavanols | ||||||||||
(-)epicatehin | 15.8 | 289 | 271,245,205,179 | (-) epicatechin | X | X | X | X | ||
(Epi)catechin derivative 1 | 18.6 | 583 | 289,271 | 271,245,205,179 | (-) epicatechin | X | ||||
(Epi)catechin derivative 2 | 18.9 | 493 | 331,330,316,289 | 316,289,271,209 | (-) epicatechin | X | ||||
(Epi)catechin derivative 3 | 21.1 | 477 | 331,330,316,289 | 316,289,271,209 | (-) epicatechin | X | ||||
Flavanol monomer | 22.0 | 289 | 245,205,179 | (-) epicatechin | X | |||||
Procyanidin dimer 1 | 10.1 | 577 | 451,425,407 | 289,245 | procyanidin B1 | X | ||||
Procyanidin dimer 2 | 11.0 | 577 | 451,425,407 | 289,245 | procyanidin B1 | X | ||||
Procyanidin dimer 3 | 12.7 | 577 | 451,425,407 | 289,245 | procyanidin B1 | X | ||||
Procyanidin dimer 4 | 14.6 | 577 | 451,425,407 | 289,245 | procyanidin B1 | X | X | X | X | |
Procyanidin trimer | 16.9 | 865 | 739,695,577 | procyanidin B1 | X | X | ||||
Dihydroprocyanidin dimer | 21.3 | 579 | 289,245,203 | 271,245,205,179 | procyanidin B1 | X | ||||
Quercetin-3-O-arabinofuranoside | 22.9 | 433 | 301,300 | quercetin-3-O-arabinofuranoside | X | X | X | |||
Quercetin-3-O-arabinopyranoside | 22.5 | 433 | 301,300 | quercetin-3-O-arabinopyranoside | X | |||||
Quercetin-3-O-galactoside | 21.2 | 463 | 301,300 | quercetin-3-O-galactoside | X | X | X | |||
Quercetin-3-O-glucoside | 21.4 | 463 | 301,300 | quercetin-3-O-glucoside | X | X | X | |||
Quercetin-3-O-rhamnoside | 23.0 | 447 | 301,300 | quercetin-3-O-rhamnoside | X | X | X | X | ||
Quercetin-3-O-rutinoside | 20.4 | 609 | 301,300 | quercetin-3-O-rutinoside | X | X | ||||
Quercetin-3-O-xyloside | 22.2 | 433 | 301,300 | quercetin-3-O-xyloside | X | X |
Skin | Flesh | |||
---|---|---|---|---|
Compunds | ‘Baya Marisa’ | ‘Golden Delicious’ | ‘Baya Marisa’ | ‘Golden Delicious’ |
Hydroxycinnamic acids | ||||
p-coumaric acid hexoside derivative 1 | 2.4 ± 0.1 a | 0.9 ± 0.1 b | 0.60 ± 0.1 | nd |
p-coumaric acid hexoside derivative 2 | 5.6 ± 0.8 | nd | nd | nd |
p-coumaroyl hexoside derivative | nd | 1.2 ± 0.1 | nd | nd |
p-coumaric acid hexoside | nd | 0.3 ± 0.0 | nd | nd |
p-coumaric acid hexoside 1 | 2.6 ± 0.0 | nd | 0.5 ± 0.0 | nd |
p-coumaric acid hexoside 2 | 2.1 ± 0.1 | nd | 0.2 ± 0.0 | nd |
Caffeic acid derivative | nd | 1.2 ± 0.1 | 1.1 ± 0.1 | nd |
Caffeic acid derivative 2 | 8.5 ± 1.2 | nd | 7.3 ± 1.1 | nd |
Dicaffeic acid derivative | nd | nd | nd | 0.4 ± 0.0 |
Dicaffeic acid derivative 1 | 5.5 ± 0.8 | nd | 0.9 ± 0.1 | nd |
Dicaffeic acid derivative 2 | 1.5 ± 0.1 | nd | 0.3 ± 0.0 | nd |
Dicaffeic acid derivative 3 | nd | nd | 0.4 ± 0.1 a | 0.4 ± 0.0 a |
Caffeic acid hexoside 1 | nd | 0.8 ± 0.1 | 0.2 ± 0.0 | nd |
Caffeic acid hexoside 2 | nd | 1.2 ± 0.3 | nd | nd |
Dihydrodicaffeic acid derivative | 1.4 ± 0.2 | nd | 0.2 ± 0.0 a | 0.3 ± 0.0 a |
4-O-p-coumaroylquinic acid | nd | 27.4 ± 2.4 | nd | 10.2 ± 0.6 |
5-O-p-coumaroylquinic acid | nd | 17.4 ± 2.5 | 2.5 ± 0.3 | nd |
Chlorogenic acid (5-caffeoylquinic acid) | 43.0 ± 5.3 b | 85.8 ± 4.0 a | 41.2 ± 4.9 b | 59.0 ± 3.1 a |
Caffeoylferuoylquinic acid | nd | nd | 5.6 ± 0.1 a | 1.7 ± 0.1 b |
Feruloylquinnic acid gallate | nd | 1.3 ± 0.2 | 2.4 ± 0.3 | nd |
Ferulic acid hexoside | nd | 1.1 ± 0.1 | nd | nd |
Ferulic acid hexoside derivative | nd | nd | 0.2 ± 0.1 | nd |
Cryptochlorogenic acid (4-caffeoylquinic acid) | nd | 7.8 ± 0.5 | nd | 0.8 ± 0.0 |
Dihydrochalcones | ||||
Phloridzin | 137.6 ± 8.0 a | 28.8 ± 2.3 b | 4.0 ± 0.5 a | 5.7 ± 0.4 a |
Phloretin-2-O-xyloside | 47.7 ± 3.0 a | 27.4 ± 2.5 b | 5.4 ± 0.8 a | 4.2 ± 0.3 a |
Flavonols | ||||
Quercetin-3-O-arabinofuranoside | 49.1 ± 4.1 a | 30.6 ± 2.3 b | 0.9 ± 0.1 | nd |
Quercetin-3-O-arabinopyranoside | 15.5 ± 1.5 | nd | nd | nd |
Quercetin-3-O-galactoside | 87.6 ± 11.1 a | 58.6 ± 6.4 b | 1.1 ± 0.0 | nd |
Quercetin-3-O-glucoside | 14.7 ± 2.0 a | 18.7 ± 1.4 a | 0.8 ± 0.1 | nd |
Quercetin-3-O-rhamnoside | 23.0 ± 2.5 b | 37.4 ± 2.3 a | 1.9 ± 0.2 a | 1.7 ± 0.2 a |
Quercetin-3-O-rutinoside | 37.7 ± 2.7 a | 23.7 ± 1.9 b | nd | nd |
Quercetin-3-O-xyloside | 23.1 ± 1.8 a | 9.7 ± 0.8 b | nd | nd |
Flavanols | ||||
(-)epicatehin | 80.0 ± 6.1 a | 54.1 ± 1.7 b | 4.8 ± 0.2 a | 15.6 ± 1.2 a |
Epicatechin derivative 1 | nd | 1.7 ± 0.2 | nd | nd |
Epicatechin derivative 2 | nd | 9.4 ± 1.5 | nd | nd |
Epicatechin derivative 3 | nd | 26.8 ± 1.8 | nd | nd |
Flavanol monomer | nd | nd | 1.1 ± 0.2 | nd |
Procyanidin dimer 1 | nd | 6.7 ± 0.7 | nd | nd |
Procyanidin dimer 2 | nd | 40.8 ± 2.8 | nd | nd |
Procyanidin dimer 3 | nd | 64.9 ± 6.3 | nd | nd |
Procyanidin dimer 4 | 99.6 ± 9.0 b | 142.1 ± 9.7 a | 16.6 ± 1.2 a | 33.8 ± 4.8 a |
Procyanidin trimer | 59.4 ± 5.8 a | 41.2 ± 2.6 b | nd | nd |
Dihydroprocyanidin dimer | nd | 35.5 ± 1.6 | nd | nd |
Anthocyanins | ||||
Cyanidin-3-galactoside | 526.3 ± 77.0 | nd | 80.6 ± 5.4 | nd |
Cyanidin-3-arabinoside | 14.3 ± 0.6 | nd | 4.8 ± 0.2 | nd |
Peonidin-3-galactoside | 24.60 ± 4.0 | nd | 1.7 ± 0.1 | nd |
Total hydroxycinnamic acids | 72.6 ± 8.2 b | 146.5 ± 8.6 a | 69.3 ± 6.3 a | 74.7 ± 3.8 a |
Total dihydrochalcones | 185.3 ± 9.6 a | 56.2 ± 4.5 b | 9.4 ± 1.2 a | 9.9 ± 0.8 a |
Total flavonols | 250.7 ± 21.6 a | 178.6 ± 14.2 b | 4.7 ± 0.3 a | 1.7 ± 0.2 b |
Total flavanols | 238.9 ± 20.4 b | 423.2 ± 24.2 a | 22.5 ± 1.4 b | 49.4 ± 5.9 a |
Total anthocyanins | 565.2 ± 81.5 | nd | 87.1 ± 5.6 | nd |
TAPC | 1312.7 ± 117.4 a | 804.5 ± 39.3 b | 193.0 ± 12.6 a | 135.6 ± 8.4 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juhart, J.; Medic, A.; Veberic, R.; Hudina, M.; Jakopic, J.; Stampar, F. Phytochemical Composition of Red-Fleshed Apple Cultivar ‘Baya Marisa’ Compared to Traditional, White-Fleshed Apple Cultivar ‘Golden Delicious’. Horticulturae 2022, 8, 811. https://doi.org/10.3390/horticulturae8090811
Juhart J, Medic A, Veberic R, Hudina M, Jakopic J, Stampar F. Phytochemical Composition of Red-Fleshed Apple Cultivar ‘Baya Marisa’ Compared to Traditional, White-Fleshed Apple Cultivar ‘Golden Delicious’. Horticulturae. 2022; 8(9):811. https://doi.org/10.3390/horticulturae8090811
Chicago/Turabian StyleJuhart, Jan, Aljaz Medic, Robert Veberic, Metka Hudina, Jerneja Jakopic, and Franci Stampar. 2022. "Phytochemical Composition of Red-Fleshed Apple Cultivar ‘Baya Marisa’ Compared to Traditional, White-Fleshed Apple Cultivar ‘Golden Delicious’" Horticulturae 8, no. 9: 811. https://doi.org/10.3390/horticulturae8090811
APA StyleJuhart, J., Medic, A., Veberic, R., Hudina, M., Jakopic, J., & Stampar, F. (2022). Phytochemical Composition of Red-Fleshed Apple Cultivar ‘Baya Marisa’ Compared to Traditional, White-Fleshed Apple Cultivar ‘Golden Delicious’. Horticulturae, 8(9), 811. https://doi.org/10.3390/horticulturae8090811