Composts from Grapevine and Hazelnut By-Products: A Sustainable Peat Partial Replacement for the Growth of Micropropagated Hazelnut and Raspberry in Containers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composts Preparation and Analysis
2.2. Characterization of Composts Phytotoxicity
2.3. Microbiological and Suppressiveness Characterizations
2.4. Plant Materials and Nursery Trial
2.5. Data Collection and Analysis
3. Results and Discussion
3.1. Compost Characteristics
3.2. Vegetative Growth and Physiological Indices in Raspberry
3.3. Vegetative Growth and Physiological Indices of Hazelnut Tonda Gentile Delle Langhe
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez, R.P.; Gando-Ferreira, L.M.; Quina, M.J. Increasing value of winery residues through integrated biorefinery processes: A review. Molecules 2022, 27, 4709. [Google Scholar] [CrossRef] [PubMed]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel application and industrial exploitation of winery by-products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Allegrini, A.; Salvaneschi, P.; Schirone, B.; Cianfaglione, K.; Di Michele, A. Multipurpose plant species and circular economy: Corylus avellana L. as a study case. Front. Biosci. 2022, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Faostat Database. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 22 September 2022).
- Özenç, D.B. Effects of Composted Hazelnut Husk On Growth of Tomato Plants. Compost Sci. Util. 2006, 14, 271–275. [Google Scholar] [CrossRef]
- Dede, O.H.; Ozdemir, S. Development of nutrient-rich growing media with hazelnut husk and municipal sewage sludge. Environ. Technol. 2018, 39, 2223–2230. [Google Scholar] [CrossRef]
- Müller, M. Exploitation of Hazelnut (Corylus avellana) Shell Waste in the Form of Polymer–Particle Biocomposite. Sci. Agric. Bohem. 2018, 49, 53–59. [Google Scholar] [CrossRef]
- Bożym, M.; Florczak, I.; Zdanowska, P.; Wojdalski, J.; Klimkiewicz, M. An analysis of metal concentrations in food wastes for biogas production. Renew. Energy 2015, 77, 467–472. [Google Scholar] [CrossRef]
- Puliga, F.; Leonardi, P.; Minutella, F.; Zambonelli, A.; Francioso, O. Valorization of hazelnut shells as growing substrates for edible and medicinal mushrooms. Horticulturae 2022, 8, 214. [Google Scholar] [CrossRef]
- Di Michele, A.; Pagano, C.; Allegrini, A.; Blasi, F.; Cossignani, L.; Di Raimo, E.; Faieta, M.; Oliva, E.; Pittia, P.; Primavilla, S.; et al. Hazelnut Shells as Source of Active Ingredients: Extracts Preparation and Characterization. Molecules 2021, 26, 6607. [Google Scholar] [CrossRef]
- Demirbas, A. Oils from Hazelnut Shell and Hazelnut Kernel Husk for Biodiesel Production. Energy Sources Part A 2008, 30, 1870–1875. [Google Scholar] [CrossRef]
- Esposito, T.; Sansone, F.; Franceschelli, S.; Del Gaudio, P.; Picerno, P.; Aquino, R.P.; Mencherini, T. Hazelnut (Corylus avellana L.) Shells Extract: Phenolic Composition, Antioxidant Effect and Cytotoxic Activity on Human Cancer Cell Lines. Int. J. Mol. Sci. 2017, 13, 392. [Google Scholar] [CrossRef] [PubMed]
- Contini, M.; Baccelloni, S.; Massantini, R.; Anelli, G. Extraction of natural antioxidants from Hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem. 2008, 110, 659–669. [Google Scholar] [CrossRef]
- Alasalvar, C.; Karamac, M.; Kosinska, A.; Rybarczik, A.; Shahidi, F.; Amarovicz, R. Antioxidant activity of hazelnut skin phenolics. J. Agric. Food Chem. 2009, 57, 4645–4650. [Google Scholar] [CrossRef]
- Santos, C.; Goufo, P.; Fonseca, J.; Pereira, J.L.S.; Ferreira, L.; Coutinho, J.; Trindade, H. Effect of lignocellulosic and phenolic compounds on ammonia, nitric oxide and greenhouse gas emissions during composting. J. Clean. Prod. 2018, 171, 548–556. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Schuchardt, F. Effect of C/N ratio on the composting of vineyard pruning residues. Landbauforsch. vTI Agric. For. Res. 2010, 60, 131–138. [Google Scholar]
- Jesus, M.; Romanì, A.; Mata, F.; Domingues, L. Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review. Polymers 2022, 14, 1640. [Google Scholar] [CrossRef]
- Ronga, D.; Francia, E.; Allesina, G.; Pedrazzi, S.; Zaccardelli, M.; Pane, C.; Tava, A.; Bignami, C. Valorization of vineyards by-products to obtain composted digestate and biochar suitable for nursery grapevine (Vitis vinifera L.) production. Agronomy 2019, 9, 420. [Google Scholar] [CrossRef]
- Bellitürk, K.; Soyturk, O. Can vermicompost obtained from Eisenia foetida fed by nut shell and cow manure mix be an organic fertilizer? Fresenius Environ. Bull. 2020, 29, 11273–11284. [Google Scholar]
- Bignami, C.; Melegari, F.; Zaccardelli, M.; Pane, C.; Ronga, D. Composted Solid Digestate and Vineyard Winter Prunings Partially Replace Peat in Growing Substrates for Micropropagated Highbush Blueberry in the Nursery. Agronomy 2022, 12, 227. [Google Scholar] [CrossRef]
- Erdogan, V.; Smith, D.C. Effect of tissue removal and hormone application on rooting of hazelnut layers. HortScience 2005, 40, 1457–1460. [Google Scholar] [CrossRef]
- Forge, T.; Neilsen, D.; Neilsen, G.; Watson, T. Using compost amendments to enhance soil health and replant establishment of tree-fruit crops. Acta Hortic. 2016, 1146, 103–10817. [Google Scholar] [CrossRef]
- Lu, Q.; Miles, C.; Tao, H.; Wasko De Vetter, L. Reduced nitrogen fertilizer rates maintained raspberry growth in an established field. Agronomy 2022, 12, 672. [Google Scholar] [CrossRef]
- Ronga, D.; Villecco, D.; Zaccardelli, M. Effects of compost and defatted oilseed meals as sustainable organic fertilisers on cardoon (Cynara cardunculus L.) production in the Mediterranean basin. J. Hortic. Sci. Biotechnol. 2019, 94, 664–675. [Google Scholar] [CrossRef]
- Ronga, D.; Mantovi, P.; Pacchioli, M.T.; Pulvirenti, A.; Bigi, F.; Allesina, G.; Pedrazzi, S.; Tava, A.; Prà, A.D. Combined Effects of Dewatering, Composting and Pelleting to Valorize and Delocalize Livestock Manure, Improving Agricultural Sustainability. Agronomy 2020, 10, 661. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Pane, C.; Di Mola, I.; Ronga, D.; Mori, M. Municipal organic waste compost replaces mineral fertilization in the horticultural cropping systems, reducing the pollution risk. Ital. J. Agron. 2021, 16. [Google Scholar] [CrossRef]
- Zucconi, F.; Pera, A.; Forte, M.; De Bertoldi, M. Evaluating toxicity of immature compost. BioCycle 1981, 22, 54–57. [Google Scholar]
- Pane, C.; Piccolo, A.; Spaccini, R.; Celano, G.; Villecco, D.; Zaccardelli, M. Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Appl. Soil Ecol. 2013, 65, 43–51. [Google Scholar] [CrossRef]
- Cekmecelioglu, D.; Demirci, A.; Graves, R.E.; Davitt, N.H. Applicability of optimized in vessel food waste composting for windrow systems. Biosyst. Eng. 2005, 91, 479–486. [Google Scholar] [CrossRef]
- Pane, C.; Spaccini, R.; Piccolo, A.; Scala, F.; Bonanomi, G. Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol. Control 2011, 56, 115–124. [Google Scholar] [CrossRef]
- Cristofori, V.; Rouphael, Y.; Mendoza de Gives, E.; Bignami, C. A simple model for estimating leaf area of hazelnut from linear measurements. Sci. Hortic. 2007, 113, 221–225. [Google Scholar] [CrossRef]
- Fallovo, C.; Cristofori, V.; Mendoza de Gives, E.; Rivera, C.M.; Rea, R.; Fanasca, S.; Bignami, C.; Sassine, Y.; Rouphael, Y. Leaf area estimation model for small fruits from linear measurements. HortScience 2008, 43, 2263–2267. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.B.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.I.; Perez Garcia, V. Determination of maturity indices for cities refuse composts. Agric. Ecosyst. Environ. 1992, 3, 331–343. [Google Scholar] [CrossRef]
- Strik, B.C.; Bryla, D.R. Uptake and Partitioning of Nutrients in Blackberry and Raspberry and Evaluating Plant Nutrient Status for Accurate Assessment of Fertilizer Requirements. HortTechnology 2015, 25, 452–459. [Google Scholar] [CrossRef]
- Özenç, D.B. Methods of determining lime requirement of soils in the Eastern Black Sea hazelnut growing region. Acta Hortic. 2001, 556, 335–342. [Google Scholar] [CrossRef]
- Sikirić, B.B.; Stajković-Srbinović, O.S.; Saljnikov, E.R.; Litvinović, A.V.; Jovković, M.V.; Mrvić, V.V. Microelements changes in leaves and fruits of raspberry (Rubus idaeus L.) under the influence of ameliorative measures. Int. J. Fruit Sci. 2022, 1, 358–369. [Google Scholar] [CrossRef]
- Hadar, Y. Suppressive compost: When plant pathology met microbial ecology. Phytoparasitica 2011, 39, 311–314. [Google Scholar] [CrossRef]
- Catenacci, A.; Boniardi, G.; Mainardis, M.; Gievres, F.; Farru, G.; Asunis, F.; Malpei, F.; Goi, D.; Cappai, G.; Canziani, R. Processes, applications and legislative framework for carbonized anaerobic digestate: Opportunities and bottlenecks. A critical review. Energy Convers. Manag. 2022, 263, 115691. [Google Scholar] [CrossRef]
- Diéguez-Santana, K.; Chicaiza-Ortiz, C.; Logroño, W. Anaerobic digestate: Pollutants, ecotoxicology, and legislation. In Anaerobic Digestate Management; IWA publishing: London, UK, 2022; Chapter 17; pp. 359–383. [Google Scholar] [CrossRef]
- Sofo, A.; Khan, N.A.; D’Ippolito, I.; Reyes, F. Subtoxic Levels of Some Heavy Metals Cause Differential Root-Shoot Structure, Morphology and Auxins Levels in Arabidopsis Thaliana. Plant Physiol. Biochem. 2022, 173, 68–75. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of Salinity Stress on Plants and Its Tolerance Strategies: A Review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef]
- Gondek, M.; Weindorf, D.C.; Thiel, C.; Kleinheinz, G. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost. Sci. Util. 2020, 28, 59–75. [Google Scholar] [CrossRef]
- Calisti, R.; Regni, L.; Pezzolla, D.; Cucina, M.; Gigliotti, G.; Proietti, P. Evaluating compost from digestate as a peat substitute in nursery for olive and hazelnut trees. Sustainability 2023, 15, 282. [Google Scholar] [CrossRef]
Raspberry (Rubus idaeus L.) cv Himbo Top | |||||
Compost | Raw Material | % d.w. | Substrate | % Compost | % Peat |
A | Digestate (CAT) | 83.3 | T1 | 10 | 90 |
T2 | 20 | 80 | |||
Vine winter pruning | 15.0 | T3 | 40 | 60 | |
T4 | 0 | 100 | |||
Mature compost | 1.7 | T5 | 0 | 100 + fertilizer | |
Hazelnut (Corylus avellana L.) cv Tonda Gentile Delle Langhe | |||||
Compost | Raw Material | % d.w. | Substrate | % Compost | % Peat |
B | Digestate (CAT) | 83.3 | T1 | 10 | 90 |
T2 | 20 | 80 | |||
Nut shells and skins | 15.0 | T3 | 40 | 60 | |
T4 | 0 | 100 | |||
Mature compost | 1.7 | T5 | 0 | 100 + fertilizer |
Compost Characteristics | Compost A | Compost B |
---|---|---|
pH | 7.03 | 7.44 |
EC (dS m−1) | 4.15 | 3.18 |
Moisture (%) | 69.5 | 60.9 |
CEC (meq/100 g) | 54.3 | 59.5 |
Organic carbon (%) | 34.5 | 38.3 |
Total nitrogen (% N) | 2.67 | 2.52 |
Organic nitrogen (% N tot) | 99.45 | 99.45 |
Humic and fulvic carbon (%) | 16.4f | 17.1 |
Cr VI (mg kg−1) | <0.50 | <0.50 |
Pb (mg kg−1) | 11.7 | 11.3 |
Zn (mg kg−1) | 191.1 | 202.9 |
Cu (mg kg−1) | 48.2 | 44.9 |
Hg (mg kg−1) | <0.20 | <0.20 |
Cd (mg kg−1) | 0.5 | 0.5 |
Ni (mg kg−1) | 9.8 | 8.9 |
C/N Ratio | 12.9 | 15.2 |
P (P2O5 %) | 1.7 | 2.6 |
K (K2O %) | 1.9 | 2.1 |
Al (mg kg−1) | 4597.0 | 4283.0 |
Mg (MgO %) | 0.90 | 0.98 |
Fe (mg/kg) | 6253.0 | 5810.0 |
Ca (CaO %) | 4.19 | 4.71 |
Na (mg kg−1) | 607.1 | 659.9 |
S (%) | 0.469 | 0.379 |
Mn (mg kg−1) | 215.0 | 259.3 |
Variable | Compost-A | Compost-B |
---|---|---|
GI root (%) | 60 * | 91 |
GI shoot (%) | 136 * | 127 * |
Pseudomonas (CFU g−1) | 2.3 × 106 | 6.6 × 106 |
Bacillus (CFU g−1) | 6.9 × 105 | 8.2 × 105 |
Fungi (CFU g−1) | 5.0 × 104 | 5.5 × 105 |
Bacteria (CFU g−1) | 1.0 × 107 | 3.3 × 107 |
Total Coliform bacteria (CFU g−1) | Absent | Absent |
Faecal Coliform (CFU g−1) | Absent | Absent |
Yeasts (CFU g−1) | Absent | Absent |
Streptococci (CFU g−1) | Absent | Absent |
Escher coli (CFU g−1) | Absent | Absent |
Salmonella spp. (CFU g−1) | Absent | Absent |
Clostridia spp. (CFU g−1) | Absent | Absent |
Rhizoctonia solani damping-off (%) | 87.6 * | 90.9 * |
Sclerotinia minor damping-off (%) | 40.3 | 47.0 |
Treatment | AFW (g Plant−1) | RFW (g Plant−1) | TFW (g Plant−1) | ADW (g Plant−1) | RDW (g Plant−1) | TDW (g Plant−1) | FDWR (%) |
---|---|---|---|---|---|---|---|
T1 | 19.8 ab | 33.1 a | 52.9 b | 9.7 ab | 10.62 a | 20.38 a | 51 b |
T2 | 26.6 ab | 47.6 a | 74.2 a | 11.4 a | 17.58 a | 28.94 a | 61 b |
T3 | 21.9 ab | 39.1 a | 61.0 ab | 9.7 ab | 14.72 a | 24.59 a | 60 b |
T4 | 14.3 b | 37.4 a | 51.7 b | 5.6 b | 12.95 a | 18.48 a | 70 a |
T5 | 29.7 a | 39.1 a | 68.8 ab | 10.1 ab | 15.00 a | 25.17 a | 59 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bignami, C.; Reyes, F.; Saccaggi, M.; Pane, C.; Zaccardelli, M.; Ronga, D. Composts from Grapevine and Hazelnut By-Products: A Sustainable Peat Partial Replacement for the Growth of Micropropagated Hazelnut and Raspberry in Containers. Horticulturae 2023, 9, 481. https://doi.org/10.3390/horticulturae9040481
Bignami C, Reyes F, Saccaggi M, Pane C, Zaccardelli M, Ronga D. Composts from Grapevine and Hazelnut By-Products: A Sustainable Peat Partial Replacement for the Growth of Micropropagated Hazelnut and Raspberry in Containers. Horticulturae. 2023; 9(4):481. https://doi.org/10.3390/horticulturae9040481
Chicago/Turabian StyleBignami, Cristina, Francesco Reyes, Mario Saccaggi, Catello Pane, Massimo Zaccardelli, and Domenico Ronga. 2023. "Composts from Grapevine and Hazelnut By-Products: A Sustainable Peat Partial Replacement for the Growth of Micropropagated Hazelnut and Raspberry in Containers" Horticulturae 9, no. 4: 481. https://doi.org/10.3390/horticulturae9040481
APA StyleBignami, C., Reyes, F., Saccaggi, M., Pane, C., Zaccardelli, M., & Ronga, D. (2023). Composts from Grapevine and Hazelnut By-Products: A Sustainable Peat Partial Replacement for the Growth of Micropropagated Hazelnut and Raspberry in Containers. Horticulturae, 9(4), 481. https://doi.org/10.3390/horticulturae9040481