High Frequency Direct Organogenesis in Five Romanian Tomato (Lycopersicon esculentum Mill.) Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
- cv. ‘Capriciu’—created at S.C.D.L. Buzău (Romania) and approved in 2007. Is drought tolerant and has good storage resistance. Has indetermined growth is suitable for fresh consumption or trade.
- cv. ‘Darsirius’—created at S.C.D.L. Buzău and approved in 2009. Has reduced number of seeds and is resistant to specific tomato diseases and nematodes. Has determined growth, intended for processing.
- cv. ‘Kristin’—created at S.C.D.L. Buzău and approved in 2006. Is resistant to transport and storage, has a determined growth and is suited for processing.
- cv. ‘Pontica’—created at I.C.D.L.F. Vidra (Romania) approved in 1988 and re-homologated in 2009. Has reduced number of seeds and is considered highly productive. Has a determined growth and is suitable for processing.
- cv. ‘Siriana’ (F1 hybrid)—created at S.C.D.L. Buzău and approved in 2006. Is a hybrid with high adaptability to environmental conditions and resistant to transport and storage. Has indetermined growth and is suitable for fresh consumption.
2.2. Seed Germination—Establishment of In Vitro Cultures
2.3. Morphogenic Response of Various Explants
2.4. Direct Shoot Organogenesis from Stem Nodes and Apical Buds
2.5. Assessment of Germination and Regeneration
- (a)
- ex vitro and in vitro germination percentage and the mean germination time;
- (b)
- in vitro regeneration rates of various explants;
- (c)
- in vitro shoot regeneration percentages of stem nodes and apical buds on culture media with various cytokinins;
- (d)
- height of shoots (resulted from stem nodes and apical buds) and length of primary roots. The measurements were made using a ruler.
- (e)
- explants (%) forming callus. Visual observations on callus morphology, color, texture were recorded and the callus diameter was measured.
2.6. Statistical Analyses
3. Results
3.1. Seed Germination—Establishment of In Vitro Cultures
3.2. Morphogenic Response of Various Explant Types
3.3. Direct Shoot Organogenesis from Stem Nodes and Apical Buds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larkin, P. Somaclonal variation: Origin and causes. In Encyclopedia of Plant and Crop Science; Goodman, R.M., Ed.; Marcel Dekker: New York, NY, USA, 2004; pp. 1158–1161. [Google Scholar]
- Rao, K.V.; Kiranmayee, K.; Pavan, U.; Sree, T.J.; Rao, A.V.; Sadanandam, A. Induction of multiple shoots from leaf segments, in vitro-flowering and fruiting of a dwarf tomato (Lycopersicon esculentum). J. Plant Physiol. 2005, 162, 959–962. [Google Scholar] [CrossRef]
- Story, E.N.; Kopec, R.E.; Schwartz, S.J.; Harris, G.K. An update on the health effects of tomato lycopene. Ann. Rev. Food Sci. Technol. 2010, 1, 189–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubiš, J.; Lajchová, Z.; Faragó, J.; Jureková, Z. Effect of growth regulators on shoot induction and plant regeneration in tomato (Lycopersicon esculentum Mill.). Biologia 2004, 59, 405–408. [Google Scholar]
- Coste, A.; Suteu, D.; Bacila, I.; Deliu, C.; Valimareanu, S.; Halmagyi, A. Genetic stability monitoring in micropropagated tomato cultivars. Olten. Stud. Comun. Stiintele Nat. 2014, 30, 38–43. [Google Scholar]
- Coste, A.; Şuteu, D.; Băcilă, I.; Deliu, C.; Vălimăreanu, S.; Halmagyi, A. Genetic integrity assessment of cryopreserved tomato (Lycopersicon esculentum Mill.) genotypes. Turk. J. Biol. 2015, 39, 638–648. [Google Scholar] [CrossRef] [Green Version]
- Muntean, C.M.; Leopold, N.; Tripon, C.; Coste, A.; Halmagyi, A. Surface-enhanced raman spectroscopy of genomic DNA from in vitro grown tomato (Lycopersicon esculentum Mill.) cultivars before and after plant cryopreservation. Spectrochim. Acta Part A Mol. Biomol. Spect. 2015, 144, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Halmagyi, A.; Coste, A.; Tripon, S.; Craciun, C. Low temperature induced alterations in tomato (Lycopersicon esculentum Mill.) shoot apex cells. Sci. Hortic. 2017, 222, 22–31. [Google Scholar] [CrossRef]
- Di Matteo, A.; Rigano, M.M.; Sacco, A.; Frusciante, L.; Barone, A. Genetic transformation in tomato: Novel tools to improve fruit quality and pharmaceutical production. In Genetic Transformation; Alvarez, M., Ed.; InTech Europe: London, UK, 2011; pp. 55–80. [Google Scholar]
- Xia, X.; Cheng, X.; Li, R.; Yao, J.; Li, Z.; Cheng, Y. Advances in application of genome editing in tomato and recent development of genome editing technology. Theor. Appl. Gen. 2021, 134, 2727–2747. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 2021, 10, 45. [Google Scholar] [CrossRef]
- Raza, M.A.; Nawaz, A.; Ali, M.; Zaynab, M.; Muntha, S.T.; Zaidi, S.H.R.; Khan, A.R.; Zheng, X.L. In-vitro regeneration and development for the conservation and propagation of tomato plant (Solanum lycopersicum) and currant tomato (S. pimpinellifolium) from two different explants. Appl. Ecol. Environ. Res. 2020, 18, 879–888. [Google Scholar] [CrossRef]
- Magdoleen, G.; Osman, M.G.; Mutasim, M.; Khalafalla, M.M. Promotion of in vitro shoot formation from shoot tip of tomato (Lycopersicon esculentum Mill. cv. Omdurman) by ethylene inhibitors. Int. J. Curr. Res. 2010, 4, 82–86. [Google Scholar]
- Bhatia, P.; Ashwath, N.; Senaratna, T.; Midmore, D. Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tissue Organ Cult. 2004, 78, 1–21. [Google Scholar] [CrossRef]
- Saeed, W.; Naseem, S.; Gohar, D.; Ali, Z. Efficient and reproducible somatic embryogenesis and micropropagation in tomato via novel structures—Rhizoid tubers. PLoS ONE 2019, 14, e0215929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koeda, S.; Takisawa, R.; Nabeshima, T.; Tanaka, Y.; Kitajima, A. Production of tomato yellow leaf curl virus-free parthenocarpic tomato plants by leaf primordia-free shoot apical meristem culture combined with in vitro grafting. Hortic. J. 2015, 84, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Rashid, R.; Bal, S.S. Effect of hormones on direct shoot regeneration in hypocotyl explants of tomato. Not. Sci. Biol. 2010, 2, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.N.; Ismail, M.R.; Rahman, M.H. In vitro response from cotyledon and hypocotyls explants in tomato by inducing 6-benzylaminopurine. Afr. J. Biotech. 2010, 9, 4802–4807. [Google Scholar]
- Chaudhary, Z.; Afroz, A.; Rashid, H. Effect of variety and plant growth regulators on callus proliferation and regeneration response of three tomato cultivars (Lycopersicon esculentum). Pak. J. Bot. 2007, 39, 857–869. [Google Scholar]
- Godishala, V.; Mangamoori, L.; Nanna, R. Plant regeneration via somatic embryogenesis in cultivated tomato (Solanum lycopersicum L.). J. Cell Tissue Res. 2011, 11, 2521–2528. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Ellis, R.H.; Roberts, E.H. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 1981, 9, 373–409. [Google Scholar]
- International Seed Testing Association. Rules Proposal for the International Rules for Seed Testing; International Seed Testing Association (ISTA): Zurich, Switzerland, 2016. [Google Scholar]
- Gerszberg, A.; Hnatuszko-Konka, K.; Kowalczyk, T.; Kononowicz, A.K. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue Organ Cult. 2015, 120, 881–902. [Google Scholar] [CrossRef] [Green Version]
- Delporte, F.; Pretova, A.; Du Jardin, P.; Watillon, B. Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. Protoplasma 2014, 251, 1455–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishag, S.; Osman, M.G.; Khalafalla, M.M. Effects of growth regulators, explant and genotype on shoot regeneration in tomato (Lycopersicon esculentum cv. Omdurman). Int. J. Sustain. Crop Prod. 2009, 4, 7–13. [Google Scholar]
- Włodarczyk, K.; Smolińska, B. New method of tomato fertilization with the use of chosen nanoparticles. Chem. Proc. 2022, 10, 92. [Google Scholar] [CrossRef]
- Delian, E.; Lupu, C.; Săvulescu, E. Effect of different priming treatments on seeds germination and early seedlings growth of tomato. Curr. Trends Nat. Sci. 2018, 7, 38–46. [Google Scholar]
- Mamidala, P.; Nanna, R.S. Effect of genotype, explant source and medium on in vitro regeneration of tomato. Int. J. Gen. Mol. Biol. 2011, 3, 5–50. [Google Scholar]
- Gerszberg, A.; Hnatuszko-Konka, K.; Kowalczyk, T.; Kononowicz, A.K. Efficient in vitro callus induction and plant regeneration protocol for different polish tomato cultivars. Not. Bot. Horti Agrobot. 2016, 44, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Titeli, V.S.; Zafeiriou, I.; Laskaridou, A.; Menexes, G.; Madesis, P.; Stavridou, E.; Nianiou-Obeidat, I. Development of a simple and low-resource regeneration system of two greek tomato varieties. Agriculture 2021, 11, 412. [Google Scholar] [CrossRef]
- Gubiš, J.; Lajchová, Z.; Faragó, J.; Jureková, Z. Effect of genotype and explant type on shoot regeneration in tomato (Lycopersicon esculentum Mill.) in vitro. Czech J. Genet. Plant Breed. 2003, 39, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Hanur, V.S.; Krishnareddy, B. In vitro organogenesis in tomato (Solanum lycopersicum) using kinetin. Adv. Plants Agric. Res. 2016, 4, 397–401. [Google Scholar] [CrossRef]
- Soressi, G.P.; Cammareri, G.; Picarella, M.E. Improvement of in vitro vegetative propagation technique in tomato (Solanum lycopersicum). Acta Hortic. 2009, 812, 283–288. [Google Scholar] [CrossRef]
- Alatar, A.A.; Faisal, M.; Abdel-Salam, E.M.; Canto, T.; Saquib, Q.; Javed, S.B.; El-Sheikh, M.A.; Al-Khedhairy, A.A. Efficient and reproducible in vitro regeneration of Solanum lycopersicum and assessment genetic uniformity using flow cytometry and SPAR methods. Saudi J. Biol. Sci. 2017, 24, 1430–1436. [Google Scholar] [CrossRef] [Green Version]
- Ashakiran, K.; Sivankalyani, V.; Jayanthi, M.; Govindasamy, V.; Girija, S. Genotype specific shoots regeneration from different explants of tomato (Solanum lycopersicum L.) using TDZ. Asian J. Plant Sci. Res. 2011, 1, 107–113. [Google Scholar]
- Sharma, C.; Srivastava, D.K. In vitro plant regeneration from seedlings-derived explants of tomato (Lycopersicon esculentum Mill.). Int. J. Agric. Environ. Biotechnol. 2014, 7, 421–432. [Google Scholar] [CrossRef]
- Vinoth, R.; Kumaravel, S.; Ranganathan, R. Anatomical and physiological adaptation of mangrove wetlands in east coast of Tamil Nadu. World Sci. News 2019, 129, 161–179. [Google Scholar]
- Sandhya, D.; Jogam, P.; Venkatapuram, A.P.; Savitikadi, P.; Peddaboina, V.; Allini, V.R.; Abbagani, S. Highly efficient Agrobacterium-mediated transformation and plant regeneration system for genome engineering in tomato. Saudi J. Biol. Sci. 2022, 29, 103292. [Google Scholar] [CrossRef]
- Jabeen, N.; Chaudhry, Z.; Rashid, H.; Mirza, B. Effect of genotype and explant type on in vitro shoot regeneration of tomato (Lycopersicon esculentum Mill.). Pak. J. Bot. 2005, 37, 899–903. [Google Scholar]
- Jamous, F.; Abu-Qaoud, H. In vitro regeneration of tomato (Lycopersicon esculentum Mill). Plant Cell Biotech. Mol. Biol. 2015, 16, 181–190. [Google Scholar]
- Baye, E.; Matewos, T.; Belew, D. Optimization of in vitro rooting protocol for tomato (Lycopersicon esculentum Mill.) varieties. J. App. Nat. Sci. 2020, 12, 365–371. [Google Scholar] [CrossRef]
- De Klerk, G.J.; Van der Krieken, W.; De Jong, J.C. The formation of adventitious roots: New concepts, new possibilities. In Vitro Cell Dev. Biol. Plant 1999, 35, 189–199. [Google Scholar] [CrossRef]
- Karim, M.A.; Kayuml, M.A. In vitro regeneration of tomato plant from leaf and internode segments. J. Bangladesh Agric. Univ. 2007, 5, 213–216. [Google Scholar] [CrossRef]
- Arulananthu, G.; Bhat, S.G.; Ramesh, N. Callus induction and in-vitro regeneration of tomato (Lycopersicon esculentum Mill.). Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2019, 5, 491. [Google Scholar]
- Manawadu, I.P.; Nilanthi, D.; Senanayake, S.G.J.N. Callus formation and organogenesis of tomato (Lycopersicon esculentum Mill variety Thilina). Trop. Agric. Res. Ext. 2014, 17, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.; Zinta, G.; Kanwar, K. Optimization of efficient direct organogenesis protocol for Punica granatum L. cv. Kandhari Kabuli from mature leaf explants. In Vitro Cell. Dev. Biol. Plant 2021, 57, 48–59. [Google Scholar] [CrossRef]
Germination | TGP (% ± SD) * | MGT (Days) | |
---|---|---|---|
‘Capriciu’ | ex vitro | 91.0 ± 3.5 | 9.6 |
in vitro | 87.0 ± 1.7 | 11.5 | |
‘Darsirius’ | ex vitro | 68.0 ± 4.8 | 13.1 |
in vitro | 71.6 ± 3.5 | 15.4 | |
‘Kristin’ | ex vitro | 77.3 ± 5.5 | 15.3 |
in vitro | 78.6 ± 2.1 | 15.6 | |
‘Pontica’ | ex vitro | 91.3 ± 2.1 | 12.3 |
in vitro | 89.0 ± 2.7 | 14.8 | |
‘Siriana’ | ex vitro | 75.0 ± 3.9 | 17.9 |
in vitro | 72.6 ± 3.8 | 15.7 |
Cultivar | Cotyledons | Cotyledonary Nodes | Hypocotyls | Leaf Explants | Internodes | Stem Nodes | Apical Buds |
---|---|---|---|---|---|---|---|
‘Capriciu’ | 11.6 ± 1.6 e,* | 19.6 ± 2.6 d | 15.3 ± 3.5 de | 36.6 ± 3.0 c | 21.3 ± 2.1 d | 73.0 ± 3.5 b | 84.3 ± 3.1 a |
‘Darsirius’ | 9.00 ± 1.6 e | 10.3 ± 1.6 e | 11.6 ± 2.3 e | 34.0 ± 3.0 c | 20.3 ± 2.3 d | 68.3 ± 3.6 b | 78.3 ± 1.9 a |
‘Kristin’ | 10.3 ± 1.7 c | 14.3 ± 1.4 c | 16.3 ± 2.1 c | 25.6 ± 3.1 b | 10.6 ± 1.9 c | 84.6 ± 4.1 a | 90.0 ± 2.1 a |
‘Pontica’ | 9.30 ± 1.6 e | 15.0 ± 1.8 cde | 10.6 ± 2.2 de | 21.3 ± 3.1 c | 16.6 ± 1.7 cd | 70.0 ± 3.8 b | 82.3 ± 3.1 a |
‘Siriana’ | 8.30 ± 2.0 d | 14.6 ± 1.9 d | 11.0 ± 2.8 d | 22.3 ± 2.9 c | 8.00 ± 2.2 d | 67.3 ± 4.8 b | 77.3 ± 2.3 a |
Cultivar | Medium | Explants Regenerating Shoots (% ± SD) * | Height of Shoots (cm ± SD) | Length of Primary Roots (cm ± SD) |
---|---|---|---|---|
‘Capriciu’ | V0 | 65.5 ± 1.4 b | 8.7 ± 0.5 a | 6.1 ± 0.6 b |
V1 | 78.8 ± 2.3 b | 7.8 ± 0.7 b | 6.4 ± 0.6 b | |
V2 | 94.4 ± 1.3 a | 6.2 ± 0.7 c | 3.0 ± 0.7 c | |
V3 | 73.3 ± 1.6 b | 4.0 ± 0.4 d | 6.2 ± 0.7 b | |
V4 | 77.7 ± 1.7 b | 7.5 ± 0.5 b | 10.8 ± 0.9 a | |
‘Darsirius’ | V0 | 63.3 ± 1.4 c | 5.7 ± 0.5 b | 3.8 ± 0.5 d |
V1 | 71.1 ± 1.4 bc | 9.3 ± 0.6 a | 15.6 ± 0.7 a | |
V2 | 82.2 ± 1.1 a | 5.2 ± 0.5 bc | 3.5 ± 0.4 d | |
V3 | 72.2 ± 0.8 abc | 9.1 ± 0.5 a | 9.8 ± 0.5 b | |
V4 | 76.7 ± 1.5 ab | 4.5 ± 0.6 c | 5.7 ± 0.8 c | |
‘Kristin’ | V0 | 52.2 ± 1.0 c | 8.4 ± 0.7 a | 6.6 ± 0.8 a |
V1 | 65.6 ± 1.5 b | 4.8 ± 0.5 c | 3.7 ± 0.3 c | |
V2 | 84.4 ± 1.3 a | 2.7 ± 0.5 e | 3.0 ± 0.3 d | |
V3 | 68.9 ± 1.8 b | 5.6 ± 1.0 b | 4.4 ± 0.4 b | |
V4 | 70.0 ± 1.6 b | 3.7 ± 0.2 d | 2.8 ± 0.5 d | |
‘Pontica’ | V0 | 58.9 ± 0.8 b | 4.7 ± 0.6 c | 2.7 ± 0.8 d |
V1 | 81.1 ± 1.5 a | 2.5 ± 0.5 e | 18.2 ± 1.5 a | |
V2 | 88.9 ± 2.1 a | 3.8 ± 0.4 d | 7.2 ± 0.5 c | |
V3 | 62.2 ± 1.3 b | 5.9 ± 0.6 b | 11.4 ± 0.6 b | |
V4 | 80.0 ± 1.6 a | 8.5 ± 0.9 a | 10.3 ± 0.9 b | |
‘Siriana’ | V0 | 56.7 ± 1.0 b | 9.5 ± 0.6 b | 5.5 ± 0.4 a |
V1 | 82.2 ± 1.6 a | 6.5 ± 0.3 c | 6.0 ± 0.4 a | |
V2 | 84.4 ± 2.2 a | 3.5 ± 0.6 e | 2.4 ± 0.9 b | |
V3 | 73.3 ± 1.5 a | 12.5 ± 0.6 a | 5.4 ± 0.7 a | |
V4 | 74.4 ± 1.8 a | 4.8 ± 0.6 d | 6.1 ± 0.7 a |
Cultivar | Medium | Explants Regenerating Shoots (% ± SD) * | Height of Shoots (cm ± SD) | Length of Primary Roots (cm ± SD) |
---|---|---|---|---|
‘Capriciu’ | V0 | 68.8 ± 1.8 b | 12.0 ± 0.4 a | 7.2 ± 0.5 a |
V1 | 80.0 ± 1.4 b | 2.6 ± 0.3 bc | 5.8 ± 0.4 b | |
V2 | 97.7 ± 0.5 a | 2.4 ± 1.7 bc | 5.1 ± 1.0 b | |
V3 | 81.1 ± 0.7 b | 1.5 ± 1.3 c | 1.1 ± 0.9 d | |
V4 | 80.0 ± 2.0 b | 3.0 ± 0.4 b | 3.2 ± 0.6 c | |
‘Darsirius’ | V0 | 64.4 ± 1.6 c | 10.0 ± 1.3 b | 6.6 ± 0.9 b |
V1 | 76.7 ± 1.0 abc | 4.4 ± 1.2 c | 5.7 ± 2.5 b | |
V2 | 88.9 ± 2.1 a | 15.7 ± 2.1 a | 4.9 ± 1.2 b | |
V3 | 74.4 ± 1.2 bc | 8.8 ± 2.4 b | 14.8 ± 4.1 a | |
V4 | 78.8 ± 2.1 ab | 3.9 ± 1.0 c | 7.6 ± 0.9 b | |
‘Kristin’ | V0 | 61.1 ± 1.3 c | 10.4 ± 0.9 a | 6.2 ± 0.7 a |
V1 | 71.1 ± 1.2 bc | 3.2 ± 1.0 b | 2.3 ± 0.9 b | |
V2 | 90.0 ± 1.4 a | 3.1 ± 0.6 bc | 2.6 ± 0.7 b | |
V3 | 76.7 ± 1.4 b | 11.1 ± 1.4 a | 6.2 ± 1.5 a | |
V4 | 75.5 ± 1.2 b | 2.0 ± 0.4 c | 1.9 ± 0.8 b | |
‘Pontica’ | V0 | 68.9 ± 2.1 b | 6.3 ± 0.5 a | 6.5 ± 1.2 c |
V1 | 84.4 ± 0.8 a | 6.9 ± 0.9 a | 9.5 ± 1.3 a | |
V2 | 91.1 ± 1.2 a | 5.0 ± 1.4 b | 1.8 ± 0.6 d | |
V3 | 68.9 ± 1.6 b | 6.7 ± 0.6 a | 7.8 ± 1.1 b | |
V4 | 81.1 ± 1.7 ab | 6.0 ± 0.9 ab | 2.1 ± 0.7 d | |
‘Siriana’ | V0 | 62.2 ± 1.2 b | 6.2 ± 0.8 a | 3.9 ± 0.5 b |
V1 | 85.6 ± 2.3 a | 4.0 ± 0.7 bc | 1.1 ± 0.6 c | |
V2 | 87.8 ± 1.7 a | 4.7 ± 1.2 b | 3.4 ± 0.5 b | |
V3 | 76.7 ± 1.6 ab | 3.2 ± 0.7 cd | 4.9 ± 0.6 a | |
V4 | 78.8 ± 2.2 a | 2.8 ± 0.8 d | 5.5 ± 0.7 a |
Cultivar | Explants | Pearson’s Coefficient |
---|---|---|
‘Capriciu’ | stem nodes | 0.25 |
apical buds | 0.96 | |
‘Darsirius’ | stem nodes | 0.84 |
apical buds | −0.55 | |
‘Kristin’ | stem nodes | 0.78 |
apical buds | 0.98 | |
‘Pontica’ | stem nodes | −0.25 |
apical buds | 0.87 | |
‘Siriana’ | stem nodes | 0.50 |
apical buds | −0.12 |
Cultivar | Medium | Stem Nodes | Apical Buds | ||
---|---|---|---|---|---|
Callus Formation (% ± SD) * | Callus Diameter (cm ± SD) | Callus Formation (% ± SD) * | Callus Diameter (cm ± SD) | ||
‘Capriciu’ | V0 | 0 e | 0 e | ||
V1 | 14.0 ± 2.2 d | <0.5 | 10.4 ± 2.10 d | <0.5 | |
V2 | 38.8 ± 2.6 a | 0.5–1.0 | 25.4 ± 4.6 b | 0.5–1.0 | |
V3 | 25.8 ± 4.9 b | 0.5–1.0 | 21.0 ± 2.9 bc | 0.5–1.0 | |
V4 | 25.6 ± 3.6 b | ˃1.0 | 19.6 ± 5.1 c | ˃1.0 | |
‘Darsirius’ | V0 | 0 f | 0f | ||
V1 | 22.6 ± 3.2 bc | <0.5 | 13.2 ± 3.3 e | <0.5 | |
V2 | 18.6 ± 4.0 cd | 0.5–1.0 | 12.6 ± 3.0 e | 0.5–1.0 | |
V3 | 18.4 ± 4.3 cd | <0.5 | 15.2 ± 3.3 de | <0.5 | |
V4 | 26.0 ± 3.7 a | 0.5–1.0 | 18.6 ± 2.7 cd | 0.5–1.0 | |
‘Kristin’ | V0 | 0 f | 0f | ||
V1 | 20.4 ± 3.3 d | <0.5 | 17.6 ± 4.3 de | <0.5 | |
V2 | 21.4 ± 3.9 d | 0.5–1.0 | 15.6 ± 3.8 e | <0.5 | |
V3 | 31.4 ± 3.8 c | <0.5 | 20.6 ± 3.2 d | 0.5–1.0 | |
V4 | 39.6 ± 3.4 a | ˃1.0 | 34.8 ± 4.4 ab | ˃1.0 | |
‘Pontica’ | V0 | 0 e | 0 e | ||
V1 | 30.4 ± 4.3 a | <0.5 | 25.8 ± 3.5 ab | <0.5 | |
V2 | 30.0 ± 3.1 a | 0.5–1.0 | 22.0 ± 4.1 b | 0.5–1.0 | |
V3 | 22.0 ± 4.7 b | ˃1.0 | 9.80 ± 1.9 d | 0.5–1.0 | |
V4 | 20.6 ± 5.1 b | ˃1.0 | 14.4 ± 2.1 c | ˃1.0 | |
‘Siriana’ | V0 | 0 f | 0 f | ||
V1 | 17.6 ± 4.7 d | <0.5 | 12.8 ± 3.2 e | <0.5 | |
V2 | 29.6 ± 2.3 b | ˃1.0 | 24.6 ± 4.2 c | 0.5–1.0 | |
V3 | 35.2 ± 3.5 a | 0.5–1.0 | 24.4 ± 3.4 c | 0.5–1.0 | |
V4 | 22.4 ± 3.8 c | ˃1.0 | 16.0 ± 2.1 de | ˃1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halmagyi, A.; Coste, A.; Deliu, C.; Băcilă, I. High Frequency Direct Organogenesis in Five Romanian Tomato (Lycopersicon esculentum Mill.) Cultivars. Horticulturae 2023, 9, 411. https://doi.org/10.3390/horticulturae9030411
Halmagyi A, Coste A, Deliu C, Băcilă I. High Frequency Direct Organogenesis in Five Romanian Tomato (Lycopersicon esculentum Mill.) Cultivars. Horticulturae. 2023; 9(3):411. https://doi.org/10.3390/horticulturae9030411
Chicago/Turabian StyleHalmagyi, Adela, Ana Coste, Constantin Deliu, and Ioan Băcilă. 2023. "High Frequency Direct Organogenesis in Five Romanian Tomato (Lycopersicon esculentum Mill.) Cultivars" Horticulturae 9, no. 3: 411. https://doi.org/10.3390/horticulturae9030411
APA StyleHalmagyi, A., Coste, A., Deliu, C., & Băcilă, I. (2023). High Frequency Direct Organogenesis in Five Romanian Tomato (Lycopersicon esculentum Mill.) Cultivars. Horticulturae, 9(3), 411. https://doi.org/10.3390/horticulturae9030411