Genome-Wide Identification and Characterization of the ANS Gene Family in Pomegranate (Punica granatum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Identification of Members of the ANS Gene Family of Pomegranate
2.3. Analysis of Physicochemical Properties and Prediction of Secondary Structure of Pomegranate ANS Proteins
2.4. Construction of Phylogenetic Trees and Mapping of Gene Structures
2.5. Structural and Conserved Motif Domain Analysis of the Pomegranate ANS Protein
2.6. Chromosome Positioning and Co-Linearity Analysis
2.7. RNA Extraction, Library Construction and Sequencing
2.8. Raw Data Filtering, GO Enrichment and Transcriptome Expression Analysis
3. Results
3.1. Identification, Physicochemical Characterization and Subcellular Localization of Pomegranate ANS Gene Family Members
3.2. Predicted Secondary Structure of the Pomegranate ANS Gene Family Proteins
3.3. Phylogenetic and Genetic Structure Analysis of the Pomegranate ANS Family
3.4. Analysis of Protein Structures and Conserved Motifs of Members of the Pomegranate ANS Family
3.5. Chromosome Positioning
3.6. Summary of RNA Sequencing Data
3.7. Expression Analysis of the Pomegranate ANS Gene Family
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, Z.-H.; Yin, Y.-L.; Zhu, L.-Q.; Li, Y.; Hou, L.-F. Research progress of health functions of pomegranate. Shandong For. Sci. Technol. 2008, 01, 91–93, 59. [Google Scholar]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Pomegranate and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef] [PubMed]
- Julie, J. Therapeutic applications of pomegranate (Punica granatum L.): A review. Altern. Med. Rev. 2008, 13, 128–144. [Google Scholar]
- Wang, X.-F. Classification of Pomegranate Varieties. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2007. [Google Scholar]
- Schubert, S.Y.; Lansky, E.P.; Neeman, I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J. Ethnopharmacol. 1999, 66, 11–17. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef]
- Wang, D.; Özen, C.; Abu-Reidah, I.M.; Chigurupati, S.; Patra, J.K.; Horbanczuk, J.O.; Jóźwik, A.; Tzvetkov, N.T.; Uhrin, P.; Atanasov, A.G. Vasculoprotective effects of pomegranate (Punica granatum L.). Front. Pharmacol. 2018, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Cuadrado, C.; Redondo, I.B.; Giampieri, F.; González-Paramás, A.M.; Santos-Buelga, C. Novel approaches in anthocyanin research—Plant fortification and bioavailability issues. Trends Food Sci. Technol. 2021, 117, 92–105. [Google Scholar] [CrossRef]
- Hashimoto, M.; Suzuki, T.; Iwashina, T. New acylated anthocyanins and other flavonoids from the red flowers of Clematis cultivars. Nat. Prod. Commun. 2011, 6, 1631–1636. [Google Scholar] [CrossRef] [Green Version]
- Behrens, C.E.; Smith, K.E.; Iancu, C.V.; Choe, J.-Y.; Dean, J.V. Transport of Anthocyanins and Other Flavonoids by the Arabidopsis ATP-Binding Cassette Transporter AtABCC2. Sci. Rep. 2019, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Qi, Q.; Chu, M.; Yu, X.; Xie, Y.; Li, Y.; Du, Y.; Liu, X.; Zhang, Z.; Shi, J.; Yan, N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. Food Rev. Int. 2022, 1–29. [Google Scholar] [CrossRef]
- Schofield, C.J.; Zhang, Z. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr. Opin. Struct. Biol. 1999, 9, 722–731. [Google Scholar] [CrossRef]
- Wilmouth, R.C.; Turnbull, J.J.; Welford, R.W.; Clifton, I.J.; Prescott, A.G.; Schofield, C.J. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 2002, 10, 93–103. [Google Scholar] [CrossRef]
- Saito, K.; Kobayashi, M.; Gong, Z.; Tanaka, Y.; Yamazaki, M. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: Molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J. 1999, 17, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, S.; Zheng, G.; Zhu, S.; Qian, J.; Liang, L. Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Liriope spicata Fruit. Metabolites 2022, 12, 144. [Google Scholar] [CrossRef] [PubMed]
- Dellaporta, S.L.; Greenblatt, I.; Kermicle, J.L.; Hicks, J.B.; Wessler, S.R. Molecular cloning of the maize R-nj allele by transposon tagging with Ac. In Chromosome Structure and Function; Impact New Concepts; Springer: Boston, MA, USA, 1988; pp. 263–282. [Google Scholar]
- Wei, Y.-Z.; Hu, F.-C.; Hu, G.-B.; Li, X.-J.; Huang, X.-M.; Wang, H.-C. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS ONE 2011, 6, e19455. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Chen, Y.; Gao, A.; Huang, J. Cloning and expression of anthocyanidin synthase (ANS) gene from peel of mango (Mangifera indica Linn). Afr. J. Plant Sci. 2014, 8, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Lee, J.R.; Hong, S.T.; Yoo, Y.-K.; An, G.; Kim, S.-R. Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Sci. 2003, 165, 403–413. [Google Scholar] [CrossRef]
- Jin, Q.-F.; Chen, Z.-D.; Sun, W.-J.; Lin, F.-M.; Xue, Z.-H.; Huang, Y.; Tang, X.-H. Cloning and bioinformatics analysis of tea tree CsANS gene and its promoter. Tea Sci. 2016, 36, 219–228. [Google Scholar]
- Wang, H.; Wang, W.; Zhang, P.; Pan, Q.; Zhan, J.; Huang, W. Gene transcript accumulation, tissue and subcellular localization of anthocyanidin synthase (ANS) in developing grape berries. Plant Sci. 2010, 179, 103–113. [Google Scholar] [CrossRef]
- Nakamura, N.; Fukuchi-Mizutani, M.; Miyazaki, K.; Suzuki, K.; Tanaka, Y. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnol. 2006, 23, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.M.; Reddy, V.S.; Scheffler, B.E.; Wienand, U.; Reddy, A.R. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab. Eng. 2007, 9, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Gai, J.-T.; Huang, J.-F.; Dang, Z.-G.; Zhu, M.; Chen, H.-R.; Wang, P.; Chen, Y.-Y. Identification of ANS genes in mango and comparative analysis with other plants. Jiangsu Agric. Sci. 2007, 45, 43–49. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Humana: Louisville, KY, USA, 2005; pp. 571–607. [Google Scholar]
- Sapay, N.; Guermeur, Y.; Deléage, G. Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinform. 2006, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015, 43, D222–D226. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37 (Suppl. 2), W202–W208. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.-Y.; Yang, L.; Duan, Q.-H.; Huang, J.-B. Genome-wide identification and expression analysis of the ACA gene family in Chinese cabbage. Chin. Agric. Sci. 2021, 54, 4851–4868. [Google Scholar]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef]
- Kukurba, K.R.; Montgomery, S.B. RNA sequencing and analysis. Cold Spring Harb. Protoc. 2015, 2015, 951–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Hagel, J.M.; Facchini, P.J. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat. Chem. Biol. 2010, 6, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Aravind, L.; Koonin, E.V. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate-and iron-dependent dioxygenases. Genome Biol. 2001, 2, 1–8. [Google Scholar] [CrossRef]
- Yang, H.-Z. Cloning of sweet potato Anthocyanidin Synthase (ANS) gene and analysis of its tissue expression pattern. Shanxi Agric. Sci. 2020, 48, 1718–1723. [Google Scholar]
- Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Nair, M.G.; Strasburg, G.M.; Chang, Y.C.; Booren, A.M.; Gray, J.I.; DeWitt, D.L. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J. Nat. Prod. 1999, 62, 294–296. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.-Q.; Weber, C.; Lee, C.Y.; Brown, J.; Liu, R.H. Antioxidant and antiproliferative activities of raspberries. J. Agric. Food Chem. 2002, 50, 2926–2930. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Zhang, J.; Yang, B.; Yu, Y.; Liu, T.; Nie, B.; Song, B. Functional analysis of an Anthocyanidin Synthase gene StANS in potato. Sci. Hortic. 2020, 272, 109569. [Google Scholar] [CrossRef]
- Bu, X.-X.; Luo, X.-P.; Bai, Y.-C.; Li, C.-L.; Chen, H.; Wu, Q. Cloning of Anthocyanidin Synthase gene from golden buckwheat and correlation between its expression and anthocyanin amount. Chin. Herb. Med. 2014, 45, 985–989. [Google Scholar]
- Tao, S.; Wang, D.; Jin, C.; Sun, W.; Liu, X.; Zhang, S.; Gao, F.; Khanizadeh, S. Cinnamate-4-hydroxylase gene is involved in the step of lignin biosynthesis in Chinese white pear. J. Am. Soc. Hortic. Sci. 2015, 140, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.-Y. Flavonoid Composition and Gene Expression Analysis of Jellyfish Snowdrop. Master’s Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2013. [Google Scholar]
- Zhang, B. Study on the Regulatory Mechanism of Anthocyanin Biosynthesis Metabolic Pathway in Brassica Napus. Ph.D. Thesis, Chongqing University, Chongqing, China, 2011. [Google Scholar]
- Hassani, D.; Liu, H.L.; Chen, Y.N.; Wan, Z.B.; Zhuge, Q.; Li, S.X. Analysis of biochemical compounds and differentially expressed genes of the anthocyanin biosynthetic pathway in variegated peach flowers. Genet. Mol. Res. 2015, 14, 13425–13436. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-H.; Ge, C.-L.; Zhang, X.-H.; Wu, H.; Qu, X.-Y.; Xu, X.-B. Expression analysis of structural genes related to Anthocyanidin Synthase in fruits of ‘Hongyang’ kiwifruit mutant. J. Fruit Trees 2014, 31, 169–174+164. [Google Scholar]
Protein ID | Gene ID | Gene Name | Number of Amino Acids | Molecular Weight/(D) | Isoelectric Point | Total Average Hydrophilicity | Instability Factor | Subcellular Localization |
---|---|---|---|---|---|---|---|---|
XP_031403964.1 | XM_031548104 | PgANS1 | 356 | 40,324.31 | 5.84 | −0.392 | 53.57 | cytoplasm |
XP_031393652.1 | XM_031537792 | PgANS2 | 336 | 38,173.35 | 5.50 | −0.563 | 46.13 | cytoplasm |
XP_031384984.1 | XM_031529124 | PgANS3 | 336 | 38,357.03 | 5.79 | −0.405 | 44.57 | cytoplasm |
XP_031390545.1 | XM_031534685 | PgANS4 | 334 | 37,853.40 | 5.75 | −0.344 | 50.46 | cytoplasm |
XP_031376432.1 | XM_031520572 | PgANS5 | 357 | 40,044.51 | 5.66 | −0.382 | 50.46 | cytoplasm |
XP_031377848.1 | XM_031521988 | PgANS6 | 356 | 38,836.67 | 5.62 | −0.305 | 52.91 | cytoplasm |
XP_031393854.1 | XM_031537994 | PgANS7 | 356 | 40,019.21 | 5.37 | −0.192 | 44.10 | cytoplasm |
XP_031393852.1 | XM_031537992 | PgANS8 | 356 | 40,047.29 | 5.46 | −0.172 | 44.14 | cytoplasm |
XP_031376880.1 | XM_031521020 | PgANS9 | 362 | 41,430.45 | 5.17 | −0.413 | 40.53 | cytoplasm |
XP_031393856.1 | XM_031537996 | PgANS10 | 356 | 40,055.22 | 5.14 | −0.197 | 43.63 | cytoplasm |
XP_031393853.1 | XM_031537993 | PgANS11 | 384 | 43,440.10 | 6.03 | −0.295 | 46.39 | cytoplasm |
XP_031393851.1 | XM_031537991 | PgANS12 | 390 | 43,645.10 | 5.77 | −0.254 | 44.39 | cytoplasm |
XP_031395560.1 | XM_031539700 | PgANS13 | 356 | 40,391.35 | 6.12 | −0.366 | 40.64 | cytoplasm |
XP_031380350.1 | XM_031524490 | PgANS14 | 358 | 40,565.39 | 5.29 | −0.377 | 40.89 | cytoplasm |
XP_031382717.1 | XM_031526857 | PgANS15 | 347 | 39,631.90 | 5.26 | −0.390 | 40.16 | cytoplasm |
XP_031386650.1 | XM_031530790 | PgANS16 | 366 | 41,504.68 | 5.75 | −0.352 | 35.46 | cytoplasm |
XP_031378923.1 | XM_031523063 | PgANS17 | 359 | 40,562.30 | 5.07 | −0.338 | 36.23 | cytoplasm |
XP_031382330.1 | XM_031526470 | PgANS18 | 339 | 38,929.06 | 5.13 | −0.481 | 48.51 | cytoplasm |
XP_031394087.1 | XM_031538227 | PgANS19 | 362 | 41,139.64 | 5.30 | −0.152 | 48.30 | cytoplasm |
XP_031378476.1 | XM_031522616 | PgANS20 | 359 | 39,580.33 | 6.09 | −0.187 | 38.09 | cytoplasm |
XP_031395559.1 | XM_031539699 | PgANS21 | 376 | 42,663.06 | 6.77 | −0.366 | 38.50 | cytoplasm |
XP_031391993.1 | XM_031536133 | PgANS22 | 338 | 38,634.90 | 5.78 | −0.453 | 44.89 | cytoplasm |
XP_031393855.1 | XM_031537995 | PgANS23 | 361 | 40,534.63 | 5.07 | −0.265 | 45.11 | cytoplasm |
XP_031401502.1 | XM_031545642 | PgANS24 | 366 | 41,173.19 | 5.26 | −0.373 | 40.11 | cytoplasm |
XP_031391176.1 | XM_031535316 | PgANS26 | 350 | 38,763.98 | 5.39 | −0.277 | 54.46 | cytoplasm |
XP_031378903.1 | XM_031523043 | PgANS27 | 353 | 39,091.58 | 5.80 | −0.244 | 39.59 | cytoplasm |
XP_031388526.1 | XM_031532666 | PgANS28 | 367 | 41,013.40 | 5.28 | −0.487 | 44.63 | cytoplasm |
XP_031390878.1 | XM_031535018 | PgANS29 | 369 | 41,918.31 | 5.38 | −0.226 | 49.33 | cytoplasm |
XP_031388423.1 | XM_031532563 | PgANS30 | 358 | 40,381.98 | 5.62 | −0.295 | 42.66 | cytoplasm |
XP_031372937.1 | XM_031517077 | PgANS31 | 388 | 43,418.39 | 6.28 | −0.314 | 55.54 | cytoplasm |
XP_031388151.1 | XM_031532291 | PgANS32 | 372 | 41,873.01 | 5.42 | −0.402 | 43.37 | cytoplasm |
XP_031383472.1 | XM_031527612 | PgANS33 | 380 | 43,218.42 | 5.38 | −0.396 | 36.43 | cytoplasm |
XP_031389012.1 | XM_03153315 | PgANS34 | 350 | 38,489.70 | 5.22 | −0.169 | 36.97 | cytoplasm |
XP_031391174.1 | XM_031535314 | PgANS35 | 353 | 39,037.42 | 5.34 | −0.220 | 43.80 | cytoplasm |
XP_031385121.1 | XM_031529261 | PgANS36 | 367 | 40,709.85 | 9.11 | −0.195 | 41.41 | cytoplasm |
XP_031383168.1 | XM_031527308 | PgANS37 | 358 | 41,381.08 | 6.75 | −0.524 | 35.12 | cytoplasm |
XP_031383192.1 | XM_031527332 | PgANS38 | 354 | 39,158.46 | 5.62 | −0.272 | 35.71 | cytoplasm |
XP_031376436.1 | XM_031520576 | PgANS39 | 370 | 41,879.97 | 5.48 | −0.252 | 41.88 | cytoplasm |
XP_031379827.1 | XM_031523967 | PgANS40 | 358 | 41,371.03 | 5.91 | −0.486 | 40.20 | cytoplasm |
XP_031383167.1 | XM_031527307 | PgANS41 | 358 | 41,503.05 | 5.81 | −0.542 | 43.97 | cytoplasm |
XP_031395634.1 | XM_031539774 | PgANS42 | 373 | 41,126.14 | 6.35 | −0.136 | 43.77 | cytoplasm |
XP_031394103.1 | XM_031538243 | PgANS43 | 320 | 36,348.78 | 5.18 | −0.379 | 34.24 | cytoplasm |
XP_031391175.1 | XM_031535315 | PgANS44 | 296 | 32,917.57 | 5.87 | −0.233 | 42.64 | cytoplasm |
XP_031385605.1 | XM_031529745 | PgANS45 | 358 | 40,276.11 | 5.26 | −0.264 | 49.52 | cytoplasm |
XP_031398105.1 | XM_031542245 | PgANS46 | 380 | 42,899.82 | 5.08 | −0.312 | 52.48 | cytoplasm |
XP_031399235.1 | XM_031543375 | PgANS47 | 365 | 41,639.61 | 5.27 | −0.390 | 33.34 | cytoplasm |
XP_031380799.1 | XM_031524939 | PgANS48 | 346 | 39,478.70 | 5.42 | −0.471 | 38.38 | cytoplasm |
XP_031397740.1 | XM_031541880 | PgANS49 | 336 | 40,882.18 | 5.33 | −0.391 | 44.01 | cytoplasm |
XP_031390650.1 | XM_031534790 | PgANS50 | 319 | 36,283.50 | 7.06 | −0.546 | 38.19 | cytoplasm |
XP_031384128.1 | XM_031528268 | PgANS51 | 319 | 35,943.26 | 5.34 | −0.300 | 30.71 | cytoplasm |
XP_031390887.1 | XM_031535027 | PgANS52 | 393 | 44,373.41 | 6.11 | −0.328 | 47.95 | cytoplasm |
XP_031383134.1 | XM_031527274 | PgANS53 | 378 | 43,069.06 | 6.82 | −0.443 | 32.77 | cytoplasm |
XP_031390764.1 | XM_031534904 | PgANS54 | 395 | 44,855.05 | 5.43 | −0.434 | 40.97 | cytoplasm |
XP_031399302.1 | XM_031543442 | PgANS55 | 434 | 48,533.05 | 6.38 | −0.026 | 36.22 | cytoplasm |
XP_031407498.1 | XM_031551638 | PgANS56 | 356 | 39,585.56 | 6.71 | −0.185 | 55.07 | cytoplasm |
XP_031389388.1 | XM_031533528 | PgANS57 | 394 | 44,472.40 | 6.50 | −0.383 | 49.59 | cytoplasm |
XP_031380299.1 | XM_031524439 | PgANS58 | 369 | 42,082.85 | 4.98 | −0.291 | 46.91 | cytoplasm |
XP_031407500.1 | XM_031551640 | PgANS59 | 289 | 32,101.26 | 9.08 | −0.104 | 49.69 | cytoplasm |
XP_031374700.1 | XM_031518840 | PgANS60 | 354 | 39,399.37 | 5.76 | −0.018 | 51.91 | cytoplasm |
XP_031378238.1 | XM_031522378 | PgANS61 | 393 | 44,385.28 | 6.15 | −0.334 | 36.41 | cytoplasm |
XP_031399301.1 | XM_031543441 | PgANS62 | 442 | 49,422.13 | 6.56 | −0.030 | 35.95 | cytoplasm |
XP_031373129.1 | XM_031517269 | PgANS63 | 379 | 42,826.43 | 5.05 | −0.374 | 46.89 | cytoplasm |
XP_031374648.1 | XM_031518788 | PgANS64 | 354 | 39,488.26 | 6.05 | −0.159 | 51.08 | cytoplasm |
XP_031388742.1 | XM_031532882 | PgANS65 | 304 | 34,270.08 | 6.11 | −0.509 | 42.64 | cytoplasm |
XP_031383847.1 | XM_031527987 | PgANS66 | 371 | 41,943.06 | 8.93 | −0.481 | 39.13 | cytoplasm |
XP_031373149.1 | XM_031517289 | PgANS67 | 369 | 42,122.84 | 5.01 | −0.282 | 46.38 | cytoplasm |
XP_031390843.1 | XM_031534983 | PgANS68 | 429 | 48,221.93 | 8.02 | −0.373 | 44.95 | cytoplasm |
XP_031377515.1 | XM_031521655 | PgANS69 | 372 | 42,320.19 | 5.47 | −0.326 | 43.29 | cytoplasm |
XP_031397862.1 | XM_031542002 | PgANS70 | 376 | 42,150.93 | 5.41 | −0.348 | 38.47 | cytoplasm |
XP_031377516.1 | XM_031521656 | PgANS71 | 372 | 42,394.42 | 5.58 | −0.323 | 45.43 | cytoplasm |
XP_031377517.1 | XM_031521657 | PgANS72 | 309 | 35,244.09 | 5.51 | −0.376 | 44.64 | cytoplasm |
XP_031400740.1 | XM_031544880 | PgANS73 | 303 | 33,706.66 | 5.28 | −0.166 | 45.19 | cytoplasm |
XP_031400741.1 | XM_031544881 | PgANS74 | 301 | 33,484.22 | 5.06 | −0.182 | 41.88 | cytoplasm |
XP_031395563.1 | XM_031539703 | PgANS75 | 317 | 36,302.44 | 5.44 | −0.409 | 35.63 | cytoplasm |
Gene Name | α-Helix (%) | Extended Strand (%) | β-Turn (%) | Random Coil (%) |
---|---|---|---|---|
PgANS1 | 33.15 | 17.42 | 5.06 | 44.38 |
PgANS2 | 34.23 | 19.05 | 6.85 | 39.88 |
PgANS3 | 34.82 | 19.35 | 5.36 | 40.48 |
PgANS4 | 33.23 | 17.96 | 5.39 | 43.41 |
PgANS5 | 32.21 | 18.21 | 7.84 | 41.74 |
PgANS6 | 37.36 | 17.98 | 5.06 | 39.61 |
PgANS7 | 38.20 | 16.29 | 5.90 | 39.61 |
PgANS8 | 37.92 | 16.57 | 6.46 | 39.04 |
PgANS9 | 37.85 | 16.02 | 5.52 | 40.61 |
PgANS10 | 39.89 | 15.73 | 5.90 | 38.48 |
PgANS11 | 36.20 | 15.89 | 6.77 | 41.15 |
PgANS12 | 33.85 | 16.41 | 4.10 | 45.64 |
PgANS13 | 35.67 | 15.73 | 6.46 | 42.13 |
PgANS14 | 34.08 | 16.20 | 5.03 | 44.69 |
PgANS15 | 35.16 | 17.29 | 5.48 | 42.07 |
PgANS16 | 33.61 | 18.03 | 7.38 | 40.98 |
PgANS17 | 42.90 | 15.60 | 6.96 | 34.54 |
PgANS18 | 38.05 | 16.52 | 5.31 | 40.12 |
PgANS19 | 38.40 | 15.19 | 6.35 | 40.06 |
PgANS20 | 30.92 | 19.78 | 6.41 | 42.90 |
PgANS21 | 36.44 | 16.49 | 6.12 | 40.96 |
PgANS22 | 34.91 | 17.75 | 6.21 | 41.12 |
PgANS23 | 36.57 | 16.07 | 5.26 | 42.11 |
PgANS24 | 37.98 | 18.58 | 5.74 | 37.70 |
PgANS25 | 34.39 | 15.61 | 6.35 | 43.65 |
PgANS26 | 35.43 | 16.57 | 6.29 | 41.71 |
PgANS27 | 34.28 | 17.56 | 5.38 | 42.78 |
PgANS28 | 35.97 | 14.99 | 5.45 | 43.60 |
PgANS29 | 38.21 | 15.18 | 7.05 | 39.57 |
PgANS30 | 38.55 | 17.04 | 5.87 | 38.55 |
PgANS31 | 34.54 | 16.49 | 5.93 | 43.04 |
PgANS32 | 36.83 | 17.47 | 5.65 | 40.05 |
PgANS33 | 40.53 | 16.32 | 7.11 | 36.05 |
PgANS34 | 35.14 | 18.00 | 6.00 | 40.86 |
PgANS35 | 34.56 | 19.55 | 5.10 | 40.79 |
PgANS36 | 32.43 | 16.35 | 6.27 | 44.96 |
PgANS37 | 33.52 | 17.60 | 5.59 | 43.30 |
PgANS38 | 35.88 | 18.08 | 5.08 | 40.96 |
PgANS39 | 37.84 | 16.49 | 5.95 | 39.73 |
PgANS40 | 30.73 | 19.27 | 4.47 | 45.53 |
PgANS41 | 31.01 | 17.60 | 5.59 | 45.81 |
PgANS42 | 30.29 | 16.62 | 4.83 | 48.26 |
PgANS43 | 40.62 | 17.19 | 6.88 | 35.31 |
PgANS44 | 37.84 | 17.57 | 6.76 | 37.84 |
PgANS45 | 36.31 | 19.27 | 6.98 | 37.43 |
PgANS46 | 40.53 | 16.32 | 6.05 | 37.11 |
PgANS47 | 37.81 | 16.99 | 5.48 | 39.73 |
PgANS48 | 35.26 | 16.76 | 4.62 | 43.35 |
PgANS49 | 39.34 | 16.39 | 6.28 | 37.98 |
PgANS50 | 40.44 | 17.87 | 7.21 | 34.48 |
PgANS51 | 43.26 | 17.55 | 7.52 | 31.66 |
PgANS52 | 33.59 | 14.76 | 5.34 | 46.31 |
PgANS53 | 34.39 | 18.25 | 6.61 | 40.74 |
PgANS54 | 32.41 | 17.47 | 4.30 | 45.82 |
PgANS55 | 38.94 | 20.97 | 5.99 | 34.10 |
PgANS56 | 34.55 | 14.61 | 5.06 | 45.79 |
PgANS57 | 31.98 | 18.53 | 5.58 | 43.91 |
PgANS58 | 36.04 | 17.62 | 5.69 | 40.65 |
PgANS59 | 38.75 | 18.69 | 5.88 | 36.68 |
PgANS60 | 36.16 | 14.41 | 5.65 | 43.79 |
PgANS61 | 36.64 | 16.28 | 6.36 | 40.71 |
PgANS62 | 38.69 | 20.81 | 4.75 | 35.75 |
PgANS63 | 37.73 | 17.68 | 5.54 | 39.05 |
PgANS64 | 37.29 | 15.25 | 5.93 | 41.53 |
PgANS65 | 37.83 | 17.76 | 7.57 | 36.84 |
PgANS66 | 38.27 | 17.25 | 6.20 | 38.27 |
PgANS67 | 37.40 | 18.97 | 5.42 | 38.21 |
PgANS68 | 35.43 | 16.32 | 5.13 | 43.12 |
PgANS69 | 38.98 | 16.40 | 6.18 | 38.44 |
PgANS70 | 38.56 | 16.22 | 5.59 | 39.63 |
PgANS71 | 39.52 | 16.94 | 5.91 | 37.63 |
PgANS72 | 36.25 | 18.12 | 4.85 | 40.78 |
PgANS73 | 36.30 | 15.51 | 6.60 | 41.58 |
PgANS74 | 37.21 | 17.61 | 6.31 | 38.87 |
PgANS75 | 36.59 | 17.03 | 5.68 | 40.69 |
Gene Pairs | Ka | Ks | Ka/Ks |
---|---|---|---|
PgANS1–PgANS4 | 0.48 | 1.33 | 0.36 |
PgANS45–PgANS28 | 0.51 | 1.73 | 0.29 |
PgANS16–PgANS14 | 0.47 | 4.38 | 0.11 |
PgANS15–PgANS18 | 0.36 | 3.87 | 0.09 |
PgANS53–PgANS54 | 0.20 | 2.90 | 0.07 |
PgANS15–PgANS22 | 0.33 | 1.70 | 0.19 |
PgANS71–PgANS47 | 0.38 | 2.18 | 0.17 |
PgANS25–PgANS31 | 0.28 | 3.12 | 0.09 |
PgANS57–PgANS68 | 0.38 | 2.40 | 0.16 |
PgANS32–PgANS24 | 0.10 | 1.20 | 0.08 |
PgANS36–PgANS56 | 0.38 | 1.66 | 0.23 |
Sample | Raw Reads | Raw Bases (bp) | Clean Reads | Clean Bases (bp) | Clean Reads Q20 (%) | Clean Reads Ratio (%) | GC Content (%) |
---|---|---|---|---|---|---|---|
Baiyushizi-T1(1) | 48,667,638 | 7,300,145,700 | 48,379,952 | 7,219,608,238 | 97.14% | 99.41% | 50.05% |
Baiyushizi-T1(2) | 47,486,554 | 7,122,983,100 | 47,186,944 | 7,050,368,799 | 96.74% | 99.37% | 49.77% |
Baiyushizi-T1(3) | 47,593,812 | 7,139,071,800 | 47,305,900 | 7,039,879,175 | 96.95% | 99.40% | 49.60% |
Baiyushizi-T2(1) | 36,016,766 | 5,402,514,900 | 35,721,370 | 5,322,204,950 | 96.42% | 99.18% | 50.36% |
Baiyushizi-T2(2) | 41,189,404 | 6,178,410,600 | 40,865,830 | 6,095,053,040 | 96.56% | 99.21% | 50.53% |
Baiyushizi-T2(3) | 39,571,150 | 5,935,672,500 | 39,300,102 | 5,862,500,285 | 97.00% | 99.32% | 50.59% |
Baiyushizi-T3(1) | 40,037,072 | 6,005,560,800 | 39,938,146 | 5,907,058,376 | 96.64% | 99.75% | 50.42% |
Baiyushizi-T3(2) | 42,861,892 | 6,429,283,800 | 42,742,380 | 6,337,181,505 | 96.83% | 99.72% | 50.31% |
Baiyushizi-T3(3) | 45,807,760 | 6,871,164,000 | 45,679,274 | 6,745,209,770 | 96.87% | 99.72% | 50.40% |
Hongyushizi-T1(1) | 48,234,574 | 7,235,186,100 | 47,911,350 | 7,148,996,855 | 96.80% | 99.33% | 49.68% |
Hongyushizi-T1(2) | 39,476,844 | 5,921,526,600 | 39,184,588 | 5,847,426,009 | 96.58% | 99.26% | 49.58% |
Hongyushizi-T1(3) | 41,389,884 | 6,208,482,600 | 41,102,138 | 6,137,884,644 | 96.64% | 99.30% | 49.66% |
Hongyushizi-T2(1) | 48,913,026 | 7,336,953,900 | 48,584,658 | 7,251,639,210 | 96.76% | 99.33% | 50.48% |
Hongyushizi-T2(2) | 38,788,642 | 5,818,296,300 | 38,486,532 | 5,744,610,574 | 96.52% | 99.22% | 50.08% |
Hongyushizi-T2(3) | 48,650,276 | 7,297,541,400 | 48,296,112 | 7,208,671,024 | 96.70% | 99.27% | 50.36% |
Hongyushizi-T3(1) | 43,736,804 | 6,560,520,600 | 43,660,662 | 6,324,509,067 | 97.56% | 99.83% | 49.25% |
Hongyushizi-T3(2) | 42,770,708 | 6,415,606,200 | 42,642,452 | 6,357,074,521 | 97.33% | 99.70% | 50.57% |
Hongyushizi-T3(3) | 43,698,610 | 6,554,791,500 | 43,576,138 | 6,466,042,710 | 97.44% | 99.72% | 50.76% |
Tunisia-T1(1) | 38,816,494 | 5,822,474,100 | 38,516,272 | 5,739,905,920 | 96.28% | 99.23% | 49.61% |
Tunisia-T1(2) | 47,502,710 | 7,125,406,500 | 47,163,990 | 7,039,556,375 | 96.39% | 99.29% | 49.70% |
Tunisia-T1(3) | 51,473,316 | 7,720,997,400 | 51,172,936 | 7,638,003,169 | 96.98% | 99.42% | 49.64% |
Tunisia-T2(1) | 48,979,242 | 7,346,886,300 | 48,609,708 | 7,242,609,081 | 96.62% | 99.25% | 50.15% |
Tunisia-T2(2) | 49,197,628 | 7,379,644,200 | 48,851,404 | 7,265,839,885 | 96.79% | 99.30% | 50.18% |
Tunisia-T2(3) | 49,308,242 | 7,396,236,300 | 48,974,856 | 7,303,980,121 | 96.86% | 99.32% | 50.22% |
Tunisia-T3(1) | 40,240,650 | 6,036,097,500 | 40,170,000 | 5,888,045,002 | 97.52% | 99.82% | 50.17% |
Tunisia-T3(2) | 53,530,512 | 8,029,576,800 | 53,391,468 | 7,882,028,946 | 97.56% | 99.74% | 49.20% |
Tunisia-T3(3) | 42,669,448 | 6,400,417,200 | 42,606,696 | 6,236,383,530 | 97.56% | 99.85% | 49.59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, H.; Suo, H.; Zhang, X.; Hu, L.; Yuan, F.; Zhang, M.; Zhang, S. Genome-Wide Identification and Characterization of the ANS Gene Family in Pomegranate (Punica granatum L.). Horticulturae 2023, 9, 468. https://doi.org/10.3390/horticulturae9040468
Ni H, Suo H, Zhang X, Hu L, Yuan F, Zhang M, Zhang S. Genome-Wide Identification and Characterization of the ANS Gene Family in Pomegranate (Punica granatum L.). Horticulturae. 2023; 9(4):468. https://doi.org/10.3390/horticulturae9040468
Chicago/Turabian StyleNi, Huihui, Heming Suo, Xuan Zhang, Lei Hu, Fangyu Yuan, Maowen Zhang, and Shuiming Zhang. 2023. "Genome-Wide Identification and Characterization of the ANS Gene Family in Pomegranate (Punica granatum L.)" Horticulturae 9, no. 4: 468. https://doi.org/10.3390/horticulturae9040468
APA StyleNi, H., Suo, H., Zhang, X., Hu, L., Yuan, F., Zhang, M., & Zhang, S. (2023). Genome-Wide Identification and Characterization of the ANS Gene Family in Pomegranate (Punica granatum L.). Horticulturae, 9(4), 468. https://doi.org/10.3390/horticulturae9040468