Antioxidant Capacity and Shelf Life of Radish Microgreens Affected by Growth Light and Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation and Preparation of Plant Material
2.2. TBARS Determination
2.3. Total Soluble Phenols Determination
2.4. Determination of Dry Mass Content
2.5. Determination of Total Antioxidant Capacity
2.6. Ascorbic Acid Content Determination
2.7. Determination of Total Soluble Protein and Sugar Content
2.8. Determination of Total Monomeric Anthocyanins, Total Chlorophylls, and Carotenoid Content
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of Low Temperature Storage on TBARS Levels
Parameter | Light Spectral Treatments | Cultivar | Storage Duration | |||
---|---|---|---|---|---|---|
Control | 3 DAS | 7 DAS | 14 DAS | |||
Chl a+b (mg/gFW) | B:2R | cvP | 0.323 ± 0.026 def | 0.445 ± 0.035 abc | 0.413 ± 0.071 abcd | 0.234 ± 0.004 f |
cvR | 0.298 ± 0.009 ef | 0.505 ± 0.053 a | 0.460 ± 0.074 ab | 0.391 ± 0.025 bcd | ||
cvG | 0.367 ± 0.024 cde | 0.476 ± 0.061 ab | 0.422 ± 0.083 abc | 0.285 ± 0.006 ed | ||
B:G:R | cvP | 0.298 ± 0.021 d | 0.423 ± 0.026 c | 0.412 ± 0.035 c | 0.269 ± 0.005 de | |
cvR | 0.268 ± 0.049 de | 0.506 ± 0.045 b | 0.507 ± 0.044 b | 0.221 ± 0.011 e | ||
cvG | 0.320 ± 0.064 d | 0.502 ± 0.048 b | 0.585 ± 0.059 a | 0.324 ± 0.008 d | ||
Car (mg/gFW) | B:2R | cvP | 0.060 ± 0.011 d | 0.078 ± 0.006 abc | 0.088 ± 0.016 ab | 0.071 ± 0.001 cd |
cvR | 0.058 ± 0.003 d | 0.090 ± 0.006 ab | 0.090 ± 0.013 a | 0.081 ± 0.018 abc | ||
cvG | 0.069 ± 0.005 cd | 0.082 ± 0.009 abc | 0.081 ± 0.015 abc | 0.073 ± 0.001 bcd | ||
B:G:R | cvP | 0.055 ± 0.004 fg | 0.075 ± 0.006 de | 0.089 ± 0.005 bc | 0.066 ± 0.002 ef | |
cvR | 0.046 ± 0.006 g | 0.080 ± 0.006 cde | 0.084 ± 0.014 cd | 0.046 ± 0.003 g | ||
cvG | 0.059 ± 0.017 fg | 0.098 ± 0.009 ab | 0.112 ± 0.012 a | 0.069 ± 0.004 ef |
3.2. Effect of Low Temperature Storage on Pigment Content
3.3. Effect of Low Temperature Storage on Proteins, Sugars, and Dry Matter Content
3.4. Effect of Low Temperature Storage on Total Antioxidant Capacity
3.5. Effect of Low Temperature Storage on Bioactive Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choe, U.; Yu, L.L.; Wang, T.T.Y. The Science behind Microgreens as an Exciting New Food for the 21st Century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bian, Z.; Yuan, X.; Chen, X.; Lu, C. A Review on the Effects of Light-Emitting Diode (LED) Light on the Nutrients of Sprouts and Microgreens. Trends Food Sci. Technol. 2020, 99, 203–216. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Z.; Ager, E.; Kong, L.; Tan, L. Nutritional Quality and Health Benefits of Microgreens, a Crop of Modern Agriculture. J. Future Foods 2021, 1, 58–66. [Google Scholar] [CrossRef]
- Sharma, S.; Shree, B.; Sharma, D.; Kumar, S.; Kumar, V.; Sharma, R.; Saini, R. Vegetable Microgreens: The Gleam of next Generation Super Foods, Their Genetic Enhancement, Health Benefits and Processing Approaches. Food Res. Int. 2022, 2022, 111038. [Google Scholar] [CrossRef]
- Alrifai, O.; Hao, X.; Liu, R.; Lu, Z.; Marcone, M.F.; Tsao, R. LED-Induced Carotenoid Synthesis and Related Gene Expression in Brassica Microgreens. J. Agric. Food Chem. 2021, 69, 4674–4685. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- Xiao, Z.; Rausch, S.R.; Luo, Y.; Sun, J.; Yu, L.; Wang, Q.; Chen, P.; Yu, L.; Stommel, J.R. Microgreens of Brassicaceae: Genetic Diversity of Phytochemical Concentrations and Antioxidant Capacity. Lwt 2019, 101, 731–737. [Google Scholar] [CrossRef]
- Janovská, D.; Stocková, L.; Stehno, Z. Evaluation of Buckwheat Sprouts as Microgreens. Acta Agric. Slov. 2010, 95, 157. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Xiao, Z.; Lin, L.; Lester, G.E.; Wang, Q.; Harnly, J.M.; Chen, P. Profiling Polyphenols in Five Brassica Species Microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef] [Green Version]
- Turner, E.R.; Luo, Y.; Buchanan, R.L. Microgreen Nutrition, Food Safety, and Shelf Life: A Review. J. Food Sci. 2020, 85, 870–882. [Google Scholar] [CrossRef]
- Tan, L.; Nuffer, H.; Feng, J.; Kwan, S.H.; Chen, H.; Tong, X.; Kong, L. Antioxidant Properties and Sensory Evaluation of Microgreens from Commercial and Local Farms. Food Sci. Hum. Wellness 2020, 9, 45–51. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Gioia, F.D.; Kyratzis, A.; Serio, F.; Renna, M.; Pascale, S.D.; Santamaria, P. Micro-Scale Vegetable Production and the Rise of Microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Meas, S.; Luengwilai, K.; Thongket, T. Enhancing Growth and Phytochemicals of Two Amaranth Microgreens by LEDs Light Irradiation. Sci. Hortic. 2020, 265, 109204. [Google Scholar] [CrossRef]
- Mlinarić, S.; Gvozdić, V.; Vuković, A.; Varga, M.; Vlašiček, I.; Cesar, V.; Begović, L. The Effect of Light on Antioxidant Properties and Metabolic Profile of Chia Microgreens. Appl. Sci. 2020, 10, 5731. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Viršilė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Duchovskis, P. Nutrient Levels in Brassicaceae Microgreens Increase Under Tailored Light-Emitting Diode Spectra. Front. Plant Sci. 2019, 10, 1475. [Google Scholar] [CrossRef] [Green Version]
- Zha, L.; Liu, W.; Yang, Q.; Zhang, Y.; Zhou, C.; Shao, M. Regulation of Ascorbate Accumulation and Metabolism in Lettuce by the Red:Blue Ratio of Continuous Light Using LEDs. Front. Plant Sci. 2020, 11, 704. [Google Scholar] [CrossRef]
- Alrifai, O.; Hao, X.; Marcone, M.F.; Tsao, R. Current Review of the Modulatory Effects of LED Lights on Photosynthesis of Secondary Metabolites and Future Perspectives of Microgreen Vegetables. J. Agric. Food Chem. 2019, 67, 6075–6090. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Xie, Z.K.; Yu, L.L.; Wang, Q. Effect of Light Exposure on Sensorial Quality, Concentrations of Bioactive Compounds and Antioxidant Capacity of Radish Microgreens during Low Temperature Storage. Food Chem. 2014, 151, 472–479. [Google Scholar] [CrossRef]
- Kou, L.; Luo, Y.; Park, E.; Turner, E.R.; Barczak, A.; Jurick II, W.M. Temperature Abuse Timing Affects the Rate of Quality Deterioration of Commercially Packaged Ready-to-Eat Baby Spinach. Part I: Sensory Analysis and Selected Quality Attributes. Postharvest Biol. Technol. 2014, 91, 96–103. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Microgreens: Production, Shelf Life, and Bioactive Components. Crit. Rev. Food Sci. Nutr. 2017, 57, 2730–2736. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; De Hooge, I.; Amani, P.; Bech-Larsen, T.; Oostindjer, M. Consumer-Related Food Waste: Causes and Potential for Action. Sustainability 2015, 7, 6457–6477. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and Intelligent Biodegradable Packaging Films Using Food and Food Waste-Derived Bioactive Compounds: A Review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Parkes, M.G.; Cubillos Tovar, J.P.; Dourado, F.; Domingos, T.; Teixeira, R.F.M. Life Cycle Assessment of a Prospective Technology for Building-Integrated Production of Broccoli Microgreens. Atmosphere 2022, 13, 1317. [Google Scholar] [CrossRef]
- Corrado, S.; Sala, S. Food Waste Accounting along Global and European Food Supply Chains: State of the Art and Outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef]
- UNEP DTU Partnership and United Nations Environment Programme. Reducing Consumer Food Waste Using Green and Digital Technologies; UNEP: Athens, Greece, 2021. [Google Scholar]
- Rocchetti, G.; Tomas, M.; Zhang, L.; Zengin, G.; Lucini, L.; Capanoglu, E. Red Beet (Beta vulgaris) and Amaranth (Amaranthus sp.) Microgreens: Effect of Storage and in Vitro Gastrointestinal Digestion on the Untargeted Metabolomic Profile. Food Chem. 2020, 332, 127415. [Google Scholar] [CrossRef]
- Verlinden, S. Microgreens. In Horticultural Reviews; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 85–124. ISBN 978-1-119-62540-7. [Google Scholar]
- Yan, H.; Li, W.; Chen, H.; Liao, Q.; Xia, M.; Wu, D.; Liu, C.; Chen, J.; Zou, L.; Peng, L.; et al. Effects of Storage Temperature, Packaging Material and Wash Treatment on Quality and Shelf Life of Tartary Buckwheat Microgreens. Foods 2022, 11, 3630. [Google Scholar] [CrossRef]
- Dalal, N.; Siddiqui, S.; Phogat, N. Post-Harvest Quality of Sunflower Microgreens as Influenced by Organic Acids and Ethanol Treatment. J. Food Process. Preserv. 2020, 44, e14678. [Google Scholar] [CrossRef]
- Supapvanich, S.; Sangsuk, P.; Sripumimas, S.; Anuchai, J. Efficiency of Low Dose Cyanocobalamin Immersion on Bioactive Compounds Contents of Ready to Eat Sprouts (Sunflower and Daikon) and Microgreens (Red-Amaranth) during Storage. Postharvest Biol. Technol. 2020, 160, 111033. [Google Scholar] [CrossRef]
- Kamal, K.Y.; El-Tantawy, A.A.; Moneim, D.A.; Salam, A.A.; Qabil, N.; Ash-shormillesy, S.M.; Attia, A.; Ali, M.A.; Herranz, R.; El-Esawi, M.A. Evaluation of 21 Brassica Microgreens Growth and Nutritional Profile Grown under Diffrenet Red, Blue and Green LEDs Combination. bioRxiv 2019, 705806. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral Composition and Content of 30 Varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef]
- Tomas, M.; Zhang, L.; Zengin, G.; Rocchetti, G.; Capanoglu, E.; Lucini, L. Metabolomic Insight into the Profile, in Vitro Bioaccessibility and Bioactive Properties of Polyphenols and Glucosinolates from Four Brassicaceae Microgreens. Food Res. Int. 2021, 140, 110039. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Castillejo, N.; Cano-Lamadrid, M.; Artés-Hernández, F. State of the Art and Elucidation of Postharvest LED Lighting on the Metabolism of Brassica Sprouts. Horticulturae 2022, 8, 1065. [Google Scholar] [CrossRef]
- Verma, S.; Dubey, R. Lead Toxicity Induces Lipid Peroxidation and Alters the Activities of Antioxidant Enzymes in Growing Rice Plants. Plant Sci. 2003, 164, 645–655. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Benderitter, M.; Maupoil, V.; Vergely, C.; Dalloz, F.; Briot, F.; Rochette, L. Studies by Electron Paramagnetic Resonance of the Importance of Iron in the Hydroxyl Scavenging Properties of Ascorbic Acid in Plasma: Effects of Iron Chelators. Fundam. Clin. Pharmacol. 1998, 12, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Foster, C.E.; Martin, T.M.; Pauly, M. Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part I: Lignin. J. Vis. Exp. 2010, 37, e1745. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Collaborators: Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Posmyk, M.M.; Bailly, C.; Szafrańska, K.; Janas, K.M.; Corbineau, F. Antioxidant Enzymes and Isoflavonoids in Chilled Soybean (Glycine max (L.) Merr.) Seedlings. J. Plant Physiol. 2005, 162, 403–412. [Google Scholar] [CrossRef]
- Meitha, K.; Pramesti, Y.; Suhandono, S. Reactive Oxygen Species and Antioxidants in Postharvest Vegetables and Fruits. Int. J. Food Sci. 2020, 2020, 8817778. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Wang, H.; Jin, C. Changes of Reactive Oxygen Species and Related Enzymes in Mitochondrial Respiration During Storage of Harvested Peach Fruits. Agric. Sci. China 2011, 10, 149–158. [Google Scholar] [CrossRef]
- Behera, R.K.; Choudhury, N.K. High Irradiance-Induced Changes in Carotenoid Composition and Increase in Non-Photochemical Quenching of Chl a Fluorescence in Primary Wheat Leaves. J. Plant Physiol. 2003, 160, 1141–1146. [Google Scholar] [CrossRef]
- Ghoora, M.D.; Haldipur, A.C.; Srividya, N. Comparative Evaluation of Phytochemical Content, Antioxidant Capacities and Overall Antioxidant Potential of Select Culinary Microgreens. J. Agric. Food Res. 2020, 2, 100046. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.P. Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their in Vitro Bioactive Properties. Molecules 2020, 25, 4648. [Google Scholar] [CrossRef]
- Fan, X.; Zang, J.; Xu, Z.; Guo, S.; Jiao, X.; Liu, X.; Gao, Y. Effects of Different Light Quality on Growth, Chlorophyll Concentration and Chlorophyll Biosynthesis Precursors of Non-Heading Chinese Cabbage (Brassica campestris L.). Acta Physiol. Plant. 2013, 35, 2721–2726. [Google Scholar] [CrossRef]
- Folta, K.M.; Maruhnich, S.A. Green Light: A Signal to Slow down or Stop. J. Exp. Bot. 2007, 58, 3099–3111. [Google Scholar] [CrossRef]
- Loi, M.; Liuzzi, V.C.; Fanelli, F.; Leonardis, S.D.; Creanza, T.M.; Ancona, N.; Paciolla, C.; Mulè, G. Effect of Different Light-Emitting Diode (LED) Irradiation on the Shelf Life and Phytonutrient Content of Broccoli (Brassica oleracea L. Var. Italica). Food Chem. 2019, 283, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Olarte, C.; Sanz, S.; Echávarri, J.F.; Ayala, F. Effect of Plastic Permeability and Exposure to Light during Storage on the Quality of Minimally Processed Broccoli and Cauliflower. LWT-Food Sci. Technol. 2009, 42, 402–411. [Google Scholar] [CrossRef]
- Sanz, S.; Olarte, C.; Ayala, F.; Echávarri, J.F. The Response to Lighting of Minimally Processed Chard: Influence on Its Shelf Life. J. Sci. Food Agric. 2008, 88, 1622–1631. [Google Scholar] [CrossRef]
- Adamson, H.; Griffiths, T.; Packer, N.; Sutherland, M. Light-Independent Accumulation of Chlorophyll a and b and Protochlorophyllide in Green Barley (Hordeum vulgare). Physiol. Plant. 1985, 64, 345–352. [Google Scholar] [CrossRef]
- Armstrong, G.A. Greening in the Dark: Light-Independent Chlorophyll Biosynthesis from Anoxygenic Photosynthetic Bacteria to Gymnosperms. J. Photochem. Photobiol. B 1998, 43, 87–100. [Google Scholar] [CrossRef]
- Adamson, H.Y.; Hiller, R.G.; Walmsley, J. Protochlorophyllide Reduction and Greening in Angiosperms: An Evolutionary Perspective. J. Photochem. Photobiol. B 1997, 41, 201–221. [Google Scholar] [CrossRef]
- Fujita, Y.; Yamakawa, H. Biochemistry of Chlorophyll Biosynthesis in Photosynthetic Prokaryotes. In Modern Topics in the Phototrophic Prokaryotes: Metabolism, Bioenergetics, and Omics; Hallenbeck, P.C., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 67–122. ISBN 978-3-319-51365-2. [Google Scholar]
- Suzuki, J.Y.; Bauer, C.E. Light-Independent Chlorophyll Biosynthesis: Involvement of the Chloroplast Gene ChlL (FrxC). Plant Cell 1992, 4, 929–940. [Google Scholar] [CrossRef] [Green Version]
- Reinbothe, C.; El Bakkouri, M.; Buhr, F.; Muraki, N.; Nomata, J.; Kurisu, G.; Fujita, Y.; Reinbothe, S. Chlorophyll Biosynthesis: Spotlight on Protochlorophyllide Reduction. Trends Plant Sci. 2010, 15, 614–624. [Google Scholar] [CrossRef]
- Vedalankar, P.; Tripathy, B.C. Evolution of Light-Independent Protochlorophyllide Oxidoreductase. Protoplasma 2019, 256, 293–312. [Google Scholar] [CrossRef]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N.; Raghavan, V. Plant Carotenoids Evolution during Cultivation, Postharvest Storage, and Food Processing: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1561–1604. [Google Scholar] [CrossRef]
- Park, M.-H.; Sangwanangkul, P.; Baek, D.-R. Changes in Carotenoid and Chlorophyll Content of Black Tomatoes (Lycopersicone sculentum L.) during Storage at Various Temperatures. Saudi J. Biol. Sci. 2018, 25, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Jurkow, R.; Wurst, A.; Kalisz, A.; Sekara, A.; Cebula, S. Cold Stress Modifies Bioactive Compounds of Kale Cultivars during Fall-Winter Harvests. Acta Agrobot. 2019, 72, 1. [Google Scholar] [CrossRef]
- Nguyen, Q.-D. Degradation Kinetics of Chlorophyll Pigments in Dried Leaves of Polyscias fruticosa (L.) Harms during Storage. J. Tech. Educ. Sci. 2022, 70, 57–66. [Google Scholar] [CrossRef]
- Krajcovicova-Kudlackova, M.; Babinska, K.; Valachovicova, M. Health Benefits and Risks of Plant Proteins. Bratisl. Lek. Listy 2005, 106, 231. [Google Scholar] [PubMed]
- Souci, S.W.; Fachmann, W.; Kraut, H. Food Composition and Nutrition Tables 1981/82; Wissenschaftliche Verlagsgesellschaft mbH: Stuttgart, Germany, 1989. [Google Scholar]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant Activity of Proteins and Peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef]
- Baxter, B. Plant Acclimation and Adaptation to Cold Environments. In Temperature and Plant Development; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 19–48. ISBN 978-1-118-30824-0. [Google Scholar]
- Ouyang, L.; Leus, L.; Keyser, E.D.; Labeke, M.-C.V. Seasonal Changes in Cold Hardiness and Carbohydrate Metabolism in Four Garden Rose Cultivars. J. Plant Physiol. 2019, 232, 188–199. [Google Scholar] [CrossRef]
- Eris, A.; Gulen, H.; Barut, E.; Cansev, A. Annual Patterns of Total Soluble Sugars and Proteins Related to Coldhardiness in Olive (Olea europaea L.‘Gemlik’). J. Hortic. Sci. Biotechnol. 2007, 82, 597–604. [Google Scholar] [CrossRef]
- Živanović, B.; Milić Komić, S.; Tosti, T.; Vidović, M.; Prokić, L.; Veljović Jovanović, S. Leaf Soluble Sugars and Free Amino Acids as Important Components of Abscisic Acid—Mediated Drought Response in Tomato. Plants 2020, 9, 1147. [Google Scholar] [CrossRef]
- Lobiuc, A.; Vasilache, V.; Oroian, M.; Stoleru, T.; Burducea, M.; Pintilie, O.; Zamfirache, M.-M. Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef] [Green Version]
- Altunkaya, A.; Gökmen, V. Effect of Various Inhibitors on Enzymatic Browning, Antioxidant Activity and Total Phenol Content of Fresh Lettuce (Lactuca sativa). Food Chem. 2008, 107, 1173–1179. [Google Scholar] [CrossRef]
- Kalt, W.; Forney, C.F.; Martin, A.; Prior, R.L. Antioxidant Capacity, Vitamin C, Phenolics, and Anthocyanins after Fresh Storage of Small Fruits. J. Agric. Food Chem. 1999, 47, 4638–4644. [Google Scholar] [CrossRef]
- Mu, Y.; Gao, W.; Lv, S.; Li, F.; Lu, Y.; Zhao, C. The Antioxidant Capacity and Antioxidant System of Jerusalem Artichoke (Helianthus tuberosus L.) Tubers in Relation to Inulin during Storage at Different Low Temperatures. Ind. Crops Prod. 2021, 161, 113229. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Bilobrk, J.; Buntić, B.; Bosiljkov, T.; Karlović, S.; Rocchetti, G.; Lucini, L.; Barba, F.J.; Lorenzo, J.M.; Putnik, P. High-Power Ultrasound Altered the Polyphenolic Content and Antioxidant Capacity in Cloudy Apple Juice during Storage. J. Food Process. Preserv. 2019, 43, e14023. [Google Scholar] [CrossRef]
- Polash, M.A.S.; Sakil, M.A.; Hossain, M.A. Post-Harvest Biodegradation of Bioactive Substances and Antioxidant Activity in Microgreens. J. Bangladesh Agric. Univ. 2018, 16, 250–253. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Balibrea, S.; Moreno, D.A.; García-Viguera, C. Influence of Light on Health-Promoting Phytochemicals of Broccoli Sprouts. J. Sci. Food Agric. 2008, 88, 904–910. [Google Scholar] [CrossRef]
- Brazaityte, A.; Sakalauskiene, S.; Virsile, A.; Jankauskiene, J.; Samuoliene, G.; Sirtautas, R.; Vastakaite, V.; Miliauskiene, J.; Duchovskis, P.; Novickovas, A.; et al. The Effect of Short-Term Red Lighting on Brassicaceae Microgreens Grown Indoors. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS), Leuven, Belgium, 8 October 2016; pp. 177–184. [Google Scholar]
- Vaštakaitė, V.; Viršilė, A.; Brazaitytė, A.; Samuolienė, G.; Jankauskienė, J.; Sirtautas, R.; Novičkovas, A.; Dabašinskas, L.; Sakalauskienė, S.; Miliauskienė, J. The Effect of Blue Light Dosage on Growth and Antioxidant Properties of Microgreens. Sodinink Daržinink 2015, 34, 25–35. [Google Scholar]
- Ma, G.; Zhang, L.; Setiawan, C.K.; Yamawaki, K.; Asai, T.; Nishikawa, F.; Maezawa, S.; Sato, H.; Kanemitsu, N.; Kato, M. Effect of Red and Blue LED Light Irradiation on Ascorbate Content and Expression of Genes Related to Ascorbate Metabolism in Postharvest Broccoli. Postharvest Biol. Technol. 2014, 94, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.-H.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S.K.; et al. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef]
- Haida, Z.; Hakiman, M. A Comprehensive Review on the Determination of Enzymatic Assay and Nonenzymatic Antioxidant Activities. Food Sci. Nutr. 2019, 7, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- Engelsma, G.; Meijer, G. The Influence of Light of Different Spectral Regions on the Synthesis of Phenolic Compounds in Gherkin Seedlings in Relation to Photomorphogenesis i Biosynthesis of Phenolic Compounds. Acta Bot. Neerl. 1965, 14, 54–72. [Google Scholar] [CrossRef]
- Yamazaki, M.; Shibata, M.; Nishiyama, Y.; Springob, K.; Kitayama, M.; Shimada, N.; Aoki, T.; Ayabe, S.; Saito, K. Differential Gene Expression Profiles of Red and Green Forms of Perilla Frutescens Leading to Comprehensive Identification of Anthocyanin Biosynthetic Genes. FEBS J. 2008, 275, 3494–3502. [Google Scholar] [CrossRef] [PubMed]
- Naikoo, M.I.; Dar, M.I.; Raghib, F.; Jaleel, H.; Ahmad, B.; Raina, A.; Khan, F.A.; Naushin, F. Chapter 9—Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance: An Overview. In Plant Signaling Molecules; Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 157–168. ISBN 978-0-12-816451-8. [Google Scholar]
- Cammarisano, L.; Donnison, I.S.; Robson, P.R.H. Producing Enhanced Yield and Nutritional Pigmentation in Lollo Rosso Through Manipulating the Irradiance, Duration, and Periodicity of LEDs in the Visible Region of Light. Front. Plant Sci. 2020, 11, 598082. [Google Scholar] [CrossRef] [PubMed]
- Cominelli, E.; Gusmaroli, G.; Allegra, D.; Galbiati, M.; Wade, H.K.; Jenkins, G.I.; Tonelli, C. Expression Analysis of Anthocyanin Regulatory Genes in Response to Different Light Qualities in Arabidopsis Thaliana. J. Plant Physiol. 2008, 165, 886–894. [Google Scholar] [CrossRef]
- Bodelón, O.G.; Blanch, M.; Sanchez-Ballesta, M.T.; Escribano, M.I.; Merodio, C. The Effects of High CO2 Levels on Anthocyanin Composition, Antioxidant Activity and Soluble Sugar Content of Strawberries Stored at Low Non-Freezing Temperature. Food Chem. 2010, 122, 673–678. [Google Scholar] [CrossRef]
- He, Q.; Ren, Y.; Zhao, W.; Li, R.; Zhang, L. Low Temperature Promotes Anthocyanin Biosynthesis and Related Gene Expression in the Seedlings of Purple Head Chinese Cabbage (Brassica rapa L.). Genes 2020, 11, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudek, A.; Spiegel, M.; Strugała-Danak, P.; Gabrielska, J. Analytical and Theoretical Studies of Antioxidant Properties of Chosen Anthocyanins; A Structure-Dependent Relationships. Int. J. Mol. Sci. 2022, 23, 5432. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlinarić, S.; Piškor, A.; Melnjak, A.; Mikuška, A.; Šrajer Gajdošik, M.; Begović, L. Antioxidant Capacity and Shelf Life of Radish Microgreens Affected by Growth Light and Cultivars. Horticulturae 2023, 9, 76. https://doi.org/10.3390/horticulturae9010076
Mlinarić S, Piškor A, Melnjak A, Mikuška A, Šrajer Gajdošik M, Begović L. Antioxidant Capacity and Shelf Life of Radish Microgreens Affected by Growth Light and Cultivars. Horticulturae. 2023; 9(1):76. https://doi.org/10.3390/horticulturae9010076
Chicago/Turabian StyleMlinarić, Selma, Antonija Piškor, Anja Melnjak, Alma Mikuška, Martina Šrajer Gajdošik, and Lidija Begović. 2023. "Antioxidant Capacity and Shelf Life of Radish Microgreens Affected by Growth Light and Cultivars" Horticulturae 9, no. 1: 76. https://doi.org/10.3390/horticulturae9010076
APA StyleMlinarić, S., Piškor, A., Melnjak, A., Mikuška, A., Šrajer Gajdošik, M., & Begović, L. (2023). Antioxidant Capacity and Shelf Life of Radish Microgreens Affected by Growth Light and Cultivars. Horticulturae, 9(1), 76. https://doi.org/10.3390/horticulturae9010076