Hairy Root Induction of Taxus baccata L. by Natural Transformation with Rhizobium rhizogenes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- Direct inoculation ex vitro: ex vitro seedling inoculation by direct injection of a liquid bacterial culture.
- Liquid co-culture ex vitro: ex vitro needle inoculation by liquid co-culturing with bacteria.
- Dipping method: ex vitro shoot inoculation by dipping liquid bacterial culture.
- Direct inoculation in vitro: in vitro shoot inoculation by directly smearing in a solid bacterial culture (Supplementary File S1).
- Liquid co-culture in vitro: in vitro seedling inoculation by liquid co-culturing with bacteria (Supplementary File S2).
2.2. Plant Material
2.3. Bacterial Strain
2.4. Ex Vitro Seedlings Inoculation by Direct Injection of a Liquid Bacterial Culture
2.5. Ex Vitro Needle Inoculation by Liquid Co-Culturing with Bacteria
2.6. Ex Vitro Shoot Inoculation by Dipping Liquid Bacterial Culture
2.7. Molecular Analysis for the Confirmation of Transgenic HRs
3. Results
3.1. Transformation Efficiency of Different Inoculation Methods
3.2. Direct Inoculation Ex Vitro
3.3. Liquid Co-Culture Ex Vitro
3.4. Dipping Method
3.5. Direct Inoculation In Vitro and Liquid Co-Culture In Vitro (Supplementary Files S1 and S2)
3.6. Molecular Analysis on the Putative HRs from Ex Vitro Seedlings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeLong, J.; Prange, R. Taxus spp.: Botany, Horticulture, and Source of Anti-Cancer Compounds. Hortic. Rev. 2010, 32, 299–327. [Google Scholar]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef]
- Cragg, G.M.; Boyd, M.R.; CardellinaIi, J.H.; Newman, D.J.; Snader, K.M.; McCloud, T.G. Ethnobotany and Drug Discovery: The Expe-rience of the US National Cancer Institute. In Ciba Foundation Symposium 185—Ethnobotany and the Search for New Drugs; Chadwick, D.J., Marsh, J., Eds.; Wiley: New York, NY, USA, 2007; pp. 178–196. [Google Scholar]
- Arnst, J. When Taxol met tubulin. J. Biol. Chem. 2020, 295, 13994–13995. [Google Scholar] [CrossRef] [PubMed]
- Rowinsky, E.K.; Donehower, R.C. Paclitaxel (Taxol). N. Engl. J. Med. 1995, 332, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A Compressive Review about Taxol®: History and Future Challenges. Molecules 2020, 25, 5986. [Google Scholar] [CrossRef] [PubMed]
- Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277, 665–667. [Google Scholar] [CrossRef]
- Schiff, P.B.; Horwitz, S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA 1980, 77, 1561–1565. [Google Scholar] [CrossRef] [Green Version]
- De Brabander, M.; Geuens, G.; Nuydens, R.; Willebrords, R.; De Mey, J. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc. Natl. Acad. Sci. USA 1981, 78, 5608–5612. [Google Scholar] [CrossRef] [Green Version]
- Manfredi, J.J.; Parness, J.; Horwitz, S.B. Taxol binds to cellular microtubules. J. Cell Biol. 1982, 94, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, S.B. How to make taxol from scratch. Nature 1994, 367, 593–594. [Google Scholar] [CrossRef]
- Vidensek, N.; Lim, P.; Campbell, A.; Carlson, C. Taxol Content in Bark, Wood, Root, Leaf, Twig, and Seedling from Several Taxus Species. J. Nat. Prod. 1990, 53, 1609–1610. [Google Scholar] [CrossRef] [PubMed]
- Witherup, K.M.; Look, S.A.; Stasko, M.W.; Ghiorzi, T.J.; Muschik, G.M.; Cragg, G.M. Taxus spp. needles contain amounts of taxol com-parable to the bark of Taxus brevifolia: Analysis and isolation. J. Nat. Prod. 1990, 53, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Holton, R.A.; Kim, H.B.; Somoza, C.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S. First total synthesis of taxol. 2. Completion of the C and D rings. J. Am. Chem. Soc. 1994, 116, 1599–1600. [Google Scholar] [CrossRef]
- Holton, R.A.; Somoza, C.; Kim, H.B.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S. First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc. 1994, 116, 1597–1598. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Yang, Z.; Liu, J.J.; Ueno, H.; Nantermet, P.G.; Guy, R.K.; Claiborne, C.F.; Renaud, J.; Couladouros, E.A.; Paulvannan, K.; et al. Total synthesis of taxol. Nature 1994, 367, 630–634. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Ueno, H.; Liu, J.-J.; Nantermet, P.G.; Yang, Z.; Renaud, J.; Paulvannan, K.; Chadha, R. Total Synthesis of Taxol. 4. The Final Stages and Completion of the Synthesis. J. Am. Chem. Soc. 1995, 117, 653–659. [Google Scholar] [CrossRef]
- Hezari, M.; Croteau, R. Taxol Biosynthesis: An Update. Planta Medica 1997, 63, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Mangatal, L.; Adeline, M.-T.; Guénard, D.; Guéritte-Voegelein, F.; Potier, P. Application of the vicinal oxyamination reaction with asymmetric induction to the hemisynthesis of taxol and analogues. Tetrahedron 1989, 45, 4177–4190. [Google Scholar] [CrossRef]
- Colin, M.; Guenard, D.; Gueritte-Voegelein, F.; Pierre, P. Dérivés du Taxol, Leur Préparation et Les Compositions Pharmaceutiques Qui Les Contiennent. U.S. Patent EP0253738A1, 31 January 1990. [Google Scholar]
- Guenard, D.; Gueritte-Voegelein, F.; Potier, P. Taxol and taxotere: Discovery, chemistry, and structure-activity relationships. Ac-Counts Chem. Res. 1993, 26, 160–167. [Google Scholar] [CrossRef]
- Rao, K.V. Process for the Preparation of Taxol and 10-Deacetyltaxol. U.S. Patent US5200534A, 6 April 1993. [Google Scholar]
- Jaziri, M.; Zhiri, A.; Guo, Y.-W.; Dupont, J.-P.; Shimomura, K.; Hamada, H.; Vanhaelen, M.; Homès, J. Taxus sp. cell, tissue and organ cultures as alternative sources for taxoids production: A literature survey. Plant Cell Tissue Organ Cult. (PCTOC) 1996, 46, 59–75. [Google Scholar] [CrossRef]
- Xu, H.; Kim, Y.-K.; Suh, S.-Y.; Uddin, M.R.; Lee, S.-Y.; Park, S.-U. Decursin Production from Hairy Root Culture of Angelica gigas. J. Korean Soc. Appl. Biol. Chem. 2008, 51, 349–351. [Google Scholar] [CrossRef]
- Intrieri, M.C.; Buiatti, M. The Horizontal Transfer of Agrobacterium rhizogenes Genes and the Evolution of the Genus Nicotiana. Mol. Phylogenetics Evol. 2001, 20, 100–110. [Google Scholar] [CrossRef]
- European-Union. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive 90/220/EEC-Commission Dec-Laration; European-Union: Brussels, Belgium, 2001.
- Mishiba, K.-I.; Nishihara, M.; Abe, Y.; Nakatsuka, T.; Kawamura, H.; Kodama, K.; Takesawa, T.; Abe, J.; Yamamura, S. Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol. 2006, 23, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Matveeva, T.V.; Bogomaz, D.I.; Pavlova, O.A.; Nester, E.W.; Lutova, L.A. Horizontal Gene Transfer from Genus Agrobacterium to the Plant Linaria in Nature. Mol. Plant-Microbe Interactions® 2012, 25, 1542–1551. [Google Scholar] [CrossRef] [Green Version]
- Lütken, H.; Clarke, J.L.; Müller, R. Genetic engineering and sustainable production of ornamentals: Current status and future directions. Plant Cell Rep. 2012, 31, 1141–1157. [Google Scholar] [CrossRef]
- Tepfer, D. Genetic transformation using Agrobacterium rhizogenes. Physiol. Plant. 1990, 79, 140–146. [Google Scholar] [CrossRef]
- White, F.F.; Nester, E.W. Hairy root: Plasmid encodes virulence traits in Agrobacterium rhizogenes. J. Bacteriol. 1980, 141, 1134–1141. [Google Scholar] [CrossRef] [Green Version]
- Bosmans, L.; Moerkens, R.; Wittemans, L.; De Mot, R.; Rediers, H.; Lievens, B. Rhizogenic agrobacteria in hydroponic crops: Epidemics, diagnostics and control. Plant Pathol. 2017, 66, 1043–1053. [Google Scholar] [CrossRef]
- Chilton, M.-D.; Tepfer, D.A.; Petit, A.; David, C.; Casse-Delbart, F.; Tempé, J. Agrobacterium rhizogenes inserts T-DNA into the ge-nomes of the host plant root cells. Nature 1982, 295, 432–434. [Google Scholar] [CrossRef]
- White, F.F.; Ghidossi, G.; Gordon, M.P.; Nester, E.W. Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc. Natl. Acad. Sci. USA 1982, 79, 3193–3197. [Google Scholar] [CrossRef] [Green Version]
- White, F.F.; Taylor, B.H.; A Huffman, G.; Gordon, M.P.; Nester, E.W. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J. Bacteriol. 1985, 164, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Slightom, J.L.; Durand-Tardif, M.; Jouanin, L.; Tepfer, D. Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J. Biol. Chem. 1986, 261, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Casanova, E.; Trillas, M.I.; Moysset, L.; Vainstein, A. Influence of rol genes in floriculture. Biotechnol. Adv. 2005, 23, 3–39. [Google Scholar] [CrossRef] [PubMed]
- Desmet, S.; Dhooghe, E.; De Keyser, E.; Van Huylenbroeck, J.; Muller, R.; Geelen, D.; Lutken, H. Rhizogenic agrobacteria as an inno-vative tool for plant breeding: Current achievements and limitations. Appl. Microbiol. Biotechnol. 2020, 104, 2435–2451. [Google Scholar] [CrossRef]
- Vladimirov, I.A.; Matveeva, T.V.; Lutova, L.A. Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agro-bacterium rhizogenes. Russ J. Genet. 2015, 51, 121–129. [Google Scholar] [CrossRef]
- A Huffman, G.; White, F.F.; Gordon, M.P.; Nester, E.W. Hairy-root-inducing plasmid: Physical map and homology to tumor-inducing plasmids. J. Bacteriol. 1984, 157, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Jouanin, L. Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 1984, 12, 91–102. [Google Scholar] [CrossRef]
- Camilleri, C.; Jouanin, L. The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: Nucleotide sequence analysis and introduction into tobacco plants. Mol. Plant-Microbe Interact. MPMI 1991, 4, 155–162. [Google Scholar] [CrossRef]
- Rangslang, R.K.; Liu, Z.; Lütken, H.; Favero, B.T. Agrobacterium spp. genes and ORFs: Mechanisms and applications in plant science. Ciência e Agrotecnol. 2018, 42, 453–463. [Google Scholar] [CrossRef]
- Hooykaas, P.; Hofker, M.; Dulk-Ras, H.D.; Schilperoort, R. A comparison of virulence determinants in an octopine Ti plasmid, a nopaline Ti plasmid, and an Ri plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid 1984, 11, 195–205. [Google Scholar] [CrossRef]
- Kim, J.A.; Baek, K.H.; Son, Y.M.; Son, S.H.; Shin, H. Hairy Root Cultures of Taxus cuspidata for Enhanced Production of Paclitaxel. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 144–150. [Google Scholar] [CrossRef]
- Plaut-Carcasson, Y.Y. Plant Tissue Culture Method for Taxol Production. U.S. Patent WO1994020606A1, 15 September 1994. [Google Scholar]
- Huang, Z.; Mu, Y.; Zhou, Y.; Chen, W.; Xu, K.; Yu, Z.; Bian, Y.; Yang, G. Transformation of Taxas brevifolia by Agrobacterium rhizogenes and taxol production in hairy roots culture. Acta Bot. Yunnanica 1997, 19, 292–296. [Google Scholar]
- Furmanowa, M.; Sykłowska-Baranek, K. Hairy root cultures of Taxus × media var. Hicksii Rehd. as a new source of paclitaxel and 10-deacetylbaccatin III. Biotechnol. Lett. 2000, 22, 683–686. [Google Scholar] [CrossRef]
- Spjut, R.W. Taxonomy and Nomenclature of Taxus (Taxaceae). J. Bot. Res. Inst. Tex. 2007, 1, 203–289. [Google Scholar]
- Sahai, P.; Sinha, V.B. Development of hairy root culture in Taxus baccata sub sp wallichiana as an alternative for increased Taxol production. Mater. Today Proc. 2021, 49, 3443–3448. [Google Scholar] [CrossRef]
- Tepfer, M.; Casse-Delbart, F. Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol. Sci. 1987, 4, 24–28. [Google Scholar]
- Nguyen, V.; Searle, I.R. An Efficient Root Transformation System for Recalcitrant Vicia sativa. Front. Plant Sci. 2022, 12, 781014. [Google Scholar] [CrossRef]
- Hiei, Y.; Ishida, Y.; Kasaoka, K.; Komari, T. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. (PCTOC) 2006, 87, 233–243. [Google Scholar] [CrossRef]
- Khanna, H.; Becker, D.; Kleidon, J.; Dale, J. Centrifugation Assisted Agrobacterium tumefaciens-mediated Transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol. Breed. 2004, 14, 239–252. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lütken, H.; Jensen, E.; Wallström, S.; Muller, R.; Christensen, B. Development and evaluation of a non-gmo breeding technique exemplified by kalanchoë. Acta Hortic. 2012, 961, 51–58. [Google Scholar] [CrossRef]
- Topp, S.H.; Rasmussen, S.K.; Sander, L. Alcohol induced silencing of gibberellin 20-oxidases in Kalanchoe blossfeldiana. Plant Cell Tissue Organ Cult. (PCTOC) 2008, 93, 241–248. [Google Scholar] [CrossRef]
- Chang, S.; Chen, F.; Chen, Y.; Tsay, J.; Chen, J.; Huang, C.; Lu, W.; Ho, C. Induction, culture, and taxane production of crown galls and hairy roots of Taxus sumatrana (Miq) de Laub. Taiwan J. For. Sci. 2017, 32, 283–297. [Google Scholar]
- Liu, K.; Ding, X.; Deng, B.; Chen, W. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J. Ind. Microbiol. Biotechnol. 2009, 36, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, D.; Sushim, G.; Syed, A.; Khan, B.; Ahmad, A. Molecular and Morphological Characterization of a Taxol-Producing Endophytic Fungus, Gliocladium sp., from Taxus baccata. Mycobiology 2011, 39, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Bulgakov, V.P.; Shkryl, Y.N.; Veremeichik, G.N. Engineering High Yields of Secondary Metabolites in Rubia Cell Cultures Through Transformation with Rol Genes; Humana Press: Totowa, NJ, USA, 2010; pp. 229–242. [Google Scholar]
- Shkryl, Y.; Veremeichik, G.; Bulgakov, V.; Avramenko, T.; Günter, E.; Ovodov, Y.; Muzarok, T.; Zhuravlev, Y. The production of class III plant peroxidases in transgenic callus cultures transformed with the rolB gene of Agrobacterium rhizogenes. J. Biotechnol. 2013, 168, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cai, Y.; Liu, X.; Guo, C.; Sun, S.; Wu, C.; Jiang, B.; Han, T.; Hou, W. Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation. Crop. J. 2018, 6, 162–171. [Google Scholar] [CrossRef]
Target | Orientation | Sequence | Amplicon Size | Reference |
---|---|---|---|---|
rolD | Forward | 5’-GCGAAGTGGATGTCTTTGGT-3’ | 225 bp | Lütken et al. [56] |
Reverse | 5’-TTGCGAGGTACACTGGACTG-3’ | |||
rolD | Forward | 5’-CTGAATTACGACGCCTTGCG-3’ | 196 bp | Designed with Primer-BLAST using the accession X12867.1 position: 2855. |
Reverse | 5’-TGCGATGACGACTGTTCCAA-3’ | |||
18S | Forward | 5’-CGGCTACCACATCCAAGGAA-3’ | unknown | Topp et al. [57] |
Reverse | 5’-GCTGGAATTACCGCGGCT-3’ |
Inoculation Method | Number of Inoculated Explants | Number of Hairy Roots Formed | Transformation Efficiency |
---|---|---|---|
Direct inoculation ex vitro | 7 | 1 | 14.3% |
Liquid co-culture ex vitro | 900 | 0 | 0 |
Dipping | 20 | 0 | 0 |
Direct inoculation in vitro | 20 | 0 | 0 |
Liquid co-culture in vitro | 18 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Plácido, J.P.A.; Pateraki, I.; Kampranis, S.; Favero, B.T.; Lütken, H. Hairy Root Induction of Taxus baccata L. by Natural Transformation with Rhizobium rhizogenes. Horticulturae 2023, 9, 4. https://doi.org/10.3390/horticulturae9010004
He J, Plácido JPA, Pateraki I, Kampranis S, Favero BT, Lütken H. Hairy Root Induction of Taxus baccata L. by Natural Transformation with Rhizobium rhizogenes. Horticulturae. 2023; 9(1):4. https://doi.org/10.3390/horticulturae9010004
Chicago/Turabian StyleHe, Junou, João Paulo Alves Plácido, Irini Pateraki, Sotirios Kampranis, Bruno Trevenzoli Favero, and Henrik Lütken. 2023. "Hairy Root Induction of Taxus baccata L. by Natural Transformation with Rhizobium rhizogenes" Horticulturae 9, no. 1: 4. https://doi.org/10.3390/horticulturae9010004
APA StyleHe, J., Plácido, J. P. A., Pateraki, I., Kampranis, S., Favero, B. T., & Lütken, H. (2023). Hairy Root Induction of Taxus baccata L. by Natural Transformation with Rhizobium rhizogenes. Horticulturae, 9(1), 4. https://doi.org/10.3390/horticulturae9010004