Response of Warm Season Turf Grasses to Combined Cold and Salinity Stress under Foliar Applying Organic and Inorganic Amendments
Abstract
:1. Introduction
- (1)
- Which turfgrass is more tolerant to combined cold and salinity stress?
- (2)
- Which applied amendment is more effective in mitigating these previous stresses on the studied turfgrasses?
- (3)
- Which source of silicon and its applied dose is the best to ameliorate the growth and quality of the studied turfgrasses?
- (4)
- Which dose of the applied amendment can be used under salt-affected soil conditions?
2. Materials and Methods
2.1. Experimental Design and Growth Conditions
2.2. Treatments and Their Sources
2.3. Plant Physiological and Chemical Parameters
2.4. Plant Quality Parameters
2.5. Statistical Analyses
3. Results
3.1. Applied Amendments and Vegetative Growth
3.2. Applied Amendments and Turf Quality Parameters
3.3. Applied Amendments and Chlorophyll Content
3.4. Applied Amendments and Chemical Composition of Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiuxin, L.; Liebao, H. Progress and Challenges in China Turfgrass Abiotic Stress Resistance Research. Front. Plant Sci. 2022, 13, 922175. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.; Kenna, M. Lawn and Turf Hayes’ Handbook of Pesticide Toxicology; Academic Press: London, UK, 2010; pp. 1047–1076. [Google Scholar]
- Beard, J.B.; DiPaola, J.M.; Karnok, K.J.; Batten, S. Introduction to Turfgrass Science & Culture; Burgess Publishing Co.: Minneapolis, MN, USA, 1979. [Google Scholar]
- Hanna, W.; Raymer, P.; Schwartz, B. Warm-Season Grasses: Biology and Breeding. In Turfgrass: Biology, Use, and Management, Agronomy Monograph No. 56; Stier, J.C., Horgan, B.P., Bonos, S.A., Eds.; American Society of Agronomy: Madison, WI, USA, 2013; pp. 543–590. [Google Scholar]
- Uddin, M.K.; Juraimi, A.S. Salinity Tolerance Turfgrass: History and Prospects. Sci. World J. 2013, 2013, 409413. [Google Scholar] [CrossRef]
- Jespersen, D.; Leclerc, M.; Zhang, G.; Raymer, P. Drought performance and physiological responses of bermudagrass and seashore paspalum. Crop Sci. 2019, 59, 778–786. [Google Scholar] [CrossRef]
- Martiniello, P. Effect of traffic stress on cool-season turfgrass under a Mediterranean climate. Agron. Sustain. Dev. 2007, 27, 293–301. [Google Scholar] [CrossRef]
- Głąb, T.; Szewczyk, T.; Gondekc, W.; Knagad, K.; Tomasikd., J.; Kowalik, M.K. Effect of plant growth regulators on visual quality of turfgrass. Sci. Hort. 2020, 267, 109314. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, W.; Amombo, E.; Hu, L.; Kjorven, J.O.; Chen, L. Mechanisms of Environmental Stress Tolerance in Turfgrass. Agronomy 2020, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- Katuwal, K.B.; Xiao, B.; Jespersen, D. Physiological Responses and Tolerance Mechanisms of Seashore Paspalum and Centipedegrass Exposed to Osmotic and Iso-osmotic Salt stresses. J. Plant Physiol. 2020, 248, 153154. [Google Scholar] [CrossRef]
- Torun, H. Combined efficiency of salicylic acid and calcium on the antioxidative defense system in two different carbon-fixative turfgrasses under combined drought and salinity. S. Afr. J. Bot. 2022, 144, 72–82. [Google Scholar] [CrossRef]
- Kozłowska, M.; Bandurska, H.; Bres, W. Response of Lawn Grasses to Salinity Stress and Protective Potassium Effect. Agronomy 2021, 11, 843. [Google Scholar] [CrossRef]
- Shi, H.; Ye, T.; Zhong, B.; Liu, X.; Chan, Z. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium. J. Integr. Plant Biol. 2014, 56, 1064–1079. [Google Scholar] [CrossRef]
- Augustyniak, A.; Perlikowski, D.; Rapacz, M. Insight into cellular proteome of Lolium multiflorum/Festuca arundinacea introgression forms to decipher crucial mechanisms of cold acclimation in forage grasses. Plant Sci. 2018, 272, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sun, T.; Liu, C.; Zhang, H.; Wang, W.; Wang, Y.; Xiang, L.; Chan, Z. Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. Plant Physiol. Biochem. 2022, 170, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Dionne, J.; Rochefort, S.; Huff, D.R.; Desjardins, Y.; Bertrand, A.; Castonguay, Y. Variability for freezing tolerance among 42 ecotypes of green-type annual bluegrass. Crop Sci. 2010, 50, 321–336. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I.; Bocianowski, J.; Sladkovska, T.; Wolski, K. The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy 2020, 10, 1656. [Google Scholar] [CrossRef]
- Feng, D.; Gao, Q.; Liu, J.; Tang, J.; Hua, Z.; Sun, X. Categories of exogenous substances and their effect on alleviation of plant salt stress. Eur. J. Agron. 2023, 142, 126656. [Google Scholar] [CrossRef]
- Clemente, R.; Arco-Lázaro, E.; Pardo, T.; Martín, I.; Sánchez-Guerrero, A.; Sevilla, F.; Bernal, M.P. Combination of soil organic and inorganic amendments helps plants overcome trace element induced oxidative stress and allows phytostabilisation. Chemosphere 2019, 223, 223–231. [Google Scholar] [CrossRef]
- Ahire, M.I.; Mundada, P.S.; Nikam, T.D.; Bapat, V.A.; Penna, S. Multifaceted roles of silicon in mitigating environmental stresses in plants. Plant Physiol. Biochem. 2021, 169, 291–310. [Google Scholar] [CrossRef]
- Xu, X.; Zou, G.; Li, Y.; Sun, Y.; Liu, F. Silicon application improves strawberry plant antioxidation ability and fruit nutrition under both full and deficit irrigation. Sci. Hortic. 2023, 309, 111684. [Google Scholar] [CrossRef]
- Jin, X.; u Rahman, M.K.; Ma, C.; Zheng, X.; Wu, F.; Zhou, X. Silicon modification improves biochar’s ability to mitigate cadmium toxicity in tomato by enhancing root colonization of plant-beneficial bacteria. Ecotoxicol. Environ. Saf. 2023, 249, 114407. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Hoveizeh, N.F.; Kadkhodaei, S.; Vaculík, M. Comparative morphological, physiological and molecular analyses of drought-stressed strawberry plants affected by SiO2 and SiO2-NPs foliar spray. Sci. Hortic. 2023, 309, 111686. [Google Scholar] [CrossRef]
- Gao, A.; Chen, C.; Zhang, H.; Yang, B.; Yu, Y.; Zhang, W.; Fang-Jie Zhao, F.J. Multi-site field trials demonstrate the effectiveness of silicon fertilizer on suppressing dimethylarsenate accumulation and mitigating straighthead disease in rice. Environ. Pollut. 2023, 316, 120515. [Google Scholar] [CrossRef] [PubMed]
- da Silva, H.F.O.; Tavares, O.C.H.; da Silva, L.S.; Zonta, E.; da Silva, E.M.R.; Júnior, O.J.S.; Nobre, C.P.; Berbara, R.L.L.; García, A.C. Arbuscular mycorrhizal fungi and humic substances increased the salinity tolerance of rice plants. Biocatal. Agric. Biotechnol. 2022, 44, 102472. [Google Scholar] [CrossRef]
- Wang, W.; Shi, J.; Qu, K.; Zhang, X.; Jiang, W.; Huang, Z.; Guo, Z. Composite film with adjustable number of layers for slow release of humic acid and soil remediation. Environ. Res. 2023, 218, 114949. [Google Scholar] [CrossRef]
- Alsamadany, H. Physiological, biochemical and molecular evaluation of mungbean genotypes for agronomical yield under drought and salinity stresses in the presence of humic acid. Saudi J. Biol. Sci. 2022, 29, 103385. [Google Scholar] [CrossRef] [PubMed]
- Faccin, D.; Di Piero, R.M. Extracts and fractions of humic substances reduce bacterial spot severity in tomato plants, improve primary metabolism and activate the plant defense system. Physiol. Molecul. Plant Pathol. 2022, 121, 101877. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Zhao, Y.; Zhang, S.; Meng, L. Mechanism of sulfur-oxidizing inoculants and nitrate on regulating sulfur functional genes and bacterial community at the thermophilic compost stage. J. Environ. Manag. 2023, 326, 116733. [Google Scholar] [CrossRef]
- Liu, H.; Luo, L.; Jiang, G.; Li, G.; Zhu, C.; Meng, W.; Zhang, J.; Jiao, Q.; Du, P.; Li, X.; et al. Sulfur enhances cadmium bioaccumulation in Cichorium intybus by altering soil properties, heavy metal availability and microbial community in contaminated alkaline soil. Sci. Total Environ. 2022, 837, 155879. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Campbell, D.J. Determination and use of soil bulk density in relation to soil compaction. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1998; Volume 11, pp. 113–139. [Google Scholar]
- Netto, A.T.; Campostrini, E.J.; Oliveira, G.; Bressan, S.R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hort. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Morris, K.N. A Guide to the National Turfgrass Evaluation Program (NTEP) Turfgrass Ratings. 2022. Available online: https://www.ntep.org/reports/ratings.htm (accessed on 25 August 2022).
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1995, 11, 1–42. [Google Scholar] [CrossRef]
- Wu, P.; Cogill, S.; Qiu, Y.; Li, Z.; Zhou, M.; Hu, Q.; Chang, Z.; Noorai, R.E.; Xia, X.; Saski, C.; et al. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum). BMC Genom. 2020, 21, 131. [Google Scholar] [CrossRef]
- Huang, S.; Jiang, S.; Liang, J.; Chen, M.; Shi, Y. Current knowledge of bermudagrass responses to abiotic stresses. Breed. Sci. 2019, 69, 215–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopinath, L.; Moss, J.Q.; Wu, Y. Evaluating the freeze tolerance of bermudagrass genotypes. Agrosyst. Geosci. Environ. 2021, 4, e20170. [Google Scholar] [CrossRef]
- Schmidt, R.E. Iron for turfgrass nutrition. Golf Course Manegm. 2004, 113–116. [Google Scholar]
- Bello, S.K.; Alayafi, A.H.; AL-Solaimani, S.G.; Abo-Elyousr, K.A.M. Mitigating Soil Salinity Stress with Gypsum and Bio-Organic Amendments: A Review. Agronomy 2021, 11, 1735. [Google Scholar] [CrossRef]
- Marschner, M. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; pp. 200–255. [Google Scholar]
- Liu, A.; Hu, Z.; Bi, A.; Fan, J.; Gitau, M.M.; Amombo, E.; Chen, L.; Fu, J. Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. Ecotoxicology 2016, 25, 1445–1457. [Google Scholar] [CrossRef]
- Chen, Y.; Clapp, C.E.; Magen, H. Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Sci. Plant Nutr. 2004, 50, 1089–1095. [Google Scholar] [CrossRef]
- Hunter, A.; Butler, T. Effect of humic acid on growth and development of Agrostis stolonifera grass in a sand- based root zone. Inter. Turfgrass Soci. Res. J. 2005, 10, 937–943. [Google Scholar]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.; Sharaf-Eldin, M.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; dos Reis, A.R. Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef]
- Nadeem, M.; ul Haq, M.A.; Saqib, M.; Maqsood, M.; Iftikhar, I.; Ali, T.; Awais, M.; Ullah, R.; He, Z. Nutrients, Osmotic and Oxidative Stress Management in Bread Wheat (Triticum aestivum L.) by Exogenously Applied Silicon Fertilization Under Water Deficit Natural Saline Conditions. Silicon 2022, 14, 11869–11880. [Google Scholar] [CrossRef]
- Salem, E.M.M.; ·Kenawey, M.K.M.; Saudy, H.S.; Mubarak, M. Influence of Silicon Forms on Nutrients Accumulation and Grain Yield of Wheat Under Water Deficit Conditions. Gesunde Pflanz. 2022, 74, 539–548. [Google Scholar] [CrossRef]
- Yin, J.; Jia, J.; Lian, Z.; Hu, Y.; Guo, J.; Huo, H.; Zhu, Y.; Gong, H. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicol. Environ. Saf. 2019, 169, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Chavarria, M.R.; Wherley, B.; Jessup, R.; Chandra, A. Leaf anatomical responses and chemical composition of warm-season turfgrasses to increasing salinity. Curr. Plant Biol. 2020, 22, 100147. [Google Scholar] [CrossRef]
- Abdel-Fatah, G.H.; El-Sayed, B.A.; Shahin, S.M. The role of humic acid in reducing the harmful effect of irrigation with saline water on tifway turf. J. Boil. Chem. Environ. Sci. 2008, 3, 75–89. [Google Scholar]
- Valizadeh-rad, K.; Motesharezadeh, B.; Alikhani, H.A.; Jalali, M.; Etesami, H.; Javadzarin, I. Morphophysiological and Nutritional Responses of Canola and Wheat to Water Deficit Stress by the Application of Plant Growth-Promoting Bacteria, Nano-Silicon, and Silicon. J. Plant Growth Regul. 2022, 1–17. [Google Scholar] [CrossRef]
- Valizadeh-rad, K.; Motesharezadeh, B.; Alikhani, H.A.; Jalali, M. Direct and Residual Effects of Water Deficit Stress, Different Sources of Silicon and Plant-Growth Promoting Bacteria on Silicon Fractions in the Soil. Silicon 2022, 14, 3403–3415. [Google Scholar] [CrossRef]
- Esmaili, S.; Tavallali, V.; Amiri, B.; Bazrafshan, F.; Sharafzadeh, S. Foliar Application of Nano-Silicon Complexes on Growth, Oxidative Damage and Bioactive Compounds of Feverfew Under Drought Stress. Silicon 2022, 14, 10245–10256. [Google Scholar] [CrossRef]
- Van Dyke, A.; Johnson, P.G.; Grossl, P.R. Influence of humic acid on water retention and nutrient acquisition in simulated golf putting greens. Soil Use Manag. 2009, 25, 255–261. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Ibrahim, M.; Farid, M.; Adrees, M.; Bharwanaand, S.A.; Abbas, F. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ. Sci. Poll. Res. 2015, 22, 15416–15431. [Google Scholar] [CrossRef]
- Pompeiano, A.; Giannini, V.; Gaetani, M.; Vita, F.; Guglielminetti, L.; Bonari, E.; Volterrani, M. Response of warm–season grasses to N fertilization and salinity. Sci Hort. 2014, 177, 92–98. [Google Scholar] [CrossRef]
- Prokopiuk, K.; Żurek, G.; Rybka, K. Turf covering for sport season elongation cause no stress for grass species as detected by Chl a fluorescence. Urban For. Urban Green. 2019, 41, 14–22. [Google Scholar] [CrossRef]
- Sharma, P.; Mayur Mukut Murlidhar Sharma, M.M.M.; Patra, A.; Vashisth, M.; Mehta, S.; Singh, B.; Tiwari, M.; Pandey, V. The Role of Key Transcription Factors for Cold Tolerance in Plants. In Transcription Factors for Abiotic Stress Tolerance in Plants; Wani, H.S., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Hajiboland, R. Silicon-Mediated Cold Stress Tolerance in Plants. In Silicon and Nano-Silicon in Environmental Stress Management and Crop Quality Improvement; Etesami, H., Al Saeedi, A.H., El-Ramady, H., Fujita, M., Pessarakli, M., Hossain, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 161–180. [Google Scholar] [CrossRef]
- Nguyen, P.N.; Do, P.T.; Pham, Y.B.; Doan, T.O.; Nguyen, X.C.; Lee, W.K.; Nguyen, D.D.; Vadiveloo, A.; Um, M.-J.; Ngo, H.-H. Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation. Sci. Total Environ. 2022, 852, 158203. [Google Scholar] [CrossRef] [PubMed]
Code | Treatments (Applied Dose) | Details of the Amendments Used | Active Ingredient in the Applied Products |
---|---|---|---|
C | Control | Tap water | --------------- |
HA1 | Humic acid (1000 ppm) | Humic (20%) from GrowTech for Agricultural Development, Cairo, Egypt | Humic acid (0.02%) |
HA2 | Humic acid (2000 ppm) | Humic (20%) from GrowTech for Agricultural Development, Cairo, Egypt | Humic acid (0.04%) |
FS1 | Ferrous sulphate (250 ppm) | X-xtra Iron (10%) from Growth Products Ltd., White Plains, NY, USA | FeSO4 (0.0025%) |
FS2 | Ferrous sulphate (1000 ppm) | X-xtra Iron (10%), Growth Products Ltd., White Plains, NY, USA, 1 cm L−1 | FeSO4 (0.01%) |
S1 | Silica (3000 ppm) | Citrok plus (3% silica) from Novac Bio Science, El Mansurá, Egypt, 3%, SiO2 | SiO2 (0.009%) |
S2 | Silica (6000 ppm) | Citrok plus (3% silica) from Novac Bio Science, El Mansurá, Egypt, 3%, SiO2 | SiO2 (0.018%) |
D1 | Diatomite (1000 ppm) | Diatomite (86–89% SiO2) from Shengmai Diatomite Functional Material Co. Ltd., Linjiang, China, 86–89% SiO2 | SiO2 (0.875 g L−1) |
D2 | Diatomite (2000 ppm) | Diatomite (86–89% SiO2) from Shengmai Diatomite Functional Material Co. Ltd., Linjiang, China, 86–89% SiO2 | SiO2 (1.75 g L−1) |
Treatments | Seashore Paspalum (SP) | Tifway Bermudagrass (TB) | ||
---|---|---|---|---|
Plant Height (cm) in the First Season | ||||
January | April | January | April | |
Control (water) | 2.5 c | 3.1 c | 2.6 b | 2.9 c |
Humic acid (1000 ppm) | 2.6 abc | 3.4 b | 2.6 b | 3.2 bc |
Humic acid (2000 ppm) | 2.7 a | 3.5 b | 2.6 ab | 3.5 ab |
Ferrous sulphate (250 ppm) | 2.7 abc | 3.5 ab | 2.7 a | 3.6 a |
Ferrous sulphate (1000 ppm) | 2.7 ab | 3.7 a | 2.7 a | 3.4 ab |
Silicon (3000 ppm) | 2.6 abc | 3.3 b | 2.6 ab | 3.1 bc |
Silicon (6000 ppm) | 2.6 abc | 3.5 b | 2.6 ab | 3.0 bc |
Diatomite (1000 ppm) | 2.6 bc | 3.3 b | 2.6 ab | 3.3 ab |
Diatomite (2000 ppm) | 2.6 abc | 3.4 b | 2.6 ab | 3.4 ab |
Plant height (cm) in the second season | ||||
Control (water) | 3.0 b | 4.6 d | 3.0 c | 4.1 d |
Humic acid (1000 ppm) | 3.3 ab | 4.7 d | 3.2 bc | 4.8 bc |
Humic acid (2000 ppm) | 3.2 ab | 5.1 cd | 3.3 ab | 4.9 bc |
Ferrous sulphate (250 ppm) | 3.4 ab | 6.0 b | 3.5 a | 5.6 a |
Ferrous sulphate (1000 ppm) | 3.6 a | 6.7 a | 3.5 a | 5.4 ab |
Silicon (3000 ppm) | 3.3 ab | 5.1 cd | 3.4 abc | 5.0 b |
Silicon (6000 ppm) | 3.5 ab | 5.7 bc | 3.4 bc | 5.1 ab |
Diatomite (1000 ppm) | 3.3 ab | 5.5 bc | 3.3 abc | 4.3 cd |
Diatomite (2000 ppm) | 3.4 ab | 5.6 bc | 3.3 abc | 5.0 ab |
Seashore Paspalum (SP) | Tifway Bermudagrass (TB) | |||
---|---|---|---|---|
Treatments | No. of Roots | No. of Branches | No. of Roots | No. of Branches |
First season | ||||
Control (water) | 53 i | 28 i | 17 g | 20 h |
Humic acid (1000 ppm) | 97 c | 65 g | 35 d | 40 d |
Humic acid (2000 ppm) | 106 b | 115 a | 38 c | 43 c |
Ferrous sulphate (250 ppm) | 119 a | 103 b | 41b | 46 b |
Ferrous sulphate (1000 ppm) | 87 e | 80 e | 40 a | 49 a |
Silicon (3000 ppm) | 61 h | 49 h | 29f | 31 g |
Silicon (6000 ppm) | 93 d | 88 d | 33 e | 36 e |
Diatomite (1000 ppm) | 80 f | 72 f | 30 f | 35 e |
Diatomite (2000 ppm) | 78 g | 95 c | 29 f | 33 f |
Second season | ||||
Control (water) | 60 i | 30 h | 21 h | 23 i |
Humic acid (1000 ppm) | 106 e | 72 f | 37 d | 45 d |
Humic acid (2000 ppm) | 125 c | 117 a | 42 c | 49 c |
Ferrous sulphate (250 ppm) | 174 a | 111 b | 47 b | 55 b |
Ferrous sulphate (1000 ppm) | 149 b | 103 d | 58 a | 64 a |
Silicon (3000 ppm) | 140 h | 54 g | 28 g | 33 h |
Silicon (6000 ppm) | 113 d | 107 c | 35 e | 41 e |
Diatomite (1000 ppm) | 91 g | 80 e | 34 e | 37 f |
Diatomite (2000 ppm) | 95 f | 110 b | 32 f | 35 g |
Seashore Paspalum (SP) | Tifway Bermudagrass (TB) | |||||
---|---|---|---|---|---|---|
Treatments | Turf Color | Turf Density | Turf Uniformity | Turf Color | Turf Density | Turf Uniformity |
First season | ||||||
Control (water) | 1.0 d | 1.0 c | 1.0 b | 1.0 c | 1.0 b | 1.0 b |
Humic acid (1000 ppm) | 5.3 ab | 3.0 a | 2.0 a | 5.0 ab | 2.7 a | 2.0 a |
Humic acid (2000 ppm) | 6.0 a | 3.0 a | 2.0 a | 5.3 a | 2.7 a | 2.0 a |
Ferrous sulphate (250 ppm) | 6.0 a | 3.0 a | 2.0 a | 5.0 ab | 2.7 a | 2.0 a |
Ferrous sulphate (1000 ppm) | 5.0 ab | 2.7 ab | 2.0 a | 5.0 ab | 2.7 a | 2.0 a |
Silicon (3000 ppm) | 4.0 bc | 2.3 ab | 2.0 a | 4.0 ab | 2.3 a | 2.0 a |
Silicon (6000 ppm) | 4.3 bc | 2.3 ab | 2.0 a | 4.3 ab | 2.3 a | 2.0 a |
Diatomite (1000 ppm) | 3.3 c | 2.0 b | 2.0 a | 4.0 ab | 2.3 a | 2.0 a |
Diatomite (2000 ppm) | 4.3 bc | 2.3 ab | 2.0 a | 3.0 b | 1.7 ab | 2.0 a |
Second season | ||||||
Control (water) | 1.0 d | 1.0 c | 1.0 b | 1.0 b | 1.0 b | 1.0 b |
Humic acid (1000 ppm) | 5.7 a | 3.0 a | 2.0 a | 5.0 a | 2.7 a | 2.0 a |
Humic acid (2000 ppm) | 5.7 a | 3.0 a | 2.0 a | 5.3 a | 2.7 a | 2.0 a |
Ferrous sulphate (250 ppm) | 5.7 a | 3.0 a | 2.0 a | 5.3 a | 2.7 a | 2.0 a |
Ferrous sulphate (1000 ppm) | 5.3 ab | 3.0 a | 2.0 a | 5.0 a | 2.7 a | 2.0 a |
Silicon (3000 ppm) | 4.3 abc | 2.3 b | 2.0 a | 4.3 a | 2.7 a | 2.0 a |
Silicon (6000 ppm) | 4.3 abc | 2.3 b | 2.0 a | 4.3 a | 2.3 a | 2.0 a |
Diatomite (1000 ppm) | 3.7 c | 2.0 b | 2.0 a | 4.3 a | 2.3 a | 2.0 a |
Diatomite (2000 ppm) | 4.0 bc | 2.3 b | 2.0 a | 4.7 a | 2.3 a | 2.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taher, D.; Nofal, E.; Hegazi, M.; El-Gaied, M.A.; El-Ramady, H.; Solberg, S.Ø. Response of Warm Season Turf Grasses to Combined Cold and Salinity Stress under Foliar Applying Organic and Inorganic Amendments. Horticulturae 2023, 9, 49. https://doi.org/10.3390/horticulturae9010049
Taher D, Nofal E, Hegazi M, El-Gaied MA, El-Ramady H, Solberg SØ. Response of Warm Season Turf Grasses to Combined Cold and Salinity Stress under Foliar Applying Organic and Inorganic Amendments. Horticulturae. 2023; 9(1):49. https://doi.org/10.3390/horticulturae9010049
Chicago/Turabian StyleTaher, Dina, Emam Nofal, Mahmoud Hegazi, Mohamed Abd El-Gaied, Hassan El-Ramady, and Svein Ø. Solberg. 2023. "Response of Warm Season Turf Grasses to Combined Cold and Salinity Stress under Foliar Applying Organic and Inorganic Amendments" Horticulturae 9, no. 1: 49. https://doi.org/10.3390/horticulturae9010049
APA StyleTaher, D., Nofal, E., Hegazi, M., El-Gaied, M. A., El-Ramady, H., & Solberg, S. Ø. (2023). Response of Warm Season Turf Grasses to Combined Cold and Salinity Stress under Foliar Applying Organic and Inorganic Amendments. Horticulturae, 9(1), 49. https://doi.org/10.3390/horticulturae9010049