Garden Waste Compost Tea: A Horticultural Alternative to Promote Plant Growth and Root Traits in Tomato (Solanum lycopersicum L.) Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compost Tea Preparation, Analytical Characterization, and Selection
- -
- CT1: the brewing period lasted 5 days, with 5 h agitation per day; temperature: 20 °C;
- -
- CT2: the brewing period lasted 15 days with 5 h agitation per day; temperature: 20 °C;
- -
- CT3: the brewing period lasted 5 days, with 5 h agitation per day; temperature: 15 °C.
2.2. Pot Assays
2.3. Determination of Root Development
2.4. Statistical Analyses
3. Results
3.1. Chemical Properties of Compost Teas
3.2. Pot Experiment
3.3. In Vitro CT Effect on Root and Shoot Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Faostat: Agriculture Data. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 15 October 2022).
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Benito, M.; Masaguer, A.; De Antonio, R.; Moliner, A. Use of pruning waste compost as a component in soilless growing media. Bioresour. Technol. 2005, 96, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Moretti, S.M.L.; Bertoncini, I.B.; Abreu-Junior, C.H. Composting sewage sludge with green waste from tree pruning. Sci. Agric. 2015, 72, 432–439. [Google Scholar] [CrossRef]
- Al-Dahmani, J.H.; Abbasi, P.A.; Miller, S.A.; Hoitink, H.A.J. Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Dis. 2003, 87, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Morales-Corts, M.R.; Pérez-Sánchez, R.; Gómez-Sánchez, M.A. Efficiency of garden waste compost teas on tomato growth and its suppressiveness against soilborne pathogens. Sci. Agric. 2018, 75, 400–409. [Google Scholar] [CrossRef]
- Castaño, R.; Borrero, C.; Trillas, M.I.; Avilés, M. Selection of biological control agents against tomato Fusarium wilt and evaluation in greenhouse conditions of two selected agents in three growing media. BioControl 2013, 58, 105–116. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Sorrentino, R.; Caputo, M.; Scotti, R.; De Falco, E.; Pane, C. Stepwise-selected Bacillus amyloliquefaciens and B. subtilis strains from composted aromatic plant waste able to control soil-borne diseases. Agriculture 2020, 10, 30. [Google Scholar] [CrossRef]
- Scheuerell, S.J.; Mahaffee, W.F. Compost tea: Principles and prospects for plant disease control. Compost. Sci. Util. 2002, 10, 313–338. [Google Scholar] [CrossRef]
- Martin, C.C.G.; Dorinvil, W.; Brathwaite, R.A.I.; Ramsubhag, A. Effects and relationships of compost type, aeration and brewing time on compost tea properties, efficacy against Pythium ultimum, phytotoxicity and potential as a nutrient amendment for seedling production. Biol. Agric. Hortic. 2012, 28, 185–205. [Google Scholar] [CrossRef]
- Islam, M.K.; Yaseen, T.; Traversa, A.; Ben Kheder, M.; Brunetti, G.; Cocozza, C. Effects of the main extraction parameters on chemical and microbial characteristics of compost tea. Waste Manag. 2016, 52, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Shim, C.K.; Kim, Y.K.; Hong, S.J.; Park, J.H.; Han, E.J.; Kim, J.H.; Kim, S.C. Effect of aerated compost tea on the growth promotion of lettuce, soybean, and sweet corn in organic cultivation. Plant Pathol. J. 2015, 31, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative Agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, A.I.; Suárez-Fernández, M.B.; Pérez-Sánchez, R.; Gómez-Sánchez, M.Á.; Morales-Corts, M.R. Compost tea induces growth and resistance against Rhizoctonia solani and Phytophthora capsici in pepper. Agronomy 2021, 11, 781. [Google Scholar] [CrossRef]
- González-Hernández, A.I.; Pérez-Sánchez, R.; Plaza, J.; Morales-Corts, R. Compost tea as a sustainable alternative to promote plant growth and resistance against Rhizoctonia solani in potato plants. Sci. Hortic. 2022, 300, 111090. [Google Scholar] [CrossRef]
- Ros, M.; Hurtado-Navarro, M.; Giménez, A.; Fernández, J.A.; Egea-Gilabert, C.; Lozano-Pastor, P.; Pascual, J.A. Spraying agro-industrial compost tea on baby spinach crops: Evaluation of yield, plant quality and soil health in field experiments. Agronomy 2020, 10, 440. [Google Scholar] [CrossRef]
- Reeve, J.R.; Carpenter-Boggs, L.; Reganold, J.P.; York, A.L.; Brinton, W.F. Influence of biodynamic preparations on compost development and resultant compost extracts on wheat seedling growth. Bioresour. Technol. 2010, 101, 5658–5666. [Google Scholar] [CrossRef]
- Pant, A.P.; Radovich, T.J.K.; Hue, N.V.; Paull, R.E. Biochemical properties of compost tea associated with compost quality and effects on pak choi growth. Sci. Hortic. 2012, 148, 138–146. [Google Scholar] [CrossRef]
- Giménez, A.; Fernández, J.A.; Pascual, J.A.; Ros, M.; Egea-Gilabert, C. Application of directly brewed compost extract improves yield and quality in baby leaf lettuce grown hydroponically. Agronomy 2020, 10, 370. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, T.; Guo, Y.; Wang, M.; Brachhold, K.; Chu, C.; Hanson, A.; Kumar, S.; Lin, R.; Long, W.; et al. 100 essential questions for the future of agriculture. Mod. Agric. 2023, 1, 4–12. [Google Scholar] [CrossRef]
- Morales-Corts, M.R.; Gómez-Sánchez, M.A.; Pérez-Sánchez, R. Evaluation of green/pruning wastes compost and vermicompost, slumgum compost and their mixes as growing media for horticultural production. Sci. Hort. 2014, 172, 155–160. [Google Scholar] [CrossRef]
- González-Hernández, A.I.; Scalschi, L.; García-Agustín, P.; Camañes, G. Exogenous carbon compounds modulate tomato root development. Plants 2020, 9, 837. [Google Scholar] [CrossRef] [PubMed]
- Milinković, M.; Lalević, B.; Jovičić-Petrović, J.; Golubović-Ćurguz, V.; Kljujev, I.; Raičević, V. Biopotential of compost and compost products derived from horticultural waste—Effect on plant growth and plant pathogens’ suppression. Process. Saf. Environ. Prot. 2019, 121, 299–306. [Google Scholar] [CrossRef]
- Eudoxie, G.; Martin, M. Compost Tea Quality and Fertility. In Organic Fertilizers—History, Production and Applications; Larramendy, M., Soloneski, S., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Kiss, N.E.; Gorliczay, E.; Nagy, P.T.; Tamás, J. Effect of compost/water ratio on some main parameter of compost solutions. Acta Agrar. Debreceniensis 2021, 1, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Carballo, T.; Gil, M.V.; Calvo, L.F.; Morán, A. The influence of aeration system, temperature and compost origin on the phytotoxicity of compost tea. Compost Sci. Util. 2009, 17, 127–139. [Google Scholar] [CrossRef]
- Pane, C.; Palese, A.M.; Celano, G.; Zaccardelli, M. Effects of compost tea treatments on productivity of lettuce and kohlrabi systems under organic cropping management. Ital. J. Agron. 2014, 9, 153–156. [Google Scholar] [CrossRef]
- Mahmoud, E.; El-Gizawy, E.; Geries, L. Effect of compost extract, N2-fixing bacteria and nitrogen levels applications on soil properties and onion crop. Arch. Agron. Soil Sci. 2014, 61, 185–201. [Google Scholar] [CrossRef]
- Kaya, M.; Atak, M.; Khawar, K.M.; Çiftçi, C.Y.; Özcan, S. Effect of pre-sowing seed treatment with zinc and foliar spray of humic acids on yield of common bean (Phaseolus vulgaris L.). Int. J. Agri. Biol. 2005, 7, 875–878. [Google Scholar]
- Mahmoud, E.K.; Salem, H.A. The compost qualityand used as a growing media. J. Soil. Sci. Agric. Eng. 2005, 30, 3469–3477. [Google Scholar] [CrossRef]
- Phae, C.G.; Shoda, M. Expression of the suppresive effects of Bacillus subtilis on phytopathogens in inoculated compost. J. Ferment. Bioeng. 1990, 70, 409–414. [Google Scholar] [CrossRef]
- Sylvia, E.W. The effect of compost extract on the yield of strawberries and severity of Botrytis cinerea. J. Sustain. Agr. 2004, 25, 57–68. [Google Scholar] [CrossRef]
- Ingham, E.R. The Compost Tea Brewing Manual, 5th ed.; Soil Food International Inc.: Corvallis, OR, USA, 2005. [Google Scholar]
- Keeling, A.A.; McCallum, K.R.; Beckwith, C.P. Mature green waste compost enhances growth and nitrogen uptake in wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) through the action of water-extractable factors. Bioresour. Technol. 2003, 90, 127–132. [Google Scholar] [CrossRef]
- Spaccini, R.; Baiano, S.; Gigliotti, G.; Piccolo, A. Molecular characterization of a compost and its water-soluble fractions. J. Agric. Food Chem. 2008, 56, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Pizzeghello, D.; Baglieri, A.; Cadili, V.; Tambone, F.; Gennari, M.; Nardi, S. Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. J. Geochem. Explor. 2013, 129, 103–111. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, S.N.; Wong, W.S.; Ng, C.Y.L.; Teo, C.H.; Ge, L.; Chen, X.; Yong, J.W.H. Mass spectrometric evidence for the occurrence of plant growth promoting cytokinins in vermicompost tea. Biol. Fertil. Soils 2014, 50, 401–403. [Google Scholar] [CrossRef]
- Othibeng, K.; Nephali, L.; Ramabulana, A.T.; Steenkamp, P.; Petras, D.; Kang, K.B.; Opperman, H.; Huyser, J.; Tugizimana, F. A metabolic choreography of maize plants treated with a humic substance-based biostimulant under normal and starved conditions. Metabolites 2021, 11, 403. [Google Scholar] [CrossRef]
- Gholami, H.; Saharkhiz, M.J.; Fard, F.R.; Ghani, A.; Nadaf, F. Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of Chicory (Cichorium intybus L.). Biocatal. Agric. Biotechnol. 2018, 14, 286–292. [Google Scholar] [CrossRef]
- Čakar, U.; Petrović, A.; Janković, M.; Pejin, B.; Vajs, V.; Čakar, M.; Djordjević, B. Differentiation of wines made from berry and drupe fruits according to their phenolic profiles. Eur. J. Hortic. Sci. 2018, 83, 49–61. [Google Scholar] [CrossRef]
- Cacco, G.; Attinà, E.; Gelsomino, A.; Sidari, M. Effect of nitrate and humic substances of different molecular size on kinetic parameters of nitrate uptake in wheat seedlings. J. Plant Nutr. Soil. Sci. 2000, 163, 313–320. [Google Scholar] [CrossRef]
- Eyheraguibel, B.; Silvestre, J.; Morard, P. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour. Technol. 2008, 99, 4206–4212. [Google Scholar] [CrossRef] [PubMed]
- Muscolo, A.; Sidari, M. Carboxyl and phenolic humic fractions affect callus growth and metabolism. Soil Sci. Soc. Am. J. 2009, 73, 1119–1129. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef]
- Jindo, K.; Lopes-Olivares, F.; da Paixao Malcher, D.J.; Sánchez-Monedero, M.A.; Kempenaar, C.; Canellas, L.P. From lab to field: Role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Front. Plant Sci. 2020, 11, 426. [Google Scholar] [CrossRef]
- Xu, D.B.; Wang, Q.J.; Wu, Y.C.; Yu, G.H.; Sheng, Q.R.; Huang, Q.W. Humic-like substances from different compost extracts could significantly promote cucumber growth. Pedosphere 2012, 22, 815–824. [Google Scholar] [CrossRef]
- Bernal-Vicente, A.; Ros, M.; Tittarelli, F.; Intrigliolo, F.; Pascual, J.A. Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Bioresour. Technol. 2008, 99, 8722–8728. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Aviad, T. Effects of humic substances on plant growth. In Humic Substances in Soil and Crop Sciences; MacCarthy, P., Clapp, C., Malcolm, R., Bloom, P.R., Eds.; SSSA: Madison, WI, USA, 1990; pp. 161–186. [Google Scholar]
- Olaetxea, M.; Mora, V.; Calderin-García, A.; Azevedo-Santos, L.; Baigorri, R.; Fuentes, M.; Garnica, M.; Louro-Berbara, R.L.; Zamarreño, A.M.; García-Mina, J.M. Root-shoot signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids. Plant Signal. Behav. 2016, 11, e1161878. [Google Scholar] [CrossRef] [PubMed]
- Pilla, N.; Tranchida-Lombardo, V.; Gabrielli, P.; Aguzzi, A.; Caputo, M.; Lucarini, M.; Durazzo, A.; Zaccardelli, M. Effect of compost tea in horticulture. Horticulturae 2023, 9, 984. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jauasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- De Corato, U. Compost and Compost Tea from On-Farm Composted Agro-Wastes Improve the Sustainability of Horticultural Organic Cropping Systems. In Agri-Based Bioeconomy; CRC Press: Boca Raton, FL, USA, 2021; pp. 143–162. [Google Scholar]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Camacho-Ferre, F. The management of agricultural waste biomass in the framework of circular economy and bioeconomy: An opportunity for greenhouse agriculture in southeast Spain. Agronomy 2020, 10, 489. [Google Scholar] [CrossRef]
Treatment | Description |
---|---|
FT0 | Foliar control (60 mL of running water per pot weekly) |
FT1 | Foliar application of 40 mL of CT1 + 20 mL of running water per pot weekly |
FT2 | Foliar application of 60 mL of CT1 per pot weekly |
RT0 | Root control (60 mL of running water per pot weekly) |
RT1 | Root application of 40 mL of CT1 + 20 mL of running water per pot weekly |
RT2 | Root application of 60 mL of CT1 per pot weekly |
pH | EC (dS m−1) | NO3− (ppm) | P2O5 (ppm) | K2O (ppm) | SO42− (ppm) | Ca (ppm) | Mg (ppm) | Humic Acids (ppm) | |
---|---|---|---|---|---|---|---|---|---|
CT1 | 7.32 ± 0.14 a | 1.22 ± 0.11 a | 3200 ± 185 b | 102 ± 65 b | 3840 ± 320 a | 28 ± 16 a | 79 ± 34 b | 150 ± 39 a | 190 ± 40 a |
CT1-6 | 7.16 ± 0.15 a | 1.46 ± 0.05 a | 4700 ± 446 a | 105 ± 75 b | 4039 ± 285 a | 12 ± 10 a | 26 ± 18 bc | 138 ± 26 a | 179 ± 31 a |
CT2 | 7.33 ± 0.18 a | 1.48 ± 0.16 a | 3300 ± 410 b | 368 ± 70 a | 4123 ± 301 a | 31 ± 14 a | 110 ± 34 b | 135 ± 31 a | 179 ± 25 a |
CT2-6 | 7.12 ± 0.17 a | 1.43 ± 0.18 a | 3934 ± 386 ab | 315 ± 68 a | 4016 ± 360 a | 13 ± 12 a | 20 ± 14 c | 128 ± 25 a | 183 ± 27 a |
CT3 | 7.16 ± 0.18 a | 1.2 ± 0.18 a | 2741 ± 725 b | 61.4 ± 20 b | 2851.2 ± 403 b | 20 ± 8 a | 280 ± 26 a | 20 ± 36 b | 100.3 ± 20 b |
CT3-6 | 7.11 ± 0.13 a | 1.23 ± 0.10 a | 3050 ± 320 b | 56.2 ± 10 b | 2782.2 ± 103 b | 15 ± 10 a | 101 ± 38 b | 22 ± 18 b | 98.3 ± 12 b |
Chlorophyll Content (SPA-502 Units) | Number of Leaves | Plant Height (cm) | Aerial Dry Weight (g) | Root Dry Weight (g) | Total Dry Weight (g) | |
---|---|---|---|---|---|---|
RT0 | 21.9 ± 2.1 a | 7.1 ± 1 b | 32.0 ± 3.6 c | 0.64 ± 0.2 b | 2.32 ± 0.4 c | 2.96 ± 0.7 c |
RT1 | 21.2 ± 2.4 a | 11.3 ± 1 a | 51.1 ± 2.9 a | 1.27 ± 0.2 a | 4.79 ± 0.4 a | 6.06 ± 0.7 a |
RT2 | 20.3 ± 2.1 a | 11.5 ± 1 a | 54.2 ± 3.1 a | 1.21 ± 0.1 a | 4.72 ± 0.3 a | 5.93 ± 0.6 a |
FT0 | 23.4 ± 4.3 a | 7.4 ± 1 b | 38.2 ± 3.4 bc | 0.72 ± 0.2 b | 2.98 ± 0.4 bc | 3.70 ± 0.6 bc |
FT1 | 21.3 ± 2.6 a | 8.0 ± 1 b | 40.2 ± 2.1 b | 0.8 ± 0.2 b | 3.36 ± 0.3 b | 4.16 ± 0.5 b |
FT2 | 21.6 ± 3.0 a | 7.0 ± 2 b | 34.1 ± 4.2 c | 0.85 ± 0.2 b | 3.02 ± 0.4 bc | 3.87 ± 0.6 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Hernández, A.I.; Gómez-Sánchez, M.Á.; Pérez-Sánchez, R.; Morales-Corts, M.R. Garden Waste Compost Tea: A Horticultural Alternative to Promote Plant Growth and Root Traits in Tomato (Solanum lycopersicum L.) Plants. Horticulturae 2023, 9, 1127. https://doi.org/10.3390/horticulturae9101127
González-Hernández AI, Gómez-Sánchez MÁ, Pérez-Sánchez R, Morales-Corts MR. Garden Waste Compost Tea: A Horticultural Alternative to Promote Plant Growth and Root Traits in Tomato (Solanum lycopersicum L.) Plants. Horticulturae. 2023; 9(10):1127. https://doi.org/10.3390/horticulturae9101127
Chicago/Turabian StyleGonzález-Hernández, Ana Isabel, María Ángeles Gómez-Sánchez, Rodrigo Pérez-Sánchez, and María Remedios Morales-Corts. 2023. "Garden Waste Compost Tea: A Horticultural Alternative to Promote Plant Growth and Root Traits in Tomato (Solanum lycopersicum L.) Plants" Horticulturae 9, no. 10: 1127. https://doi.org/10.3390/horticulturae9101127
APA StyleGonzález-Hernández, A. I., Gómez-Sánchez, M. Á., Pérez-Sánchez, R., & Morales-Corts, M. R. (2023). Garden Waste Compost Tea: A Horticultural Alternative to Promote Plant Growth and Root Traits in Tomato (Solanum lycopersicum L.) Plants. Horticulturae, 9(10), 1127. https://doi.org/10.3390/horticulturae9101127