In Vitro Cultivation of Purple-Fleshed Potato Varieties: Insights into Their Growth and Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Explants
2.2. Explant Asepsis
2.3. Sprouts Asepsis, Explant Initiation, and Micro-Cuttings Subcultivation
2.4. In Vitro Culture Media and Growth Conditions
2.5. Tuber Asepsis, Callus Initiation, and Subcultivation
2.6. In Vitro Microtuberization
2.7. Experimental Design and Data Analysis
3. Results
3.1. Explant Asepsis
3.2. Sprout Asepsis, Explant Initiation, and Micro-cutting Subcultivation
3.3. Tuber Asepsis, Callus Initiation, and Subcultivation
3.4. In Vitro Microtuberization
4. Discussion
4.1. Explant Asepsis
4.2. Sprout Asepsis, Explant Initiation, and Micro-cutting Subcultivation
4.3. Tuber Asepsis, Callus Initiation and Subcultivation
4.4. In Vitro Microtuberization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutaker, R.M.; Weiß, C.L.; Ellis, D.; Anglin, N.L.; Knapp, S.; Luis Fernández-Alonso, J.; Prat, S.; Burbano, H.A. The Origins and Adaptation of European Potatoes Reconstructed from Historical Genomes. Nat. Ecol. Evol. 2019, 3, 1093–1101. [Google Scholar] [CrossRef]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and Human Health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Ceci, A.T.; Franceschi, P.; Serni, E.; Perenzoni, D.; Oberhuber, M.; Robatscher, P.; Mattivi, F. Metabolomic Characterization of Pigmented and Non-Pigmented Potato Cultivars Using a Joint and Individual Variation Explained (JIVE). Foods 2022, 11, 1708. [Google Scholar] [CrossRef] [PubMed]
- Gustavsen, G.W. Sustainability and Potato Consumption. Potato Res. 2021, 64, 571–586. [Google Scholar] [CrossRef]
- Miedzianka, J.; Pęksa, A.; Nemś, A.; Drzymała, K.; Zambrowicz, A.; Kowalczewski, P. Trypsin Inhibitor, Antioxidant and Antimicrobial Activities as Well as Chemical Composition of Potato Sprouts Originating from Yellow- and Colored-Fleshed Varieties. J. Environ. Sci. Health B 2020, 55, 42–51. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Romano, R.; Aiello, A.; De Luca, L.; Pizzolongo, F.; Durazzo, A.; Lucarini, M.; Severino, P.; Souto, E.B.; Santini, A. Deep-Frying Purple Potato Purple Majesty Using Sunflower Oil: Effect on the Polyphenols, Anthocyanins and Antioxidant Activity. Heliyon 2022, 8, e09337. [Google Scholar] [CrossRef]
- Xu, D.; Liu, H.; Jin, C.Y.; Cao, C.M.; Li, W.G.; Zeng, F.K.; Zhao, Y.C.; Liu, G. A New Potato Variety Grown in China Suitable for Raw Eating. Eur. Food Res. Technol. 2018, 244, 851–860. [Google Scholar] [CrossRef]
- Lim, H.T.; Dhital, S.P.; Khu, D.M.; Li, K.H.; Choi, S.P.; Kang, C.W.; Kim, H.Y. ‘Gogu Valley’: A High Yielding Potential and Raw Eating Potato Cultivar. Hortic. Environ. Biotechnol. 2010, 51, 68–71. [Google Scholar]
- Kraak, A. Industrial applications of potato starch products. Ind. Appl. Potato Starch Prod. 1993, 1, 107–112. [Google Scholar] [CrossRef]
- Salehi, S.; Lashkari, S.; Ebne Abbasi, R.; Kamangar, H. Nutrient Digestibility and Chemical Composition of Potato (Solanum tuberosum L.) Vine as Alternative Forage in Ruminant Diets. Agric. Commun. 2014, 2, 63–66. [Google Scholar]
- Ahmmed, M.; Halim, M.; Mortuza, M.; Ismail, M. Potato (Solanum tuberosum) Peel Waste Utilization for Eco-Friendly Bio-Oil Production via Pyrolysis. DUJASE 2020, 5, 25–29. [Google Scholar]
- Rytel, E.; Nemś, A.; Pęksa, A.; Kita, A.; Miedzianka, J.; Tajner-Czopek, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Hamouz, K. Discolouration of Raw and Cooked Coloured Fleshed Potatoes Differing in Anthocyanins and Polyphenols Content. Int. J. Food Sci. Technol. 2019, 54, 92–101. [Google Scholar] [CrossRef]
- Everest, A.E. The Production of Anthocyanins and Anthocyanidins—Part III. Proc. R. Soc. London. Ser. B Contain. Pap. A Biol. Character 1918, 90, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Feng, Y.; Diao, T.; Zeng, W.; Zuo, Y. Experimental and Theoretical Study on Antioxidant Activity of the Four Anthocyanins. J. Mol. Struct. 2020, 1204, 127509. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Song, L.; Yang, Z.; Qiu, M.; Wang, J.; Shi, S. Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities. Molecules 2021, 26, 3807. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Xiao, R.; He, S.; An, X.; He, Y.; Wang, C.; Yin, S.; Wang, B.; Shi, X.; He, J. Molecules Research Advances of Purple Sweet Potato Anthocyanins: Extraction, Identification, Stability, Bioactivity, Application, and Biotransformation. Molecules 2019, 24, 3816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemś, A.; Pęksa, A.; Kucharska, A.Z.; Sokół-ŁĘtowska, A.; Kita, A.; Drozdz, W.; Hamouz, K. Anthocyanin and Antioxidant Activity of Snacks with Coloured Potato. Food Chem. 2015, 172, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Galani, J.H.Y.; Mankad, P.M.; Shah, A.K.; Patel, N.J.; Acharya, R.R.; Talati, J.G. Effect of Storage Temperature on Vitamin C, Total Phenolics, UPLC Phenolic Acid Profile and Antioxidant Capacity of Eleven Potato (Solanum tuberosum) Varieties. Hortic. Plant. J. 2017, 3, 73–89. [Google Scholar] [CrossRef]
- Escuredo, O.; Seijo-Rodríguez, A.; Inmaculada González-Martín, M.; Shantal Rodríguez-Flores, M.; Carmen Seijo, M. Potential of near Infrared Spectroscopy for Predicting the Physicochemical Properties on Potato Flesh. Microchem. J. 2018, 141, 451–457. [Google Scholar] [CrossRef]
- Sun, Q.; Du, M.; Navarre, D.A.; Zhu, M. Effect of Cooking Methods on Bioactivity of Polyphenols in Purple Potatoes. Antioxidants 2021, 10, 1176. [Google Scholar] [CrossRef]
- Nagy, A.M.; Boboc, P.; Cătană, C.; Antofie, M.M.; Sava Sand, C. Comparative Study of Two Varieties of Purple Flash Potato Grown Vitro. Sci. Bulletin. Ser. F Biotechnol. 2022, 26, 43–48. [Google Scholar]
- Mocan, A.; Zengin, G.; Simirgiotis, M.; Schafberg, M.; Mollica, A.; Vodnar, D.C.; Crişan, G.; Rohn, S. Functional Constituents of Wild and Cultivated Goji (L. Barbarum L.) Leaves: Phytochemical Characterization, Biological Profile, and Computational Studies. J. Enzym. Inhib. Med. Chem. 2017, 32, 153–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranalli, P. Innovative Propagation Methods Multiplication Programmes in Seed Tuber. Potato Res. 1997, 40, 439–453. [Google Scholar] [CrossRef]
- Cachita-Cosma, D.; Achim, F.; Cristea, V. Methods of Potato Multiplication on Aseptic Medium by Micropropagation Technics. An. Inst. De Cercet. Si Prod. A Cart. Bras. (Rom.) 1987, 15, 37–49. [Google Scholar]
- Potato Variety Database. Available online: https://potatoes.agricrops.org/ (accessed on 28 February 2023).
- Liu, B.; Zhao, S.; Tan, F.; Zhao, H.; Wang, D.D.; Si, H.; Chen, Q. Changes in ROS Production and Antioxidant Capacity during Tuber Sprouting in Potato. Food Chem. 2017, 237, 205–213. [Google Scholar] [CrossRef]
- Koleva Gudeva, L.; Mitrev, S.; Trajkova, F.; Ilievski, M. Micropropagation of Potato Solanum tuberosum L. Electron. J. Biol. 2012, 8, 45–49. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Shysiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Al-Hussaini, Z.A.; Yousif, S.H.A.; Al-Ajeely, S.A. Effect of Different Medium on Callus Induction and Regeneration in Potato Cultivars. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 856–865. [Google Scholar]
- Uchendu, E.E.; Shukla, M.; Saxena, P.K.; Keller, J.E.R. Cryopreservation of Potato Microtubers: The Critical Roles of Sucrose and Desiccation. Plant. Cell. Tissue Organ. Cult. 2016, 124, 649–656. [Google Scholar] [CrossRef]
- Web of Science Core Collection. Available online: https://www.webofscience.com/wos/woscc/basic-research (accessed on 10 February 2023).
- Jan van Eck, N.; Waltman, L. VOSviewer—Visualizing scientific landscapes, software version, VOSviewer Version 1.6.15 2022. Available online: https://www.vosviewer.com/ (accessed on 15 February 2023).
- Jokioja, J.; Linderborg, K.M.; Kortesniemi, M.; Nuora, A.; Heinonen, J.; Sainio, T.; Viitanen, M.; Kallio, H.; Yang, B. Anthocyanin-Rich Extract from Purple Potatoes Decreases Postprandial Glycemic Response and Affects Inflammation Markers in Healthy Men. Food Chem. 2020, 310, 125797. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Pan, C.H.; Yoon, W.B. Mathematical Models of Pretreatment Processes to Utilize Purple-Fleshed Potato (Solanum tuberosum L.) Peels for Anthocyanin Extraction. Food Sci. Biotechnol. 2016, 25, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Iborra-Bernad, C.; García-Segovia, P.; Martínez-Monzó, J. Physico-Chemical and Structural Characteristics of Vegetables Cooked Under Sous-Vide, Cook-Vide, and Conventional Boiling. J. Food Sci. 2015, 80, E1725–E1734. [Google Scholar] [CrossRef]
- Hamouz, K.; Pazderů, K.; Lachman, J.; Čepl, J.; Kotíková, Z. Effect of Cultivar, Flesh Colour, Locality and Year on Carotenoid Content in Potato Tubers. Plant. Soil. Environ. 2016, 62, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Visvanathan, R.; Jayathilake, C.; Chaminda Jayawardana, B.; Liyanage, R. Health-Beneficial Properties of Potato and Compounds of Interest. J. Sci. Food Agric. 2016, 96, 4850–4860. [Google Scholar] [CrossRef]
- Oancea, S. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants 2021, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
- Strugała, P.; Dzydzan, O.; Brodyak, I.; Kucharska, A.Z.; Kuropka, P.; Liuta, M.; Kaleta-Kuratewicz, K.; Przewodowska, A.; Michałowska, D.; Gabrielska, J.; et al. Molecules Antidiabetic and Antioxidative Potential of the Blue Congo Variety of Purple Potato Extract in Streptozotocin-Induced Diabetic Rats. Molecules 2019, 24, 3126. [Google Scholar] [CrossRef] [Green Version]
- Głosek-Sobieraj, M.; Cwalina-Ambroziak, B.; Waśkiewicz, A.; Kubiaczyk, K. The Impact of Trifender Wp on the Content of Chlorogenic Acids in Potato Plants Infected by Phytophthora Infestans (Mont.) de Bary. Acta Sci. Pol. Hortorum Cultus 2019, 18, 217–227. [Google Scholar] [CrossRef]
- Roca, W.M.; Bryan, J.E.; Roca, M.R. Tissue Culture for the International Transfer of Potato Genetic Resources. Am. Potato J. 1979, 56, 1–10. [Google Scholar] [CrossRef]
- Mohapatra, P.P.; Batra, V.K. Tissue Culture of Potato (Solanum tuberosum L.): A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Jain, V.; Joseph, M.R.; Devi, S. A Review on Micropropagation Culture Method. Asian J. Pharm. Res. Dev. 2020, 8, 86–93. [Google Scholar] [CrossRef]
- Blidar, C.F.; Chis, R.S.; Bota, S.R.; Serban, G.; Stanasel, O.D. Effect of Light Quality on in Vitro Germination, Seedling Growth and Photosynthetic Pigments Production in Wheat (Triticum Aestivum L.). Afr. J. Biotechnol. 2021, 20, 300–307. [Google Scholar] [CrossRef]
- Zanella, L.B.; Franciscon, L.; Grunennvaldt, R.L.; Tomasi, J.D.C.; Degenhardt-Goldbach, J. Micropropagation of Pinus Tecunumanii. Ciênc. Florest. 2018, 28, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Rafiq, S.; Rather, Z.A.; Bhat, R.A.; Nazki, I.T.; AL-Harbi, M.S.; Banday, N.; Farooq, I.; Samra, B.N.; Khan, M.H.; Ahmed, A.F.; et al. Standardization of in Vitro Micropropagation Procedure of Oriental Lilium Hybrid Cv. ‘Ravenna.’ Saudi J. Biol. Sci. 2021, 28, 7581–7587. [Google Scholar] [CrossRef]
- Elkazzaz, A. Micropropagation of four potato cultivars in vitro. Acad. J. Agric. Res. 2015, 3, 184–188. [Google Scholar] [CrossRef]
- Nistor, A.; Chiru, N.; Cioloca, M.; Popa, M. Influence of Different Potassium Concetrations in Potato Microtuberization. Stud. Univ. Vasile Goldis Arad. Life Sci. Ser. 2012, 22, 543. [Google Scholar]
- Chapman, H.W. Potato Tissue Culture. Am. Potato J. 1955, 32, 207–210. [Google Scholar] [CrossRef]
- Roca, W.M.; Espinoza, N.O.; Roca, M.R.; Bryan, J.E. A Tissue Culture Method for the Rapid Propagation of Potatoes. Am. Potato J. 1978, 55, 691–701. [Google Scholar] [CrossRef]
- Greco, M.; Chiappetta, A.; Bruno, L.; Bitonti, M.B. In Posidonia Oceanica Cadmium Induces Changes in DNA Methylation and Chromatin Patterning. J. Exp. Bot. 2012, 63, 695–709. [Google Scholar] [CrossRef] [Green Version]
- Riker, A.J.; Gutsche, A.E. The Growth of Sunflower Tissue In Vitro on Synthetic Media with Various Organic and Inorganic Sources of Nitrogen. Am. J. Bot. 1948, 35, 227–238. [Google Scholar] [CrossRef]
- Avila, A.D.L.; Pereyra, S.M.; Collino, D.J.; Argoello, J.A. Effect of Nitrogen Source on Growth and Morphogenesis of Three Micropropagated Potato Cultivars. Potato Res. 1994, 37, 161–168. [Google Scholar] [CrossRef]
- Recent Advances in Plant in Vitro Culture. Available online: https://worldcat.org/title/1027923764 (accessed on 27 February 2023).
- Goyal, S.S.; Huffaker, R.C. Nitrogen Toxicity in Plants. In Nitrogen in Crop Production; Wiley: New York, NY, USA, 1984; pp. 97–118. [Google Scholar]
- Gamborg, O.L. The Effects of Amino Acids and Ammonium on the Growth of Plant Cells in Suspension Culture. Plant. Physiol. 1970, 45, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Matysiak, K.; Kierzek, R.; Siatkowski, I.; Kowalska, J.; Krawczyk, R.; Miziniak, W. Effect of Exogenous Application of Amino Acids L-Arginine and Glycine on Maize under Temperature Stress. Agronomy 2020, 10, 769. [Google Scholar] [CrossRef]
- Noroozlo, Y.A.; Souri, M.K.; Delshad, M. Stimulation Effects of Foliar Applied Glycine and Glutamine Amino Acids on Lettuce Growth. Open. Agric. 2019, 4, 164–172. [Google Scholar] [CrossRef]
- Da Rocha, P.S.G.; de Oliveira, R.P.; Scivittaro, W.B. New Light Sources for In-Vitro Potato Micropropagation. Biosci. J. 2015, 31, 1312–1318. [Google Scholar] [CrossRef] [Green Version]
- Sand, C.S.; Antofie, M.M. De Novo Shoot Development of Tropical Plants: New Insights for Syngonium Podophyllum Schott. Horticulturae 2022, 8, 1105. [Google Scholar] [CrossRef]
- Makunga, N.P.; Van Staden, J.; Cress, W.A. The Effect of Light and 2,4-D on Anthocyanin Production in Oxalis Reclinata Callus. Plant. Growth Regul. 1997, 23, 153–158. [Google Scholar] [CrossRef]
- Sherkar, H.D.; Chavan, A.M. Effect of 2,4-D.; BAP and TDZ on Callus Induction and Shoot Regeneration in Potato. Sci. Res. Report. 2014, 4, 101–105. [Google Scholar]
- Skoog, F.; Cheng, T. Chemical Control of Growth and Bud Formation in Tobacco Stem Segments and Callus Cultured in Vitro. Am. J. Bot. 1948, 782–787. [Google Scholar] [CrossRef]
- Kumlay, A.M.; Ercisli, S. Callus Induction, Shoot Proliferation and Root Regeneration of Potato (Solanum tuberosum L.) Stem Node and Leaf Explants under Long-Day Conditions. Biotechnol. Biotechnol. Equip. 2015, 29, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Palmer, C.E.; Smith, O.E. Cytokinins and Tuber Initiation in the Potato Solanum tuberosum L. Nature 1969, 221, 279–280. [Google Scholar] [CrossRef]
- Nistor, N.; Campeanu, G.; Atanasiu, N.; Chiru, N.; Karácsonyi, D. Influence of Genotype on Microtubers Production. Hort. Agrobot. Cluj. 2010, 38, 209–212. [Google Scholar]
- Yagiz, A.K.; Yavuz, C.; Tarim, C.; Demirel, U.; Caliskan, M.E. Effects of Growth Regulators, Media and Explant Types on Microtuberization of Potato. Am. J. Potato Res. 2020, 97, 253–530. [Google Scholar] [CrossRef]
- Saha, S.; Ahmed, M.; Islam, M.M.; Remme, R.N.; Ali, M.R. Effect of Different Levels of Sucrose on Microtuberization and Different Substrates on Minituber Production Resulted from Potato Meristem Culture. J. Agric. Vet. Sci. 2013, 4, 58–62. [Google Scholar] [CrossRef]
- Islam, M.S.; Roni, M.Z.K.; Jamal Uddin, A.F.M.; Shimasaki, K. Jamal Uddin AFM.; Shimasaki Kazuhiko Tracing the Role of Sucrose in Potato Microtuber Formation “in Vitro”. Plant. Omics 2017, 10, 15–19. [Google Scholar] [CrossRef]
- Barker, W.G. A Method for the In Vitro Culturing of Potato Tubers. Science 1953, 118, 384–385. [Google Scholar] [CrossRef] [PubMed]
- Mes, M.G.; Menge, I. Potato Shoot and Tuber Cultures in Vitro. Physiol. Plant. 1954, 7, 637–649. [Google Scholar] [CrossRef]
- Khuri, S.; Moorby, J. Investigations into the Role of Sucrose in Potato Cv. Estima Microtuber Production in Vitro. Ann. Bot. 1995, 75, 295–303. [Google Scholar] [CrossRef]
Variety | Country of Origin | Provider | Type of Variety | Shape of Tuber | Epidermis Color | Flesh Color |
---|---|---|---|---|---|---|
Blue Danube | Germany | Romanian Farmer 46°12′07.9″ N; 23°41′16.1″ E 1 | Early | Oval | Blue | White |
BD | ||||||
Salad Blue SB | U.K. (Scotland) | The National Research and Development Institute for Potato and Sugar Beet from Brasov, Romania | Early | Oval | Dark blue shade | Purple to blue with white insertions |
Violet Negretin VN | France | A nationally recognized chain of stores from Romania | Late | Elongated | Dark blue, almost black | Dark blue or dark purple |
Violet Queen VQ | The Netherlands | A nationally recognized chain of stores from Romania | Early | Oval-long | Blue particolored | Blue particolored |
Treatment | Pretreatment | Treatment | ||
---|---|---|---|---|
Chemical Agent | Conc.2 | Duration (min) | ||
T1 | EtOH 70% (1 min) | Domestos® 1 | 10% (v/v) | 10 |
T2 | 20 | |||
T3 | 15% (v/v) | 10 | ||
T4 | 20 | |||
T5 | 20% (v/v) | 10 | ||
T6 | 20 |
MS62 Including Vitamins | Glycine | Sucrose | Gelrite | pH Value | Growth Room Condition | |
---|---|---|---|---|---|---|
MS (control) MS | 4.40 g/L | - | 20.00 g/L | 3.00 g/L | 5.7 | Irradiance capacity 100–112 μmol/m2/s Temperature 23 °C ± 2 °C Photoperiod 16/8 h |
MS with glycine MS + Gly | 4.40 g/L | 15.00 mg/L | 20.00 g/L | 3.00 g/L | 5.7 |
Type of Callus Culture Media | Plant Growth Regulators (PGRs) | Amino Acid | ||||
---|---|---|---|---|---|---|
2,4-D (mg/L) | NAA (mg/L) | GA3 (mg/L) | BAP (mg/L) | TDZ (mg/L) | Glycine (mg/L) | |
C1 | 2.50 | - | - | - | - | - |
C2 | - | 5.00 | 1.00 | 1.00 | - | - |
C3 | - | 5.00 | 1.00 | - | 1.00 | - |
C4 | - | 5.00 | 1.00 | 1.00 | - | 15.00 |
C5 | - | 5.00 | 1.00 | - | 1.00 | 15.00 |
Sucrose (w/v) | Growth Room Condition | |
---|---|---|
MT1 | 6% 8% 10% | Irradiance capacity 100–112 μmol/m2/s Temperature 23 °C± 2 °C Photoperiod 16/8 h |
MT2 | ||
MT3 | ||
MT4 | 12% |
Treatment | Survival (%) | Contamination (%) | Incubation Period (Days) | Contaminant Abundance |
---|---|---|---|---|
T1 | 24.44 c | 75.56 | 2–3 | + + + + |
T2 | 42.22 b,c | 57.78 | 2–3 | + + + |
T3 | 35.55 b,c | 64.45 | 2–6 | + + + + |
T4 | 68.89 a | 31.11 | 2–4 | + + + |
T5 | 51.11 b | 48.89 | 3–5 | + + |
T6 | 79.99 a | 20.34 | 3–6 | + |
DS 5% | 17.38–19.15 |
Variety | Survival (%) | Contamination (%) | Length Shoots (cm) |
---|---|---|---|
BD | 77.50 a,b | 22.50 | 6.97 b |
SB | 87.50 a | 12.50 | 8.63 a |
VN | 72.50 b | 27.50 | 6.63 b |
VQ | 82.50 a,b | 17.50 | 4.80 c |
DS 5% | 11.25–11.30 | - | 1.60–1.68 |
Variety | Shoot Length (cm) | Node Number | Internode Distance (cm) | |||
---|---|---|---|---|---|---|
MS (Ct) | MS + Gly | MS (Ct) | MS + Gly | MS (Ct) | MS + Gly | |
BD | 3.30 e | 8.40 b | 5.00 b | 7.33 a | 0.69 d | 1.15 b,c |
SB | 3.93 d,e | 9.00 a,b | 2.67 c | 6.00 a,b | 1.51 a,b | 1.53 a,b |
VN | 3.60 d,e | 9.50 a | 3.33 c | 5.67 b | 1.10 c | 1.73 a |
VQ | 7.33 c | 4.27 d | 6.00 a,b | 2.67 c | 1.24 b,c | 1.64 a |
DS 5% | 0.87–0.97 | 1.27–1.43 | 0.35–0.40 |
Culture Media | Variety | Callus Initiation | |||
---|---|---|---|---|---|
% of Explants Producing Callus | % of Callus Producing Shoots | ||||
Light | Dark | Light | Dark | ||
C1 | BD | 63.33 | 23.33 | 0.00 | 0.00 |
SB | 76.66 | 30.00 | 0.00 | 0.00 | |
VN | 83.33 | 26.66 | 4.00 | 0.00 | |
VQ | 53.33 | 36.66 | 0.00 | 9.09 | |
C2 | BD | 56.66 | 16.66 | 47.05 | 0.00 |
SB | 83.33 | 36.66 | 44.00 | 18.18 | |
VN | 80.00 | 23.33 | 37.50 | 0.00 | |
VQ | 60.00 | 43.33 | 46.66 | 7.69 | |
C3 | BD | 86.66 | 36.66 | 42.30 | 9.09 |
SB | 76.66 | 46.66 | 43.47 | 14.28 | |
VN | 73.33 | 13.33 | 36.36 | 0.00 | |
VQ | 56.66 | 20.00 | 35.29 | 0.00 | |
C4 | BD | 83.33 | 26.66 | 72.00 | 0.00 |
SB | 90.00 | 30.00 | 59.25 | 0.00 | |
VN | 86.66 | 36.66 | 57.69 | 9.09 | |
VQ | 63.33 | 16.66 | 57.89 | 0.00 | |
C5 | BD | 90.00 | 30.00 | 74.07 | 0.00 |
SB | 86.66 | 36.66 | 73.07 | 9.09 | |
VN | 86.66 | 43.33 | 65.38 | 7.69 | |
VQ | 66.66 | 33.33 | 60.00 | 0.00 |
Culture Media | Variety | Callus from the Third Subculture | ||
---|---|---|---|---|
Shoots Regeneration (%) | Callus Fresh Weight (g) | Callus Morphology (Color and Texture) | ||
C1 | BD | 18.89 | 1.98 a | green, friable |
SB | 14.44 | 1.96 a | green/brown, friable, with roots | |
VN | 16.67 | 1.66 a–c | green, friable | |
VQ | 12.22 | 1.80 a,b | green/brown, with roots | |
C2 | BD | 41.11 | 0.61 i,j | white/green, soft |
SB | 45.56 | 1.10 e–h | white/purple, soft | |
VN | 37.78 | 0.44 j | yellow/green, friable | |
VQ | 42.22 | 0.94 g–i | white/purple, rough | |
C3 | BD | 47.78 | 0.94 g–i | green/white, rough |
SB | 51.11 | 1.35 c–g | green/yellow, rough | |
VN | 53.33 | 0.93 g–i | green, rough | |
VQ | 44.44 | 1.07 f–h | green/white, rough | |
C4 | BD | 74.44 | 1.55 b–d | white, soft |
SB | 71.11 | 1.15 d–h | green/purple, soft | |
VN | 62.22 | 0.84 h, i | green/white, soft | |
VQ | 56.67 | 1.46 b–f | purple/white, soft | |
C5 | BD | 76.67 | 1.10 e–h | white/green, soft |
SB | 73.33 | 1.53 b–e | white/purple, soft | |
VN | 64.44 | 1.27 c–h | yellow/purple, soft | |
VQ | 58.89 | 1.20 d–h | purple, soft | |
DS 5% | 0.38–0.45 |
Culture Media | Variety | Tuberization (%) | Number of Microtubers Per Plantlet | Weight of Microtuber (g) | Diameter of Microtuber (mm) |
---|---|---|---|---|---|
MT1 | BD | 31.11 | 1.00 d | 0.46 c | 4.50 e–h |
SB | 37.78 | 1.00 d | 0.53 c | 4.60 e–h | |
VN | 36.67 | 1.00 d | 0.53 c | 4.83 e,f | |
VQ | 33.33 | 1.00 d | 0.49 c | 4.70 e–g | |
MT2 | BD | 54.44 | 1.67 c,d | 1.01 a,b | 8.03 b |
SB | 67.78 | 3.67 a | 1.11 a | 8.70 a | |
VN | 55.56 | 3.00 a,b | 0.98 a,b | 7.23 c | |
VQ | 57.78 | 2.33 b,c | 0.87 b | 6.23 d | |
MT3 | BD | 25.56 | 1.33 c,d | 0.89 b | 7.13 c |
SB | 32.22 | 2.00 b–d | 1.07 a,b | 7.17 c | |
VN | 24.44 | 1.67 c,d | 1.16 a | 6.87 c | |
VQ | 27.78 | 2.33 b,c | 0.98 a,b | 6.93 c | |
MT4 | BD | 2.22 | 1.00 d | 0.40 c | 4.27 f–h |
SB | 6.67 | 1.00 d | 0.36 c | 4.97 e | |
VN | 5.56 | 1.00 d | 0.47 c | 4.14 g,h | |
VQ | 4.44 | 1.00 d | 0.47 c | 4.07 h | |
DS 5% | 1.12–1.33 | 0.19–0.23 | 0.54–0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, A.M.; Oros, P.; Cătană, C.; Antofie, M.M.; Sand, C.S. In Vitro Cultivation of Purple-Fleshed Potato Varieties: Insights into Their Growth and Development. Horticulturae 2023, 9, 425. https://doi.org/10.3390/horticulturae9040425
Nagy AM, Oros P, Cătană C, Antofie MM, Sand CS. In Vitro Cultivation of Purple-Fleshed Potato Varieties: Insights into Their Growth and Development. Horticulturae. 2023; 9(4):425. https://doi.org/10.3390/horticulturae9040425
Chicago/Turabian StyleNagy, Alexandra Mihaela, Paula Oros, Corina Cătană, Maria Mihaela Antofie, and Camelia Sava Sand. 2023. "In Vitro Cultivation of Purple-Fleshed Potato Varieties: Insights into Their Growth and Development" Horticulturae 9, no. 4: 425. https://doi.org/10.3390/horticulturae9040425
APA StyleNagy, A. M., Oros, P., Cătană, C., Antofie, M. M., & Sand, C. S. (2023). In Vitro Cultivation of Purple-Fleshed Potato Varieties: Insights into Their Growth and Development. Horticulturae, 9(4), 425. https://doi.org/10.3390/horticulturae9040425