Journal Description
Magnetochemistry
Magnetochemistry
is an international, peer-reviewed, open access journal on all areas of magnetism and magnetic materials published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), Inspec, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q2 (Chemistry, Inorganic and Nuclear) / CiteScore - Q2 (Electronic, Optical and Magnetic Materials)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
2.5 (2024);
5-Year Impact Factor:
2.6 (2024)
Latest Articles
Quantitative Analysis of the Components of Rotigotine Prolonged-Release Microspheres for Injection Using Solvent-Suppressed 1H NMR
Magnetochemistry 2025, 11(9), 79; https://doi.org/10.3390/magnetochemistry11090079 - 4 Sep 2025
Abstract
►
Show Figures
We developed a solvent-suppressed 1H nuclear magnetic resonance (NMR) method for the quantitative analysis of the components of rotigotine prolonged-release microspheres prepared for injection. Dimethyl terephthalate was used as an internal standard and dimethylsulfoxide -d6 as the solvent. The analysis
[...] Read more.
We developed a solvent-suppressed 1H nuclear magnetic resonance (NMR) method for the quantitative analysis of the components of rotigotine prolonged-release microspheres prepared for injection. Dimethyl terephthalate was used as an internal standard and dimethylsulfoxide -d6 as the solvent. The analysis was performed using a Bruker Avance III HD 600 MHz NMR spectrometer, employing the noesygppr1d pulse sequence at a controlled temperature of 25 °C. Nuclear magnetic resonance spectra were acquired with a relaxation delay time (D1) of 40 s to simultaneously determine the content of rotigotine and the excipients mannitol and stearic acid in the rotigotine prolonged-release microspheres. Using the proposed approach, we successfully quantified the active pharmaceutical ingredient rotigotine and excipients in the prolonged-release microspheres. This method demonstrated excellent linearity, high precision, and strong repeatability. The solvent-suppressed 1H NMR method developed in this study allows for the simultaneous quantification of rotigotine and the key excipients mannitol and stearic acid in the prolonged-release microspheres. This approach is accurate, simple, efficient, and environmentally friendly.
Full article
Open AccessArticle
Magnetic Properties and Coercivity Mechanism of Nanocrystalline Rare-Earth-Free Co74Zr16Mo4Si3B3 Alloys
by
Aida Miranda and Israel Betancourt
Magnetochemistry 2025, 11(9), 78; https://doi.org/10.3390/magnetochemistry11090078 - 2 Sep 2025
Abstract
The microstructure and magnetic properties of rare-earth-free, melt-spun Co74Zr16Mo4Si3B3 alloys were investigated to enhance their hard magnetic response and elucidate their coercivity mechanism. The alloys exhibit a polycrystalline microstructure composed of randomly oriented, equiaxed
[...] Read more.
The microstructure and magnetic properties of rare-earth-free, melt-spun Co74Zr16Mo4Si3B3 alloys were investigated to enhance their hard magnetic response and elucidate their coercivity mechanism. The alloys exhibit a polycrystalline microstructure composed of randomly oriented, equiaxed grains, predominantly comprising the rhombohedral hard magnetic Co11Zr2 phase (92.4 wt.%). These materials display a favorable combination of magnetic properties, with coercive fields up to 581 kA/m, maximum magnetization reaching 0.30 T, and Curie temperatures as high as 751 K. An interpretation of the results, based on microstructural features, intrinsic magnetic parameters, and micromagnetic simulations, indicates that the coercivity mechanism of these melt-spun alloys can be attributed to the nucleation of reverse magnetic domains.
Full article
(This article belongs to the Section Magnetic Materials)
►▼
Show Figures

Figure 1
Open AccessReview
Molecular Nanomagnets with Photomagnetic Properties: Design Strategies and Recent Advances
by
Xiaoshuang Gou, Xinyu Sun, Peng Cheng and Wei Shi
Magnetochemistry 2025, 11(9), 77; https://doi.org/10.3390/magnetochemistry11090077 - 31 Aug 2025
Abstract
The magnetic properties of molecular nanomagnets can be finely modulated by light, which provides great potential in optical switches, smart sensors, and data storage devices. Light-induced spin transition, structure changes, and radical formation could tune the static and dynamic magnetic properties of molecular
[...] Read more.
The magnetic properties of molecular nanomagnets can be finely modulated by light, which provides great potential in optical switches, smart sensors, and data storage devices. Light-induced spin transition, structure changes, and radical formation could tune the static and dynamic magnetic properties of molecular nanomagnets with high spatial and temporal resolutions. Herein, we summarize the design strategies of photoresponsive molecular nanomagnets and review the recent advances in transition metal/lanthanide molecular nanomagnets with photomagnetic properties. The photoresponsive mechanism based on spin transition, photocyclization, and photogenerated radicals is discussed in detail, providing insights into the photomagnetic properties of molecular nanomagnets for advanced photoresponsive materials.
Full article
(This article belongs to the Special Issue Molecular Magnetism: A Themed Issue in Honor of Professor Dai-Zheng Liao on the Occasion of His 85th Birthday)
►▼
Show Figures

Figure 1
Open AccessEditorial
Advances in Functional Magnetic Nanomaterials for Water Pollution Control
by
Wei Ding and Huaili Zheng
Magnetochemistry 2025, 11(9), 76; https://doi.org/10.3390/magnetochemistry11090076 - 27 Aug 2025
Abstract
The application of magnetism in water treatment processes has enhanced efficiency across various stages, including coagulation, flocculation, sedimentation, and filtration, representing a field with significant potential [...]
Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment)
Open AccessArticle
A Dy2 Complex Constructed by TCNQ·− Radical Anions with Slow Magnetic Relaxation Behavior
by
Xirong Wang, Shijia Qin, Xiulan Li, Wenjing Zuo, Qinglun Wang, Licun Li, Yue Ma, Jinkui Tang and Bin Zhao
Magnetochemistry 2025, 11(9), 75; https://doi.org/10.3390/magnetochemistry11090075 - 26 Aug 2025
Abstract
A centrosymmetric dinuclear complex, [Dy2(H2dapp)2(μ-OH)2(H2O)2]·4TCNQ·2CH3OH, was synthesized using the TCNQ·− radical anion (TCNQ = 7,7,8,8-tetracyanoquino-dimethane) and pentadentate nitrogen-containing Schiff base ligand (H2dapp = 2,6-diacetylpyridine)-bis(2-pyridylhydrazone).
[...] Read more.
A centrosymmetric dinuclear complex, [Dy2(H2dapp)2(μ-OH)2(H2O)2]·4TCNQ·2CH3OH, was synthesized using the TCNQ·− radical anion (TCNQ = 7,7,8,8-tetracyanoquino-dimethane) and pentadentate nitrogen-containing Schiff base ligand (H2dapp = 2,6-diacetylpyridine)-bis(2-pyridylhydrazone). In the Dy2 dimer, the two DyIII ions adopt eight-coordinated geometries intermediate between D4d and D2d symmetries, linked by two OH− groups, with ferromagnetic Dy-Dy interactions. The TCNQ·− radical anions are uncoordinated, and they pack tightly into antiparamagnetic dimers to balance the system charge. Under zero field, weak magnetic relaxation was observed, with an approximate Δeff = 2.82 K and τ0 = 6.88 × 10−6 s. This might be attributed to the short intermolecular Dy···Dy distance of 7.97 Å, which could enhance intermolecular dipolar interactions and quantum tunneling of magnetization (QTM).
Full article
(This article belongs to the Special Issue Molecular Magnetism: A Themed Issue in Honor of Professor Dai-Zheng Liao on the Occasion of His 85th Birthday)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Microstructural Changes on the Magnetization Dynamics Mechanisms in Ferrofluids Subjected to Alternating Magnetic Fields
by
Cristian E. Botez and Zachary Musslewhite
Magnetochemistry 2025, 11(9), 74; https://doi.org/10.3390/magnetochemistry11090074 - 24 Aug 2025
Abstract
We investigated the effects of chemical and physical changes on the interplay between the Néel and Brown superspin relaxation mechanisms in ferrofluids containing 18 nm-diameter Co0.2Fe2.8O4 magnetic nanoparticles. We attempted to tune the ferrofluid’s magnetization dynamics via three
[...] Read more.
We investigated the effects of chemical and physical changes on the interplay between the Néel and Brown superspin relaxation mechanisms in ferrofluids containing 18 nm-diameter Co0.2Fe2.8O4 magnetic nanoparticles. We attempted to tune the ferrofluid’s magnetization dynamics via three methods: (i) changing the carrier fluid from Isopar M to kerosene (ii) doubling the Co-doping level from x = 0.2 to x = 0.4, and (iii) diluting the Co0.2Fe2.8O4/Isopar M nanomagnetic fluid from δ = 1 mg/mL to δ = 0.1 mg/mL. We used temperature-resolved ac-susceptibility measurements at different frequencies, χ″ vs. T|f, to gain insight into the thermally driven superspin dynamics of the nanoparticles within the ferrofluid. Our data demonstrates that both increasing x and using a different carrier fluid quantitatively alter the temperature dependence of the Néel and Brown relaxation frequency (fN vs. T and fB vs. T) by changing the nanoparticles’ magnetic moments and the fluid’s viscosity. Yet, the two mechanisms remain decoupled, as indicated by the presence of two magnetic events (peaks in the χ″ vs. T|f datasets) one corresponding to the Néel and the other to Brown relaxation. On the other hand, diluting the ferrofluid leads to a qualitative change in the collective superspin dynamics behavior. Indeed, there is just one χ″-peak in the data from the δ = 0.1 mg/mL nanofluid, and its f vs. T dependence is well-described by a model that includes coupled contributions from both the Néel and Brown relaxation: (1 − p) . This is a remarkable behavior that demonstrates the ability to control a ferrofluids magnetization dynamics through simple chemical and physical changes.
Full article
(This article belongs to the Special Issue Ferrofluids: Electromagnetic Properties and Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
A Dinuclear Dysprosium(III) Single Molecule Magnet of Benzo[h]quinolin-10-ol
by
Limin Zhou, Hongling Lv, Yuning Liang, Dongcheng Liu, Zaiheng Yao, Shuchang Luo and Zilu Chen
Magnetochemistry 2025, 11(9), 73; https://doi.org/10.3390/magnetochemistry11090073 - 24 Aug 2025
Abstract
To develop single molecule magnets, a dinuclear complex [Dy2(HOBQ)4Cl6] (1) was prepared from the reaction of DyCl3 with benzo[h]quinolin-10-ol (HOBQ). Each Dy(III) ion shows a compressed octahedral geometry and the two Dy(III)
[...] Read more.
To develop single molecule magnets, a dinuclear complex [Dy2(HOBQ)4Cl6] (1) was prepared from the reaction of DyCl3 with benzo[h]quinolin-10-ol (HOBQ). Each Dy(III) ion shows a compressed octahedral geometry and the two Dy(III) ions in 1 are bridged by two Cl− ligands to construct a dinuclear structure with the four HOBQ ligands on the axial positions and six Cl− ligands in the equatorial plane. Magnetic measurements showed that complex 1 is a field-induced single molecule magnet having an obvious magnetic hysteresis loop with an energy barrier of 71(2) K. These experimental results are corroborated by the ab initio complete active space self-consistent field (CASSCF) calculations which also interpret the magneto-structural correlation. It is a typical example to achieve Dy(III) SMM through regulating coordination geometry, i.e., lengthening equatorial coordination bonds and shortening axial ones to form a compressed octahedral geometry.
Full article
(This article belongs to the Special Issue Molecular Magnetism: A Themed Issue in Honor of Professor Dai-Zheng Liao on the Occasion of His 85th Birthday)
►▼
Show Figures

Figure 1
Open AccessArticle
Mössbauer Research and Magnetic Properties of Dispersed Microspheres from High-Calcium Fly Ash
by
Elena V. Fomenko, Yuriy V. Knyazev, Galina V. Akimochkina, Sergey V. Semenov, Vladimir V. Yumashev, Leonid A. Solovyov, Natalia N. Anshits, Oleg A. Bayukov and Alexander G. Anshits
Magnetochemistry 2025, 11(9), 72; https://doi.org/10.3390/magnetochemistry11090072 - 23 Aug 2025
Abstract
►▼
Show Figures
High-calcium fly ash (HCFA), produced from the lignite combustion, has emerged as a global concern due to its fine particle size and adverse environmental impacts. This study presents the characteristics of dispersed microspheres from HCFA obtained using modern techniques, such as XRD, SEM-EDS,
[...] Read more.
High-calcium fly ash (HCFA), produced from the lignite combustion, has emerged as a global concern due to its fine particle size and adverse environmental impacts. This study presents the characteristics of dispersed microspheres from HCFA obtained using modern techniques, such as XRD, SEM-EDS, 57Fe Mössbauer spectroscopy, DSC-TG, particle size analysis, and magnetic measurements. It is found that an increase in microsphere size is likely due to the growth of the silicate glass-like phase, while the magnetic crystalline phase content remains stable. According to the 57Fe Mössbauer spectroscopy, there are two substituted Ca-based ferrites—CaFe2O4 and Ca2Fe2O5 with a quite different magnetic behavior. Besides, the magnetic ordering temperature of the brownmillerite (Ca2Fe2O5) phase increases with the average diameter of the microspheres. FORC analysis reveals enhanced magnetic interactions as microsphere size increases, indicating an elevation in the concentration of magnetic microparticles, primarily on the microsphere surface, as supported by electron microscopy data. The discovered the magnetic crystallographic phases distribution on the microsphere’s surface claims the accessibility for further enrichment of the magnetically active particles and the possible application of fly ashes as a cheap source for magnetic materials synthesis.
Full article

Figure 1
Open AccessReview
Application Progress of Magnetic Chitosan in Heavy Metal Wastewater Treatment
by
Xiaotian Wang, Yan Zhuang, Kinjal J. Shah and Yongjun Sun
Magnetochemistry 2025, 11(9), 71; https://doi.org/10.3390/magnetochemistry11090071 - 22 Aug 2025
Abstract
Wastewater containing heavy metals can come from a variety of sources and is extremely toxic and hard to break down. Conventional treatment methods can easily result in secondary pollution and are expensive. The research on magnetic chitosan composites, a new adsorbent in the
[...] Read more.
Wastewater containing heavy metals can come from a variety of sources and is extremely toxic and hard to break down. Conventional treatment methods can easily result in secondary pollution and are expensive. The research on magnetic chitosan composites, a new adsorbent in the treatment of heavy metal wastewater, is methodically reviewed in this paper. It offers a theoretical foundation for the creation of more environmentally friendly and effective wastewater treatment technology by examining its preparation and modification technology, adsorption mechanism, and application performance. This paper provides a summary of the technology used to prepare and modify magnetic chitosan composites. Both the cross-linking and co-precipitation methods are thoroughly examined. A summary of the fundamental process of heavy metal ion adsorption is provided, along with information on the chemical and physical impacts. Of these, chemical adsorption has been shown to work well with the majority of heavy metal adsorption systems. According to application research, magnetic chitosan exhibits good adaptability in real-world industrial wastewater treatment and has outstanding adsorption performance for various heavy metal ion types and multi-metal coexistence systems (including synergistic/competitive effects). Lastly, the optimization of the material preparation and modification process, the mechanism influencing the various coexisting ion types, and the improvement of regeneration ability should be the main areas of future development.
Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Enhanced Magnetocaloric Effect and Single-Molecule Magnet Behavior in a Series of Sulfur-Containing Ligand-Based Ln9 Clusters (Ln = Gd, Tb, and Dy)
by
Ya-Wei Geng, Tong Guo, Xiao-Qin Wang and Tian Han
Magnetochemistry 2025, 11(9), 70; https://doi.org/10.3390/magnetochemistry11090070 - 22 Aug 2025
Abstract
As an important branch of lanthanide-based complexes, clusters show unique properties in magnetocaloric effect (MCE) and single-molecule magnets (SMMs) using O/N ligands, while research on heavy p-block elements (e.g., S atom) with larger atomic radii and more diffuse p valence orbitals as coordinating
[...] Read more.
As an important branch of lanthanide-based complexes, clusters show unique properties in magnetocaloric effect (MCE) and single-molecule magnets (SMMs) using O/N ligands, while research on heavy p-block elements (e.g., S atom) with larger atomic radii and more diffuse p valence orbitals as coordinating atoms remains relatively scarce. Herein, using the sulfur-containing ligand of 2-pyridinethiol 1-oxide (HL), we successfully synthesized a series of hourglass-like Ln9 clusters [Ln9(L)17(μ3-OH)9(μ4-OH)]·nH2O (1: Ln = Gd, n = 3; 2: Ln = Tb, n = 3; 3: Ln = Dy, n = 1). Magnetic data analysis reveals that cluster 1 shows a significant MCE, with the entropy change (−ΔSm) reaching a maximum of 34.41 J kg−1 K−1 at 2 K under ΔH = 7 T. Cluster 3, meanwhile, exhibits distinct frequency- and temperature-dependent behavior, indicating its SMM characteristics. Interestingly, despite possessing the highest molar mass among reported Gd9 clusters with MCE, 1 exhibits a competitive −ΔSm value, highlighting the critical role of sulfur-containing ligand on the structure and even exchange interactions. This work offers new insights into synthesizing high-performance MCE materials and understanding magneto-structural relationships.
Full article
(This article belongs to the Special Issue Molecular Magnetism: A Themed Issue in Honor of Professor Dai-Zheng Liao on the Occasion of His 85th Birthday)
►▼
Show Figures

Figure 1
Open AccessArticle
Refrigeration in Adiabatically Confined Anisotropic Transition Metal Complexes Induced by Sudden Magnetic Field Quenching
by
Andrew Palii, Valeria Belonovich and Boris Tsukerblat
Magnetochemistry 2025, 11(8), 69; https://doi.org/10.3390/magnetochemistry11080069 - 15 Aug 2025
Abstract
The article is devoted to the theoretical development of the mechanisms of molecular refrigeration, the area combining molecular magnetism and material science with promise for low-temperature physics and quantum computing, where conventional principles of refrigeration become inefficient. Given this general trend, we propose
[...] Read more.
The article is devoted to the theoretical development of the mechanisms of molecular refrigeration, the area combining molecular magnetism and material science with promise for low-temperature physics and quantum computing, where conventional principles of refrigeration become inefficient. Given this general trend, we propose the concept of the magnetothermal effect in magnetically anisotropic complexes of 3d metal ions, caused by fast magnetic field quenching. Within this concept, the most topical case of an axially magnetically anisotropic system isolated from the environment by adiabatic envelope is analyzed. We evaluate the temperature change as a function of the initial temperature and magnetic field and also its dependence on the sign and the magnitude of the axial zero-field splitting parameter and the Debye temperature. Correlations are revealed between the sign of the magnetic anisotropy (dictated by the sign of the axial zero field splitting parameter) and the sign of the thermal effect (heating versus cooling) caused by field quenching. The temperature change is shown to be negative (cooling) in the case of complexes exhibiting easy-axis-type magnetic anisotropy, while for the case of easy-plane-type anisotropy, it proves to be positive (heating). The thermal effects are shown to have an efficient control by varying the initially applied field. These findings allow us to propose complexes exhibiting easy-axis-type magnetic anisotropy as candidates for achieving a low-temperature refrigeration effect caused by fast field quenching and also to employ the established magnetothermal correlations to the analysis of magnetic anisotropy.
Full article
(This article belongs to the Special Issue Stimuli-Responsive Magnetic Molecular Materials—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Synthesis, Crystal Structures and Magnetic Properties of Lanthanide Complexes with Rhodamine Benzoyl Hydrazone Ligands
by
Lin Miao, Dong-Mei Zhu, Cai-Ming Liu, Yi-Quan Zhang and Hui-Zhong Kou
Magnetochemistry 2025, 11(8), 68; https://doi.org/10.3390/magnetochemistry11080068 - 7 Aug 2025
Abstract
Given the outstanding magnetic characteristics of lanthanide ions, the development of mononuclear or multinuclear lanthanide complexes becomes imperative. Previous research showed that a series of mononuclear Dy(III) complexes of rhodamine benzoyl hydrazone Schiff base ligands exhibit remarkable single-molecule magnetic properties and fluorescence. In
[...] Read more.
Given the outstanding magnetic characteristics of lanthanide ions, the development of mononuclear or multinuclear lanthanide complexes becomes imperative. Previous research showed that a series of mononuclear Dy(III) complexes of rhodamine benzoyl hydrazone Schiff base ligands exhibit remarkable single-molecule magnetic properties and fluorescence. In this study, we used analogous ligands to synthesize lanthanide complexes [Dy(HL1-o)(NO3)2(CH3OH)2]NO3·CH3OH (complex 1·MeOH) and tetranuclear complexes [Ln4(L1-c)2(L2)2(μ3-OH)2(NO3)2(CH3OH)4](NO3)2·2CH3CN·5CH3OH·2H2O (Ln = Dy, complex 2; Ln = Gd, complex 3). Magnetic susceptibility measurements show that 1·2H2O is a single-molecule magnet, 2 shows slow magnetic relaxation and 3 is a magnetic cooling material with the magnetic entropy change of 9.81 J kg−1 K−1 at 2 K and 5 T. The theoretical calculations on 1·MeOH indicate that it shows good magnetic anisotropy with the calculated energy barrier of 194.6 cm−1.
Full article
(This article belongs to the Special Issue Molecular Magnetism: A Themed Issue in Honor of Professor Dai-Zheng Liao on the Occasion of His 85th Birthday)
►▼
Show Figures

Figure 1
Open AccessArticle
Structural and Ferromagnetic Response of B2-Type Al45Mn41.8X13.2 (X = Fe, Co, Ni) Alloys
by
Esmat Dastanpour, Haireguli Aihemaiti, Shuo Huang, Valter Ström, Lajos Károly Varga and Levente Vitos
Magnetochemistry 2025, 11(8), 67; https://doi.org/10.3390/magnetochemistry11080067 - 6 Aug 2025
Abstract
To our knowledge, no magnetic B2 phase in the Al–Mn system of near-equiatomic compositions has been reported so far. Here, we investigate the structural and magnetic characteristics of Al45Mn41.8X13.2 (X = Fe, Co or Ni) alloys. We demonstrate
[...] Read more.
To our knowledge, no magnetic B2 phase in the Al–Mn system of near-equiatomic compositions has been reported so far. Here, we investigate the structural and magnetic characteristics of Al45Mn41.8X13.2 (X = Fe, Co or Ni) alloys. We demonstrate that adding 13.2 atomic percent magnetic 3d metal to AlMn stabilizes a ferromagnetic B2 structure, where Al and X occupy different sublattices. We employ density functional theory calculations and experimental characterizations to underscore the role of the late 3d metals for the phase stability of the quasi-ordered ternary systems. We show that these alloys possess large local magnetic moments primarily due to Mn atoms partitioned to the Al-free sublattice. The revealed magneto-chemical effect opens alternative routes for tailoring the magnetic properties of B2 intermetallic compounds for various magnetic applications.
Full article
(This article belongs to the Special Issue Advances in Functional Materials with Tunable Magnetic Properties)
►▼
Show Figures

Figure 1
Open AccessEditorial
Computational Chemistry in Nuclear Magnetic Resonance
by
Irina L. Rusakova and Yuriy Yu. Rusakov
Magnetochemistry 2025, 11(8), 66; https://doi.org/10.3390/magnetochemistry11080066 - 4 Aug 2025
Abstract
Determining molecular structure via nuclear magnetic resonance (NMR) spectral analysis has become an integral part of physical–chemical research in organic and inorganic chemistry [...]
Full article
(This article belongs to the Special Issue Computational Chemistry in Nuclear Magnetic Resonance)
Open AccessArticle
Multifaceted Analysis of Pr2Fe16.75Ni0.25 Intermetallic Compound: Crystallographic Insights, Critical Phenomena, and Thermomagnetic Behavior near Room Temperature
by
Jihed Horcheni, Hamdi Jaballah, Sirine Gharbi, Essebti Dhahri and Lotfi Bessais
Magnetochemistry 2025, 11(8), 65; https://doi.org/10.3390/magnetochemistry11080065 - 31 Jul 2025
Abstract
►▼
Show Figures
The alloy Pr2Fe16.75Ni0.25 has been examined to investigate its structural properties, critical behavior, and magnetocaloric effects. Rietveld’s refinement of X-ray diffraction patterns has revealed a rhombohedral structure with an space group. Pr2Fe
[...] Read more.
The alloy Pr2Fe16.75Ni0.25 has been examined to investigate its structural properties, critical behavior, and magnetocaloric effects. Rietveld’s refinement of X-ray diffraction patterns has revealed a rhombohedral structure with an space group. Pr2Fe16.9Ni0.25 also demonstrates a direct magnetocaloric effect near room temperature, accompanied by a moderate magnetic entropy change ( = 5.5 J kg−1 K−1 at T) and a broad working temperature range. Furthermore, the Relative Cooling Power (RCP) is approximately 89% of the widely recognized gadolinium (Gd) for T. This compound exhibits a commendable magnetocaloric response, on par with or even surpassing that of numerous other intermetallic alloys. Critical behavior was analyzed using thermo-magnetic measurements, employing methods such as the modified Arrott plot, critical isotherm analysis, and Kouvel-Fisher techniques. The obtained critical exponents ( , , and ) exhibit similarities to those of the 3D-Ising model, characterized explicitly by intermediate range interactions.
Full article

Figure 1
Open AccessEditorial
Magnetism: Energy, Recycling, Novel Materials
by
Joan-Josep Suñol
Magnetochemistry 2025, 11(8), 64; https://doi.org/10.3390/magnetochemistry11080064 - 31 Jul 2025
Abstract
Magnetism is a field of physics that should be developed within this century in order to enhance its applicability [...]
Full article
(This article belongs to the Special Issue Magnetism: Energy, Recycling, Novel Materials)
Open AccessArticle
Evaluation of the Effects of Food and Fasting on Signal Intensities from the Gut Region in Mice During Magnetic Particle Imaging (MPI)
by
Saeed Shanehsazzadeh and Andre Bongers
Magnetochemistry 2025, 11(8), 63; https://doi.org/10.3390/magnetochemistry11080063 - 25 Jul 2025
Abstract
►▼
Show Figures
Gastrointestinal signals present a major challenge in magnetic particle imaging (MPI) because of their strong background interference. This study aimed to evaluate and compare the gut MPI signal in mice fed six commercially available diets in Australia, including Gordon’s Specialty Stock Feeds (normal
[...] Read more.
Gastrointestinal signals present a major challenge in magnetic particle imaging (MPI) because of their strong background interference. This study aimed to evaluate and compare the gut MPI signal in mice fed six commercially available diets in Australia, including Gordon’s Specialty Stock Feeds (normal and low iron), Specialty Feeds (normal and low iron), a Western diet, and Gubra-Amylin NASH (GAN diet). We also assessed the impact of 24 h fasting on gut signal reduction. Each diet group included three mice, and the gut signal intensity was monitored over seven days. The results indicated that the standard diet produced signal intensities approximately eight times greater than those of the low-iron diet from specialty feeds and over eleven times greater than those of the GAN or Western diets. Notably, switching to GAN or Western diets led to a tenfold reduction in the gut signal within 24 h, a decrease comparable to that achieved by fasting. These findings suggest that dietary modification—particularly the use of low-iron diets—can effectively minimize gastrointestinal signals in MPI, reducing background interference by up to 90%. This simple dietary adjustment offers a practical and noninvasive method for improving image clarity and experimental reliability in preclinical MPI studies.
Full article

Figure 1
Open AccessReview
The Advancing Understanding of Magnetorheological Fluids and Elastomers: A Comparative Review Analyzing Mechanical and Viscoelastic Properties
by
Salah Rouabah, Fadila-Yasmina Didouche, Abdelmalek Khebli, Salah Aguib and Noureddine Chikh
Magnetochemistry 2025, 11(8), 62; https://doi.org/10.3390/magnetochemistry11080062 - 24 Jul 2025
Abstract
Magnetorheological fluids (MRFs) and elastomers (MREs) are two types of smart materials that exhibit modifiable rheological properties in response to an applied magnetic field. Although they share a similarity in their magnetorheological response, these two materials differ in their nature, structure, and mechanical
[...] Read more.
Magnetorheological fluids (MRFs) and elastomers (MREs) are two types of smart materials that exhibit modifiable rheological properties in response to an applied magnetic field. Although they share a similarity in their magnetorheological response, these two materials differ in their nature, structure, and mechanical behavior when exposed to a magnetic field. They also have distinct application differences due to their specific rheological properties. These fundamental differences therefore influence their properties and applications in various industrial fields. This review provides a synthesis of the distinct characteristics of MRFs and MREs. The differences in their composition, rheological behavior, mechanical properties, and respective applications are summarized and highlighted. This analysis will enable a comprehensive understanding of these differences, thereby allowing for the appropriate selection of the material based on the specific requirements of a given application and fostering the development of new applications utilizing these MR materials.
Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Glutathione and Magnetic Nanoparticle-Modified Nanochannels for the Detection of Cadmium (II) in Cereal Grains
by
Wei Hu, Xinyue Xiang, Donglei Jiang, Na Zhang and Lifeng Wang
Magnetochemistry 2025, 11(7), 61; https://doi.org/10.3390/magnetochemistry11070061 - 21 Jul 2025
Abstract
►▼
Show Figures
We developed a novel and portable magnetic nanochannel electrochemical sensor for the sensitive detection of cadmium ions (Cd2+), which pose serious risks to food safety and human health. The sensor was fabricated by co-modifying an anodic aluminum oxide (AAO) nanochannel membrane
[...] Read more.
We developed a novel and portable magnetic nanochannel electrochemical sensor for the sensitive detection of cadmium ions (Cd2+), which pose serious risks to food safety and human health. The sensor was fabricated by co-modifying an anodic aluminum oxide (AAO) nanochannel membrane with a composite of glutathione (GSH) and ferric oxide nanoparticles (Fe3O4), denoted as GSH@Fe3O4. This modified membrane was then integrated with a screen-printed carbon electrode (SPCE) to construct the GSH@Fe3O4/GSH@AAO/SPCE sensing platform. The performance of the sensor was evaluated using differential pulse voltammetry (DPV), which demonstrated a strong linear correlation between the peak current response and the concentration of Cd2+ in the range of 5–120 μg/L. The calibration equation was IDPV(μA) = −0.31 + 0.98·CCd2+(μg/L), with an excellent correlation coefficient (R2 = 0.999, n = 3). The calculated limit of detection (LOD) was as low as 0.1 μg/L, indicating the high sensitivity of the system. These results confirm the successful construction of the GSH@Fe3O4/GSH@AAO/SPCE portable nanochannel sensor. This innovative sensing platform provides a rapid, sensitive, and user-friendly approach for the on-site monitoring of heavy metal contamination in agricultural products, especially grains.
Full article

Figure 1
Open AccessArticle
Motion of Magnetic Microcapsules Through Capillaries in the Presence of a Magnetic Field: From a Mathematical Model to an In Vivo Experiment
by
Mikhail N. Zharkov, Mikhail A. Pyataev, Denis E. Yakobson, Valentin P. Ageev, Oleg A. Kulikov, Vasilisa I. Shlyapkina, Dmitry N. Khmelenin, Larisa A. Balykova, Gleb B. Sukhorukov and Nikolay A. Pyataev
Magnetochemistry 2025, 11(7), 60; https://doi.org/10.3390/magnetochemistry11070060 - 14 Jul 2025
Abstract
In this paper, we discuss the prediction of the delivery efficiency of magnetic carriers based on their properties and field parameters. We developed a theory describing the behavior of magnetic capsules in the capillaries of living systems. A partial differential equation for the
[...] Read more.
In this paper, we discuss the prediction of the delivery efficiency of magnetic carriers based on their properties and field parameters. We developed a theory describing the behavior of magnetic capsules in the capillaries of living systems. A partial differential equation for the spatial distribution of magnetic capsules has been obtained. We propose to characterize the interaction between the magnetic field and the capsules using a single vector, which we call “specific magnetic force”. To test our theory, we performed experiments on a model of a capillary bed and on a living organism with two types of magnetic capsules that differ in size and amount of magnetic material. The experimental results show that the distribution of the capsules in the field correlated with the theory, but there were fewer actually accumulated capsules than predicted by the theory. In the weaker fields, the difference was more significant than in stronger ones. We proposed an explanation for this phenomenon based on the assumption that a certain level of magnetic force is needed to keep the capsules close to the capillary wall. We also suggested a formula for the relationship between the probability of capsule precipitation and the magnetic force. We found the effective value of a specific magnetic force at which all the capsules attracted by the magnet reach the capillary wall. This value can be considered as the minimum level for the field at which it is, in principle, possible to achieve a significant magnetic control effect. We demonstrated that for each type of capsule, there is a specific radius of magnet for which the effective magnetic force is achieved at the largest possible distance from the magnet’s surface. For the capsules examined in this study, the maximum distance where the effective field can be achieved does not exceed 1.5 cm. The results of the study contribute to our understanding of the behavior of magnetic particles in the capillaries of living organisms when exposed to a magnetic field.
Full article
(This article belongs to the Special Issue Fundamentals and Applications of Novel Functional Magnetic Materials)
►▼
Show Figures

Graphical abstract

Journal Menu
► ▼ Journal Menu-
- Magnetochemistry Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Editorial Office
- 10th Anniversary
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
10 September 2025
Meet Us at the 10th Chinese Conference on Coordination Chemistry, 19–23 September 2025, Tianjin, China
Meet Us at the 10th Chinese Conference on Coordination Chemistry, 19–23 September 2025, Tianjin, China

3 September 2025
Join Us at the MDPI at the University of Toronto Career Fair, 23 September 2025, Toronto, ON, Canada
Join Us at the MDPI at the University of Toronto Career Fair, 23 September 2025, Toronto, ON, Canada

Topics
Topic in
Chemistry, IJMS, Molecules, Quantum Reports, Symmetry, Magnetochemistry
Theoretical, Quantum and Computational Chemistry—2nd Edition
Topic Editors: Jorge Garza, Andrei L. TchougréeffDeadline: 31 July 2026
Topic in
Electronic Materials, IJMS, Magnetochemistry, Materials, Nanomaterials
Magnetic Nanoparticles and Thin Films
Topic Editors: Renat F. Sabirianov, Ahmad AlsaadDeadline: 31 December 2026

Special Issues
Special Issue in
Magnetochemistry
Design and Applications of Advanced Magnetic Ceramic Materials: New Insights
Guest Editor: Vasiliki TsakaloudiDeadline: 26 September 2025
Special Issue in
Magnetochemistry
Advance of Magneto-Optical Effect and Materials
Guest Editor: Bogdan Alexandru SavaDeadline: 30 September 2025
Special Issue in
Magnetochemistry
Magnetic Nanoparticles and Nanocomposites for Bioanalytical and Biomedical Purposes
Guest Editors: Oleh Smutok, Evgeny KatzDeadline: 30 September 2025
Special Issue in
Magnetochemistry
Advances in Magnetic Nanoparticles: Biocompatibility, Toxicity, and Biomedical Applications
Guest Editor: Rumiana TzonevaDeadline: 30 September 2025