Impact of the Different Molecular Weights of Polyethylene Glycol (PEG) Coating Agents on the Magnetic Targeting Characteristics of Functionalized Magnetoresponsive Nanoclusters
Abstract
:1. Introduction
1.1. Some Aspects Regarding PEG
1.2. Problem Description
- (a)
- Varied injection durations.
- (b)
- Variable mass concentrations of the injected MNCs.
- (c)
- Different magnet distances from the desired location.
2. Materials and Methods
2.1. Nanocluster Synthesis and Characterization
2.1.1. Synthesis
2.1.2. Transmission Electron Microscopy (TEM) Investigation
2.1.3. Thermogravimetry (TGA) Investigation
2.1.4. X-ray Photoelectron Spectroscopy (XPS)
2.1.5. Fourier Transform Infrared (FTIR)
2.1.6. Dynamic Light Scattering (DLS) Measurements
2.1.7. Clusters’ Magnetic Characterization
2.1.8. Rheology
2.2. Magnetic Field Generation
2.3. Experimental Test Section
3. Results
3.1. PEG-MNC Size and Morphology
3.2. FTIR Investigation
3.3. TGA Investigation
3.4. XPS Investigation
3.5. DLS Investigation
3.6. Rheological Properties of the Investigated Clusters
3.7. Clusters’ Magnetic Properties
3.8. Clusters Deposition Analysis
- (i)
- Obstruction degree (Equation (6)): Quantify the vessel obstruction grade following particle deposition.
- (ii)
- The magnet coverage degree (Equation (7)) measures the quality of particle deposition along the vessel wall by measuring the deposition length considering magnet length.
- (iii)
- The proximal deposition degree (Equation (8)) quantifies the pulsatile flow’s impact on the deposition’s shape and length.
4. Discussion
4.1. Guiding, Capturing and Depositing the Clusters in the Targeted Area
- (i)
- The produced magnetic forces in the velocity-dominated scenario could not capture the particles since they were weaker than the blood flow forces. As such, the nanoclusters came out of the blood vessels. This situation is presented in Figure 15A,B.
- (ii)
- In the magnetic-dominated situation the magnet pulled the particles towards the vessel wall, and the magnetic forces much surpassed the flow force (Figure 15C).
- (iii)
- Nanoclusters built up in a layer near the vessel wall in the boundary layer situation. When blood drag forces and magnetic forces were similar, the boundary layer regime was dominant (Figure 15D–F). Here, when the blood velocity was almost nil, the nanoclusters accumulated on the vessel wall.
4.2. Influence of the Injected Quantity of the Functionalized Nanoclusters
4.3. Influence of Magnet Distance
4.4. Influence of the Injection Period
5. Limitations
6. Considerations Regarding Particle-Targeting Applications and Medical Implications
- Obstruction degree (OD) measures the highest decrease in arterial cross-section following particle deposition. The obstruction degree (OD) is a critical efficiency measure, showing that a higher degree of occlusion leads to lower deposition efficiency since the deposition is concentrated in a smaller area than is required. In the first step, we established a threshold of 20% blockage of the studied artery’s diameter.
- Another critical efficiency parameter we have established is the magnet coverage degree (MCd). This measure plays a significant role in determining the quality of deposition, as it considers the length of the magnet. The closer the coverage is to 100%, the more uniform the particle deposition. This indicates that the chosen magnet effectively captures particles in the desired location and along the entire length of the damaged artery.
- Proximal deposition degree (PDd): measures the effect of pulsatile flow on the deposition length considering the magnet’s length in relation to the targeted region’s entry section. The closer this ratio is to 50% (equivalent to half of the magnet’s length), the more uniform the deposition. This suggests that the magnet utilized creates a strong enough magnetic force to balance the hydrodynamic force.
7. Next Steps
- In our experiments, we injected the MNC dispersion roughly into the vessel’s centre. In our future studies, we will investigate the impact of injection position (distance from the targeted region and needle position regarding the vessel centre) on the stated efficiency characteristics.
- In our subsequent studies, we plan to expand our research to include a wider variety of magnet types. This will allow us to understand the relationship between the established deposition efficiency parameters and the magnetic fields generated by these magnets, with direct implications for the practical application of our findings.
- We also propose the use of nanoclusters with a smaller size. Smaller particles have more extensive overall surface areas for functionalization, which improves their biological uses. Specifically, we will alter the solvothermal polyol method to produce nanoclusters with hydrodynamic diameters as tiny as possible (less than 500 nm).
- To replicate the actual medical setting of drug delivery as closely as possible, we want to increase the injection duration to the order of minutes.
8. Conclusions
- Our study underscores a key finding: the distance between the magnetic field source and vessels played a crucial role in particle steering, regardless of the molar weight of the PEG used, in all investigated MNCs.
- In actual MDT therapy, approximately 1010 particles per mL [66] with injection volumes of approximately 5 mL to 10 mL [55,67,68] are injected into the patient. We injected 10 mL suspensions containing MNCs with 0.4% and 0.5% mass concentrations in our experiments. This concentration is lower than the maximum human-safe dose of the cancer drug doxorubicin used in clinical practice. Our experiments have revealed that these clusters may target medications even under these settings. The utilized amounts of MNCs also demonstrate how molar weight influences deposition efficiency in the presence of external magnetic fields.
- Furthermore, the experiments with varying quantities of injected material demonstrated that using 50 mg of clusters results in much higher efficiency metrics than using 40 mg of clusters, independent of the molar mass of the PEG utilized.
- The pulsatile character of the flow, regardless of the molar mass of the coating agent utilized, determines the shape and effectiveness of cluster deposition in the region of interest. It is crucial to note that the use of a pulsatile flow signal to reproduce a natural cardiovascular flow regime with a high degree of fidelity not only highlights the influence of the acceleration and deceleration phases on the deposition morphology but also underscores the necessity of a pulsating flow to obtain specific results with high confidence in magnetic targeting applications.
- The presence of particle deposition, especially depositions with a high degree of occlusion in the artery section, induces a change in the blood’s behaviour in the vicinity of the deposition. This change is due to the recirculation zone’s development and presence in the deposition’s distal part, as presented in Section 4.3. Regardless of the PEG’s molar mass, this aspect becomes apparent as the magnet’s distance from the area of interest changes and is present for practically all investigated clusters. During the investigations on the influence of magnet distance, this phenomenon most strongly manifested itself for the MNC-6000 clusters, followed by the MNC-2000 clusters.
- To assess the impact of injection time on deposition efficiency metrics, we aimed to evaluate the effect of PEG molar weight on deposition uniformity. The analysed injection periods of 40, 50, and 60 s indicated that MNC-2000 received the best certification for all efficiency metrics, followed by MNC-10,000 and MNC-6000, in that order.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindstrom, M.; DeCleene, N.; Dorsey, H.; Fuster, V.; Johnson, C.O.; LeGrand, K.E.; Mensah, G.A.; Razo, C.; Stark, B.; Turco, J.V.; et al. Global Burden of Cardiovascular Diseases and Risks Collaboration, 1990–2021. J. Am. Coll. Cardiol. 2022, 80, 2372–2425. [Google Scholar] [CrossRef] [PubMed]
- World Heart Report 2023: Confronting the World’s Number One Killer. 2023. Available online: https://heartreport23.world-heart-federation.org (accessed on 2 April 2024).
- Naghavi, M.; Libby, P.; Falk, E.; Casscells, S.W.; Litovsky, S.; Rumberger, J.; Badimon, J.J.; Stefanadis, C.; Moreno, P.; Pasterkamp, G.; et al. From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part I. Circulation 2003, 108, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Manshadi, M.K.D.; Saadat, M.; Mohammadi, M.; Shamsi, M.; Dejam, M.; Kamali, R.; Sanati-Nezhad, A. Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy. Drug Deliv. 2018, 25, 1963–1973. [Google Scholar] [CrossRef]
- Tibbitt, M.W.; Dahlman, J.E.; Langer, R. Emerging Frontiers in Drug Delivery. J. Am. Chem. Soc. 2016, 138, 704–717. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Tong, S.; Zhang, L.; Sakurai, Y.; Myers, D.R.; Hong, L.; Lam, W.A.; Bao, G. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nat. Commun. 2017, 8, 15594. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulou, A.; Lappas, A. Colloidal magnetic nanocrystal clusters: Variable length-scale interaction mechanisms, synergetic functionalities and technological advantages. Nanotechnol. Rev. 2015, 4, 595–624. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, X.; Liao, H.; Liang, Z.; Li, F.; Tian, J.; Ling, D. Artificially Engineered Cubic Iron Oxide Nanoparticle as a High-Performance Magnetic Particle Imaging Tracer for Stem Cell Tracking. ACS Nano 2020, 14, 2053–2062. [Google Scholar] [CrossRef]
- de Montferrand, C.; Hu, L.; Milosevic, I.; Russier, V.; Bonnin, D.; Motte, L.; Brioude, A.; Lalatonne, Y. Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater. 2013, 9, 6150–6157. [Google Scholar] [CrossRef]
- Zamani Kouhpanji, M.R.; Stadler, B.J.H. A Guideline for Effectively Synthesizing and Characterizing Magnetic Nanoparticles for Advancing Nanobiotechnology: A Review. Sensors 2020, 20, 2554. [Google Scholar] [CrossRef]
- Kostopoulou, A.; Tsiaoussis, I.; Lappas, A. Magnetic iron oxide nanoclusters with tunable optical response. Photonics Nanostructures-Fundam. Appl. 2011, 9, 201–206. [Google Scholar] [CrossRef]
- Holmlin, R.E.; Chen, X.; Chapman, R.G.; Takayama, S.; Whitesides, G.M. Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir 2001, 17, 2841–2850. [Google Scholar] [CrossRef] [PubMed]
- Pillai, P.P.; Huda, S.; Kowalczyk, B.; Grzybowski, B.A. Controlled pH Stability and Adjustable Cellular Uptake of Mixed-Charge Nanoparticles. J. Am. Chem. Soc. 2013, 135, 6392–6395. [Google Scholar] [CrossRef] [PubMed]
- Gref, R.; Minamitake, Y.; Peracchia, M.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994, 263, 1600–1603. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-M.J.; Fang, R.H.; Luk, B.T.; Zhang, L. Polymeric nanotherapeutics: Clinical development and advances in stealth functionalization strategies. Nanoscale 2014, 6, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, L.; Alvarez-Puebla, R.; Pazos-Perez, N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials 2018, 11, 1154. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-D.; Huang, L. Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting. J. Control. Release 2010, 145, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Wang, Z.; Wei, X.; Shi, J.; Li, C. Antibodies against polyethylene glycol in human blood: A literature review. J. Pharmacol. Toxicol. Methods 2020, 102, 106678. [Google Scholar] [CrossRef]
- Ben-Shabat, S.; Kumar, N.; Domb, A.J. PEG-PLA Block Copolymer as Potential Drug Carrier: Preparation and Characterization. Macromol. Biosci. 2006, 6, 1019–1025. [Google Scholar] [CrossRef]
- Fang, C.; Shi, B.; Pei, Y.-Y.; Hong, M.-H.; Wu, J.; Chen, H.-Z. In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci. 2006, 27, 27–36. [Google Scholar] [CrossRef]
- Chen, B.-M.; Cheng, T.-L.; Roffler, S.R. Polyethylene glycol immunogenicity: Theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano 2021, 15, 14022–14048. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, poly (ethylene) glycol and its alternatives. Adv. Drug Deliv. Rev. 2021, 180, 114079. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Mima, Y.; Hashimoto, Y.; Ukawa, M.; Ando, H.; Kiwada, H.; Ishida, T. Anti-PEG IgM and complement system are required for the association of second doses of PEGylated liposomes with splenic marginal zone B cells. Immunobiology 2015, 220, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Emam, S.E.; Elsadek, N.E.; Abu Lila, A.S.; Takata, H.; Kawaguchi, Y.; Shimizu, T.; Ando, H.; Ishima, Y.; Ishida, T. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice. J. Control. Release 2021, 334, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Stone, C.A., Jr.; Liu, Y.; Relling, M.V.; Krantz, M.S.; Pratt, A.L.; Abreo, A.; Hemler, J.A.; Phillips, E.J. Immediate hypersensitivity to polyethylene glycols and polysorbates: More common than we have recognized. J. Allergy Clin. Immunol. Pract. 2019, 7, 1533–1540.e8. [Google Scholar] [CrossRef] [PubMed]
- Szebeni, J.; Simberg, D.; González-Fernández, Á.; Barenholz, Y.; Dobrovolskaia, M.A. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat. Nanotechnol. 2018, 13, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhang, L.; Colvin, V.L.; Zhang, Q.; Bao, G. Synthesis and Application of Magnetic Nanocrystal Clusters. Ind. Eng. Chem. Res. 2022, 61, 7613–7625. [Google Scholar] [CrossRef]
- Xu, X.; Xiang, H.; Wang, Z.; Wu, C.; Lu, C. Doping engineering and functionalization of iron oxide nanoclusters for biomedical applications. J. Alloys Compd. 2022, 923, 166459. [Google Scholar] [CrossRef]
- Craciunescu, I.; Petran, A.; Liebscher, J.; Vekas, L.; Turcu, R. Synthesis and characterization of size-controlled magnetic clusters functionalized with polymer layer for wastewater depollution. Materials Chem. Phys. 2017, 185, 91–97. [Google Scholar] [CrossRef]
- Fiévet, F.; Brayner, R. The Polyol Process. In Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective; Brayner, R., Fiévet, F., Coradin, T., Eds.; Springer: London, UK, 2013; pp. 1–25. [Google Scholar]
- Deng, H.; Li, X.L.; Peng, Q.; Wang, X.; Chen, J.P.; Li, Y.D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785. [Google Scholar] [CrossRef]
- Bunge, A.; Leoștean, C.; Radu, T.; Tripon, S.C.; Borodi, G.; Turcu, R. Substituted Poly(Vinylphosphonate) Coatings of Magnetite Nanoparticles and Clusters. Magnetochemistry 2022, 8, 79. [Google Scholar] [CrossRef]
- Susan-Resiga, D.; Socoliuc, V.; Bunge, A.; Turcu, R.; Vékás, L. From high colloidal stability ferrofluids to magnetorheological fluids: Tuning the flow behavior by magnetite nanoclusters. Smart Mater. Struct. 2019, 28, 115014. [Google Scholar] [CrossRef]
- Rafienia, M.; Bigham, A.; Hassanzadeh-Tabrizi, S.A. Solvothermal Synthesis of Magnetic Spinel Ferrites. J. Med. Signals Sens. 2018, 8, 108–118. [Google Scholar] [CrossRef]
- Xuan, S.H.; Wang, Y.X.J.; Yu, J.C.; Leung, K.C.F. Tuning the Grain Size and Particle Size of Superparamagnetic Fe3O4 Microparticles. Chem. Mater. 2009, 21, 5079–5087. [Google Scholar] [CrossRef]
- Ge, J.P.; Hu, Y.X.; Biasini, M.; Beyermann, W.P.; Yin, Y.D. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 2007, 46, 4342–4345. [Google Scholar] [CrossRef] [PubMed]
- Bunge, A.; Porav, A.S.; Borodi, G.; Radu, T.; Pirnau, A.; Berghian-Grosan, C.; Turcu, R. Correlation between synthesis parameters and properties of magnetite clusters prepared by solvothermal polyol method. J. Mater. Sci. 2019, 54, 2853–2875. [Google Scholar] [CrossRef]
- Liu, J.; Lv, Y.; Zhang, W.; Zhang, Z.; Wang, A. Tailoring the structural and optical properties of RF magnetron sputtered ZnO/graphene thin films by annealing temperature. Integr. Ferroelectr. 2019, 198, 142–152. [Google Scholar] [CrossRef]
- Bernad, S.I.; Bernad, E. Magnetic Forces by Permanent Magnets to Manipulate Magnetoresponsive Particles in Drug-Targeting Applications. Micromachines 2022, 13, 1818. [Google Scholar] [CrossRef] [PubMed]
- Bernad, S.I.; Susan-Resiga, D.; Bernad, E. Hemodynamic Effects on Particle Targeting in the Arterial Bifurcation for Different Magnet Positions. Molecules 2019, 24, 2509. [Google Scholar] [CrossRef]
- Cregg, P.J.; Murphy, K.; Mardinoglu, A. Inclusion of interactions in mathematical modelling of implant assisted magnetic drug targeting. Appl. Math. Model. 2012, 36, 1–34. [Google Scholar] [CrossRef]
- Camacho, J.M.; Sosa, V. Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Rev. Mex. Fis. 2013, 59, 8–17. [Google Scholar]
- Bernad, S.I.; Socoliuc, V.; Susan-Resiga, D.; Crăciunescu, I.; Turcu, R.; Tombácz, E.; Vékás, L.; Ioncica, M.C.; Bernad, E.S. Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting. Pharmaceutics 2022, 14, 1923. [Google Scholar] [CrossRef] [PubMed]
- Bernad, S.I.; Craciunescu, I.; Sandhu, G.S.; Dragomir-Daescu, D.; Tombacz, E.; Vekas, L.; Turcu, R. Fluid Targeted delivery of functionalized magnetoresponsive nanocomposite particles to a ferromagnetic stent. J. Magn. Magn. Mater. 2021, 519, 167489. [Google Scholar] [CrossRef]
- Hu, L.; Percheron, A.; Chaumont, D.; Brachais, C.-H. Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: Magnetite, maghemite and hematite. J. Sol-Gel Sci. Technol. 2011, 60, 198. [Google Scholar] [CrossRef]
- Silva, M.G.d.; Santiago, L.E.P.; Fernandes, R.d.S.; Padilha, C.E.d.A.; Souza, D.F.d.S. Analysis of thermal decomposition of magnetic nanoparticles synthesized by reverse coprecipitation and partial oxidation of ferrous ions. Braz. J. Chem. Eng. 2023, 41, 347–357. [Google Scholar] [CrossRef]
- García-Jimeno, S.; Estelrich, J. Ferrofluid based on polyethylene glycol-coated iron oxide nanoparticles: Characterization and properties. Colloids Surf. A Physicochem. Eng. Asp. 2013, 420, 74–81. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, F.; Subramanian, A.S.; Lin, J.; Highfield, J.; Gedanken, A. Assembly of Au colloids into linear and spherical aggregates and effect of ultrasound irradiation on structure. J. Mater. Chem. 2006, 16, 489–495. [Google Scholar] [CrossRef]
- Malabanan, J.W.T.; Alcantara, K.P.; Jantaratana, P.; Pan, Y.; Nalinratana, N.; Vajragupta, O.; Rojsitthisak, P.; Rojsitthisak, P. Enhancing Physicochemical Properties and Biocompatibility of Hollow Porous Iron Oxide Nanoparticles through Polymer-Based Surface Modifications. ACS Appl. Bio Mater. 2023, 6, 5426–5441. [Google Scholar] [CrossRef]
- Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol. Pharm. 2008, 5, 505–515. [Google Scholar] [CrossRef]
- Carreau, P.J. Rheological Equations from Molecular Network Theories. Trans. Soc. Rheol. 1972, 16, 99–127. [Google Scholar] [CrossRef]
- Kumar, S.R.; Marianna, L.; Gianni, S.; Nathanael, A.J.; Hong, S.I.; Hwan Oh, T.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N. Hydrophilic polymer coated monodispersed Fe3O4 nanostructures and their cytotoxicity. Mater. Res. Express 2014, 1, 015015. [Google Scholar] [CrossRef]
- Luigjes, B.; Woudenberg, S.M.C.; de Groot, R.; Meeldijk, J.D.; Torres Galvis, H.M.; de Jong, K.P.; Philipse, A.P.; Erné, B.H. Diverging Geometric and Magnetic Size Distributions of Iron Oxide Nanocrystals. J. Phys. Chem. C 2011, 115, 14598–14605. [Google Scholar] [CrossRef]
- Van Liebergen, R.A.M.; Piek, J.J.P.; Koch, K.T.; Peters, R.J.G.; de Winter, R.J.; Schotborgh, C.E.; Lie, K.I. Hyperemic coronary flow after optimized intravascular ultrasound-guided balloon angioplasty and stent implantation. J. Am. Coll. Cardiol. 1999, 34, 1899–1906. [Google Scholar] [CrossRef]
- Chatelut, E.; White-Koning, M.L.; Mathijssen, R.H.; Puisset, F.; Baker, S.D.; Sparreboom, A. Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents. Br. J. Cancer 2012, 107, 1100–1106. [Google Scholar] [CrossRef]
- Nacev, A.; Beni, C.; Bruno, O.; Shapiro, B. Magnetic nanoparticle transport within flowing blood and into surrounding tissue. Nanomedicine 2010, 5, 1459–1466. [Google Scholar] [CrossRef]
- Alexiou, C.; Jurgons, R.; Schmid, R.; Bergemann, C.; Henke, J.; Erhardt, W.; Huenges, E.; Parak, F. Magnetic Drug Targeting—Biodistribution of the Magnetic Carrier and the Chemotherapeutic agent Mitoxantrone after Locoregional Cancer Treatment. J. Drug Target. 2003, 11, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, P.; Paily, R.P. Time-Varying Magnetic Field to Enhance the Navigation of Magnetic Microparticles in a Bifurcated Channel. IEEE Magn. Lett. 2022, 13, 3102705. [Google Scholar] [CrossRef]
- Durme, R.; Crevecoeur, G.; Dupré, L.; Coene, A. Improved magnetic drug targeting with maximized magnetic forces and limited particle spreading. Med. Phys. 2023, 50, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Abolfathi, K.; Yazdi, M.R.H.; Hoshiar, A.K. Studies of Different Swarm Modes for the MNPs Under the Rotating Magnetic Field. IEEE Trans. Nanotechnol. 2020, 19, 849–855. [Google Scholar] [CrossRef]
- Kee, H.; Lee, H.; Park, S. Optimized Halbach array for focused magnetic drug targeting. J. Magn. Magn. Mater. 2020, 514, 167180. [Google Scholar] [CrossRef]
- Hussain, S.; Mair, L.; Willis, A.; Papavasiliou, G.; Liu, B.; Weinberg, I.; Engelhard, H. Parallel Multichannel Assessment of Rotationally Manipulated Magnetic Nanoparticles. Nanotechnol. Sci. Appl. 2022, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; She, Z.; Yu, L.; Wei, M.; Li, Y. Manipulating nanoparticle transport within blood flow through external forces: An exemplar of mechanics in nanomedicine. Proc. R. Soc. A 2018, 474, 20170845. [Google Scholar] [CrossRef] [PubMed]
- Alavijeh, A.A.; Barati, M.; Barati, M.; Dehkordi, A.H. The Potential of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer Based on Body Magnetic Field and Organ-on-the-Chip. Adv. Pharm. Bull. 2019, 9, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, C.; Diehl, D.; Henninger, P.; Iro, H.; Rockelein, R.; Schmidt, W.; Weber, H. A High Field Gradient Magnet for Magnetic Drug Targeting. IEEE Trans. Appl. Supercond. 2006, 16, 1527–1530. [Google Scholar] [CrossRef]
- Ulbrich, K.; Hola, K.; Subr, V.; Bakandritsos, A.; Tucek, J.; Zboril, R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016, 116, 5338–5431. [Google Scholar] [CrossRef]
- Al-Jamal, K.T.; Bai, J.; Wang, J.T.W.; Protti, A.; Southern, P.; Bogart, L.; Heidari, H.; Li, X.; Cakebread, A.; Asker, D.; et al. Magnetic DrugTargeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans. Nano Lett. 2016, 16, 5652–5660. [Google Scholar] [CrossRef]
Total Length L [mm] | Inner Diameter d [mm] | External Diameter D [mm] | Glass Tube Thickness th [mm] |
---|---|---|---|
200 | 3 | 8 | 2.5 |
Peak Name | Position (eV) | FWHM (eV) | % Atomic Concentration |
---|---|---|---|
C1s; C-C | 284.8 | 2.1 | 11.3 |
C1s; C-O | 287 | 2.4 | 3.6 |
C1s; O-C=O | 289.5 | 1.3 | 0.7 |
O1s; Fe-O | 529.6 | 1.7 | 27.5 |
O1s; C-O/O-C=O | 531 | 2.8 | 29.3 |
Fe2+oct 2p3/2 | 709.84 | 2.6 | 4.7 |
Fe3+oct 2p3/2 | 711.36 | 2.2 | 1.7 |
Fe3+tet 2p3/2 | 712.85 | 3.2 | 2.9 |
Fe 2p3/2 satellite | 715.8 | 4 | 1.3 |
Fe 2p3/2 satellite | 718.8 | 4 | 1.8 |
Fe2+oct 2p1/2 | 722.32 | 3.2 | 4.5 |
Fe3+oct 2p1/2 | 723.56 | 2.02 | 1.6 |
Fe3+tet 2p1/2 | 725.2 | 3.2 | 5 |
Fe 2p1/2 satellite | 728.47 | 4 | 2.5 |
Fe 2p1/2 satellite | 732.8 | 4 | 1.6 |
Suspension | Average Hydrodynamic Diameter DH [nm] | Zeta Potential [mV] | Polydispersity Index PDI |
---|---|---|---|
MNC-2000 | 628 ± 9 | 11.2 ± 0.4 | 0.548 |
MNC-6000 | 535 ± 16 | 13.1 ± 0.7 | 0.578 |
MNC-10,000 | 579 ± 8 | 4.82 ± 0.2 | 0.361 |
No | Injection Time [s] | Deposition Proximal Length L_p [mm] | Deposition Distal Length L_d [mm] | Deposition Total Length L_t [mm] | Deposition Thickness Tn [mm] | Magnet Distance Dt [mm] |
---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 11 |
2 | 3 | 7 | 14 | 21 | 0.2 | |
3 | 10 | 20 | 22 | 42 | 0.8 | |
4 | 20 | 18 | 20 | 38 | 1.1 | |
5 | 40 | 16 | 18 | 34 | 1.4 | |
6 | 60 | 14 | 17 | 31 | 1.5 |
MNC Type | Injected Quantity [mg] | Deposition Proximal Length L_p [mm] | Deposition Distal Length L_d [mm] | Deposition Total Length L_t [mm] | Deposition Thickness Tn [mm] | Obstruction Degree [%] | Magnet Coverage Degree [%] | Proximal Deposition Degree [%] |
---|---|---|---|---|---|---|---|---|
MNC-2000 | 40 | 9 | 16 | 25 | 0.5 | 16.7 | 83.3 | 36 |
50 | 10 | 21 | 31 | 0.5 | 16.7 | 103.3 * | 32.3 | |
MNC-6000 | 40 | 11 | 17.2 | 28.2 | 1.5 | 50 | 94 | 39 |
50 | 5 | 30 | 35 | 0.5 | 16.7 | 116.6 * | 14.3 | |
MNC-10,000 | 40 | 10 | 18 | 28 | 1.3 | 43.3 | 93.3 | 35.7 |
50 | 10 | 17 | 27 | 0.7 | 23.3 | 90 | 37 |
Magnet Distance Dt [mm] | Injected Quantity [mg] | Deposition Proximal Length L_p [mm] | Deposition Distal Length L_d [mm] | Deposition Total Length L_t [mm] | Deposition Thickness Tn [mm] | Obstruction Degree [%] | Magnet Coverage Degree [%] | Proximal Deposition Degree [%] |
---|---|---|---|---|---|---|---|---|
11 | 50 | 12 | 18 | 30 | 1.5 | 50 | 100 | 40 |
14 | 9 | 17 | 26 | 1.7 | 56.7 | 86.7 | 34.6 |
Injection Period T [s] | Magnet Distance Dt [mm] | Injected Quantity [mg] | Deposition Proximal Length L_p [mm] | Deposition Distal Length L_d [mm] | Deposition Total Length L_t [mm] | Deposition Thickness Tn [mm] | Obstruction Degree [%] | Magnet Coverage Degree [%] | Proximal Deposition Degree [%] |
---|---|---|---|---|---|---|---|---|---|
40 | 11 | 50 | 13 | 15 | 28 | 0.9 | 30 | 93.3 | 46.3 |
50 | 12 | 18 | 30 | 1.4 | 46.7 | 100 | 40 | ||
60 | 13 | 18 | 31 | 1.5 | 50 | 103.3 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernad, S.I.; Bunge, A.; Ioncica, M.C.; Turcu, R.; Dan, M.; Socoliuc, V.; Susan-Resiga, D.; Bernad, E.S. Impact of the Different Molecular Weights of Polyethylene Glycol (PEG) Coating Agents on the Magnetic Targeting Characteristics of Functionalized Magnetoresponsive Nanoclusters. Magnetochemistry 2024, 10, 51. https://doi.org/10.3390/magnetochemistry10070051
Bernad SI, Bunge A, Ioncica MC, Turcu R, Dan M, Socoliuc V, Susan-Resiga D, Bernad ES. Impact of the Different Molecular Weights of Polyethylene Glycol (PEG) Coating Agents on the Magnetic Targeting Characteristics of Functionalized Magnetoresponsive Nanoclusters. Magnetochemistry. 2024; 10(7):51. https://doi.org/10.3390/magnetochemistry10070051
Chicago/Turabian StyleBernad, Sandor I., Alexander Bunge, Maria C. Ioncica, Rodica Turcu, Monica Dan, Vlad Socoliuc, Daniela Susan-Resiga, and Elena S. Bernad. 2024. "Impact of the Different Molecular Weights of Polyethylene Glycol (PEG) Coating Agents on the Magnetic Targeting Characteristics of Functionalized Magnetoresponsive Nanoclusters" Magnetochemistry 10, no. 7: 51. https://doi.org/10.3390/magnetochemistry10070051
APA StyleBernad, S. I., Bunge, A., Ioncica, M. C., Turcu, R., Dan, M., Socoliuc, V., Susan-Resiga, D., & Bernad, E. S. (2024). Impact of the Different Molecular Weights of Polyethylene Glycol (PEG) Coating Agents on the Magnetic Targeting Characteristics of Functionalized Magnetoresponsive Nanoclusters. Magnetochemistry, 10(7), 51. https://doi.org/10.3390/magnetochemistry10070051