First-Principles Calculation of Transition Metal Hyperfine Coupling Constants with the Strongly Constrained and Appropriately Normed (SCAN) Density Functional and its Hybrid Variants
Abstract
:1. Introduction
2. Results
2.1. Reference Set of Transition Metal Systems
2.2. Performance of SCAN in Comparison With Other Density Functionals
2.3. Performance of Hybrid Variants of SCAN
2.4. Basis Set Dependence of SCAN Results
3. Discussion and Conclusions
4. Computational Details
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Compound | Functional | A11SO | A22SO | A33SO |
---|---|---|---|---|
ScO | BP86 | −0.8 | −0.8 | −0.1 |
TPSS | −0.8 | −0.8 | −0.1 | |
TPSSh | −0.9 | −0.9 | −0.1 | |
B3LYP | −0.9 | −0.9 | −0.1 | |
BHandHLYP | −1.0 | −1.0 | −0.2 | |
CAM-B3LYP | −0.7 | −0.7 | −0.1 | |
SCAN | −1.4 | −1.4 | −5.8 | |
SCANh | −1.4 | −1.4 | −6.0 | |
SCAN0 | −1.2 | −1.2 | −6.5 | |
TiF3 | BP86 | 2.8 | 2.8 | 0.2 |
TPSS | 2.3 | 2.3 | 0.2 | |
TPSSh | 2.5 | 2.5 | 0.2 | |
B3LYP | 3.6 | 3.6 | 0.1 | |
BHandHLYP | 5.1 | 5.1 | 0.1 | |
CAM-B3LYP | 1.0 | 1.0 | 0.1 | |
SCAN | 2.1 | 0.8 | 5.0 | |
SCANh | 0.8 | 2.2 | 5.3 | |
SCAN0 | 0.8 | 2.6 | 6.3 | |
[V(H2O)6]2+ | BP86 | −9.3 | −9.3 | −9.5 |
TPSS | −8.2 | −8.2 | −8.4 | |
TPSSh | −8.5 | −8.5 | −8.7 | |
B3LYP | −10.0 | −10.0 | −10.2 | |
BHandHLYP | −10.9 | −10.9 | −11.1 | |
CAM-B3LYP | −4.0 | −4.0 | −4.0 | |
SCAN | −7.1 | −7.1 | −7.1 | |
SCANh | −7.3 | −7.3 | −7.4 | |
SCAN0 | −7.8 | −7.8 | −7.9 | |
[VO(H2O)5]2+ | BP86 | −7.2 | −7.4 | −25.2 |
TPSS | −6.6 | −6.8 | −21.5 | |
TPSSh | −7.1 | −7.2 | −23.1 | |
B3LYP | −8.2 | −8.3 | −29.2 | |
BHandHLYP | −10.4 | −0.9 | −35.4 | |
CAM-B3LYP | −3.4 | −3.5 | −12.4 | |
SCAN | −7.2 | −7.1 | −19.8 | |
SCANh | −7.6 | −7.6 | −21.0 | |
SCAN0 | −8.4 | −8.4 | −23.2 | |
MnF | BP86 | 3.8 | 3.8 | 21.5 |
TPSS | −2.8 | −2.8 | 14.0 | |
TPSSh | −2.4 | −2.4 | 15.7 | |
B3LYP | 17.7 | 17.7 | 32.4 | |
BHandHLYP | 45.2 | 45.2 | 57.3 | |
CAM-B3LYP | −3.6 | −3.6 | 4.8 | |
SCAN | −5.1 | −5.1 | 8.7 | |
SCANh | −5.1 | −5.1 | 9.9 | |
SCAN0 | −4.8 | −4.8 | 12.4 | |
MnO3 | BP86 | −19.0 | −19.0 | −3.1 |
TPSS | −17.1 | −17.0 | −3.3 | |
TPSSh | −17.8 | −17.8 | −4.8 | |
B3LYP | −19.4 | −19.4 | −7.2 | |
BHandHLYP | −13.6 | −13.6 | −0.5 | |
CAM-B3LYP | −11.4 | −11.4 | −6.0 | |
SCAN | −17.1 | −17.1 | −6.6 | |
SCANh | −18.2 | −18.2 | −9.5 | |
SCAN0 | −19.8 | −19.8 | −14.6 | |
[Mn(H2O)6]2+ | BP86 | −2.9 | −3.0 | −3.0 |
TPSS | −2.9 | −2.9 | −2.9 | |
TPSSh | −2.8 | −2.8 | −2.8 | |
B3LYP | −2.6 | −2.6 | −2.6 | |
BHandHLYP | −2.1 | −2.1 | −2.1 | |
CAM-B3LYP | −2.3 | −2.3 | −2.3 | |
SCAN | −3.0 | −3.0 | −3.0 | |
SCANh | −2.8 | −2.8 | −2.8 | |
SCAN0 | −2.6 | −2.6 | −2.6 | |
Mn(CO)5 | BP86 | 3.0 | 3.0 | −1.3 |
TPSS | 2.1 | 2.1 | −1.6 | |
TPSSh | 2.1 | 2.1 | −2.0 | |
B3LYP | 3.6 | 3.6 | −2.2 | |
BHandHLYP | 1.6 | 1.6 | −4.7 | |
CAM-B3LYP | −1.8 | −1.8 | −1.2 | |
SCAN | 1.0 | 1.0 | −1.1 | |
SCANh | 1.0 | 1.0 | −1.3 | |
SCAN0 | 0.7 | 0.7 | −1.9 | |
[Fe(CO)5]+ | BP86 | 2.2 | 2.2 | −0.3 |
TPSS | 1.8 | 1.8 | −0.3 | |
TPSSh | 2.2 | 2.2 | −0.4 | |
B3LYP | 3.2 | 3.2 | −0.5 | |
BHandHLYP | 4.6 | 4.6 | −0.9 | |
CAM-B3LYP | 0.5 | 0.5 | −0.3 | |
SCAN | 1.1 | 1.1 | −0.3 | |
SCANh | 1.3 | 1.3 | −0.4 | |
SCAN0 | 1.7 | 1.7 | −0.6 | |
NiH(CO)3 | BP86 | −12.2 | −12.2 | −0.6 |
TPSS | −12.2 | −12.2 | −0.8 | |
TPSSh | −16.6 | −16.6 | −1.5 | |
B3LYP | −23.5 | −23.5 | −2.3 | |
BHandHLYP | −56.8 | −56.8 | −8.6 | |
CAM-B3LYP | −7.5 | −7.5 | −1.0 | |
SCAN | −11.3 | −11.3 | −1.2 | |
SCANh | −14.9 | −14.9 | −2.1 | |
SCAN0 | −22.5 | −22.5 | −4.2 | |
[Ni(mnt)2]− | BP86 | −4.0 | −10.0 | −32.8 |
TPSS | −3.9 | −10.3 | −32.4 | |
TPSSh | −13.6 | −5.9 | −38.9 | |
B3LYP | −15.9 | −9.1 | −43.9 | |
BHandHLYP | −5.2 | −22.1 | −16.5 | |
CAM-B3LYP | −4.3 | −3.0 | −13.0 | |
SCAN | −9.9 | −4.2 | −29.6 | |
SCANh | −12.8 | −6.1 | −35.2 | |
SCAN0 | −17.8 | −11.5 | −44.6 | |
[Cu(NH3)4]2+ | BP86 | 47.0 | 47.0 | 160.4 |
TPSS | 45.6 | 45.6 | 150.3 | |
TPSSh | 53.1 | 53.1 | 174.6 | |
B3LYP | 64.8 | 64.8 | 221.4 | |
BHandHLYP | 97.2 | 97.3 | 345.7 | |
CAM-B3LYP | 23.9 | 23.9 | 87.5 | |
SCAN | 37.8 | 37.9 | 119.5 | |
SCANh | 42.8 | 42.9 | 135.0 | |
SCAN0 | 51.7 | 51.8 | 164.0 | |
[Cu(dtc)2] | BP86 | 20.8 | 19.4 | 68.3 |
TPSS | 21.7 | 20.6 | 69.8 | |
TPSSh | 25.3 | 24.1 | 82.6 | |
B3LYP | 28.3 | 26.6 | 96.7 | |
BHandHLYP | 49.9 | 48.8 | 174.9 | |
CAM-B3LYP | 14.5 | 13.8 | 50.0 | |
SCAN | 21.0 | 20.1 | 65.6 | |
SCANh | 24.2 | 23.2 | 76.8 | |
SCAN0 | 30.3 | 29.3 | 98.1 | |
[Cu(en)2]2+ | BP86 | 38.6 | 39.6 | 136.5 |
TPSS | 38.1 | 39.0 | 130.7 | |
TPSSh | 44.3 | 45.5 | 152.6 | |
B3LYP | 53.0 | 54.2 | 190.2 | |
BHandHLYP | 82.2 | 82.9 | 305.6 | |
CAM-B3LYP | 22.1 | 22.5 | 80.7 | |
SCAN | 33.9 | 34.2 | 109.5 | |
SCANh | 38.4 | 39.0 | 124.6 | |
SCAN0 | 46.8 | 46.9 | 152.1 |
References
- Kaupp, M.; Bühl, M.; Malkin, V.G. Calculation of NMR and EPR Parameters: Theory and Applications; Wiley-VCH: Weinheim, Germany, 2004; p. 603. [Google Scholar]
- Mardirossian, N.; Head-Gordon, M. Thirty Years of Density Functional Theory in Computational Chemistry: An Overview and Extensive Assessment of 200 Density Functionals. Mol. Phys. 2017, 115, 2315–2372. [Google Scholar] [CrossRef]
- Becke, A.D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 2014, 140, 18A301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neese, F. Prediction of Molecular Properties and Molecular Spectroscopy with Density Functional Theory: From Fundamental Theory to Exchange-Coupling. Coord. Chem. Rev. 2009, 253, 526–563. [Google Scholar] [CrossRef]
- Orio, M.; Pantazis, D.A.; Neese, F. Density Functional Theory. Photosynth. Res. 2009, 102, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Neese, F. High-Level Spectroscopy, Quantum Chemistry, and Catalysis: Not just a Passing Fad. Angew. Chem. Int. Ed. 2017, 56, 11003–11010. [Google Scholar] [CrossRef] [Green Version]
- Munzarová, M.; Kaupp, M. A critical validation of density functional and coupled-cluster approaches for the calculation of EPR hyperfine coupling constants in transition metal complexes. J. Phys. Chem. A 1999, 103, 9966–9983. [Google Scholar] [CrossRef]
- Munzarová, M.L.; Kubáček, P.; Kaupp, M. Mechanisms of EPR Hyperfine Coupling in Transition Metal Complexes. J. Am. Chem. Soc. 2000, 122, 11900–11913. [Google Scholar] [CrossRef]
- Neese, F. Metal and ligand hyperfine couplings in transition metal complexes: The effect of spin-orbit coupling as studied by coupled perturbed Kohn-Sham theory. J. Chem. Phys. 2003, 118, 3939–3948. [Google Scholar] [CrossRef]
- Kossmann, S.; Kirchner, B.; Neese, F. Performance of Modern Density Functional Theory for the Prediction of Hyperfine Structure: Meta-GGA and Double Hybrid Functionals. Mol. Phys. 2007, 105, 2049–2071. [Google Scholar] [CrossRef] [Green Version]
- Hedegård, E.D.; Kongsted, J.; Sauer, S.P.A. Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals. Phys. Chem. Chem. Phys. 2012, 14, 10669–10676. [Google Scholar] [CrossRef] [Green Version]
- Hedegård, E.D.; Kongsted, J.; Sauer, S.P.A. Validating and Analyzing EPR Hyperfine Coupling Constants with Density Functional Theory. J. Chem. Theory Comput. 2013, 9, 2380–2388. [Google Scholar] [CrossRef]
- Schattenberg, C.J.; Maier, T.M.; Kaupp, M. Lessons from the Spin-Polarization/Spin-Contamination Dilemma of Transition-Metal Hyperfine Couplings for the Construction of Exchange-Correlation Functionals. J. Chem. Theory Comput. 2018, 14, 5653–5672. [Google Scholar] [CrossRef]
- Sciortino, G.; Lubinu, G.; Maréchal, J.-D.; Garribba, E. DFT Protocol for EPR Prediction of Paramagnetic Cu(II) Complexes and Application to Protein Binding Sites. Magnetochemistry 2018, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Heß, B.A.; Marian, C.M.; Wahlgren, U.; Gropen, O. A mean-field spin-orbit method applicable to correlated wavefunctions. Chem. Phys. Lett. 1996, 251, 365–371. [Google Scholar] [CrossRef]
- Pantazis, D.A.; Orio, M.; Petrenko, T.; Zein, S.; Bill, E.; Lubitz, W.; Messinger, J.; Neese, F. A New Quantum Chemical Approach to the Magnetic Properties of Oligonuclear Transition-Metal Complexes: Application to a Model for the Tetranuclear Manganese Cluster of Photosystem II. Chem. Eur. J. 2009, 15, 5108–5123. [Google Scholar] [CrossRef]
- Schraut, J.; Arbuznikov, A.V.; Schinzel, S.; Kaupp, M. Computation of Hyperfine Tensors for Dinuclear MnIIIMnIV Complexes by Broken-Symmetry Approaches: Anisotropy Transfer Induced by Local Zero-Field Splitting. ChemPhysChem 2011, 12, 3170–3179. [Google Scholar] [CrossRef]
- Mehlich, C.; van Wüllen, C. Broken Symmetry Approach to Magnetic Properties of Oligonuclear Transition-Metal Complexes: Application to Hyperfine Tensors of Mixed-Valence Manganese Compounds. J. Phys. Chem. C 2018, 123, 7717–7730. [Google Scholar] [CrossRef]
- Burke, K. Perspective on density functional theory. J. Chem. Phys. 2012, 136, 150901. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans. R. Soc. A 2014, 372, 20120476. [Google Scholar] [CrossRef]
- Yu, H.S.; Li, S.L.; Truhlar, D.G. Perspective: Kohn-Sham density functional theory descending a staircase. J. Chem. Phys. 2016, 145, 130901. [Google Scholar] [CrossRef]
- Sun, J.; Ruzsinszky, A.; Perdew, J.P. Strongly Constrained and Appropriately Normed Semilocal Density Functional. Phys. Rev. Lett. 2015, 115, 36402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandenburg, J.G.; Bates, J.E.; Sun, J.; Perdew, J.P. Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction. Phys. Rev. B 2016, 94, 115144. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Remsing, R.C.; Zhang, Y.; Sun, Z.; Ruzsinszky, A.; Peng, H.; Yang, Z.; Paul, A.; Waghmare, U.; Wu, X.; et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 2016, 8, 831. [Google Scholar] [CrossRef] [PubMed]
- Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry, Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2017, 19, 32184–32215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Ko, H.-Y.; Remsing, R.C.; Calegari Andrade, M.F.; Santra, B.; Sun, Z.; Selloni, A.; Car, R.; Klein, M.L.; Perdew, J.P.; et al. Ab initio theory and modeling of water. Proc. Natl. Acad. Sci. USA 2017, 114, 10846–10851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekholm, M.; Gambino, D.; Jönsson, H.J.M.; Tasnádi, F.; Alling, B.; Abrikosov, I.A. Assessing the SCAN functional for itinerant electron ferromagnets. Phys. Rev. B 2018, 98, 94413. [Google Scholar] [CrossRef] [Green Version]
- Mezei, P.D.; Csonka, G.I.; Kállay, M. Simple Modifications of the SCAN Meta-Generalized Gradient Approximation Functional. J. Chem. Theory Comput. 2018, 14, 2469–2479. [Google Scholar] [CrossRef]
- Hui, K.; Chai, J.-D. SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters. J. Chem. Phys. 2016, 144, 44114. [Google Scholar] [CrossRef]
- Pantazis, D.A. Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes. Inorganics 2019, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Modrzejewski, M.; Chalasinski, G.; Szczesniak, M.M. Assessment of Newest Meta-GGA Hybrids for Late Transition Metal Reactivity: Fractional Charge and Fractional Spin Perspective. J. Phys. Chem. C 2019, 123, 8047–8056. [Google Scholar] [CrossRef]
- Sandhoefer, B.; Kossmann, S.; Neese, F. Derivation and assessment of relativistic hyperfine-coupling tensors on the basis of orbital-optimized second-order Møller–Plesset perturbation theory and the second-order Douglas–Kroll–Hess transformation. J. Chem. Phys. 2013, 138, 104102. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Software Update: The ORCA Program System, Version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-Functional Approximation for the Correlation-Energy of the Inhomogeneous Electron-Gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. J. Chem. Phys. 2003, 119, 12129–12137. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role Of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron-Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Neese, F. Prediction and Interpretation of Isomer Shifts in 57Fe Mössbauer Spectra by Density Functional Theory. Inorg. Chim. Acta 2002, 337, 181–192. [Google Scholar] [CrossRef]
- Childs, W.J.; Steimle, T.C. A molecular-beam-optical and radio frequency-optical double-resonance study of the A 2Πr–X 2Σ+ band system of scandium monoxide. J. Chem. Phys. 1988, 88, 6168–6174. [Google Scholar] [CrossRef]
- De Vore, T.C.; Weltner, W. Titanium difluoride and titanium trifluoride molecules: Electron spin resonance spectra in rare-gas matrices at 4 K. J. Am. Chem. Soc. 1977, 99, 4700–4703. [Google Scholar] [CrossRef]
- McGarvey, B. Transition Metal Chemistry; Carlin, R.L., Ed.; Dekker: New York, NY, USA, 1966; Volume 3, pp. 89–201. [Google Scholar]
- Grant, C.V.; Cope, W.; Ball, J.A.; Maresch, G.G.; Gaffney, B.J.; Fink, W.; Britt, R.D. Electronic Structure of the Aqueous Vanadyl Ion Probed by 9 and 94 GHz EPR and Pulsed ENDOR Spectroscopies and Density Functional Theory Calculations. J. Phys. Chem. B 1999, 103, 10627–10631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVore, T.C.; Van Zee, R.J.; Weltner, W., Jr. High spin molecules: ESR of MnF and MnF2 at 4°K. J. Chem. Phys. 1978, 68, 3522–3527. [Google Scholar] [CrossRef]
- Ferrante, R.F.; Wilkerson, J.L.; Graham, W.R.M.; Weltner, W. ESR spectra of the MnO, MnO2, MnO3, and MnO4 molecules at 4 °K. J. Chem. Phys. 1977, 67, 5904–5913. [Google Scholar] [CrossRef]
- Upreti, G.C. Study of the intensities and positions of allowed and forbidden hyperfine transitions in the EPR of Mn2+ doped in single crystals of Cd(CH3COO)2·3H2O. J. Magn. Reson. 1974, 13, 336–347. [Google Scholar] [CrossRef]
- Howard, J.A.; Morton, J.R.; Preston, K.F. The EPR spectrum of Mn(CO)5. Chem. Phys. Lett. 1981, 83, 226–228. [Google Scholar] [CrossRef]
- Lionel, T.; Morton, J.R.; Preston, K.F. The EPR spectrum of a single crystal of chromium hexacarbonyl doped with Fe(CO)5. J. Chem. Phys. 1982, 76, 234–239. [Google Scholar] [CrossRef]
- Morton, J.R.; Preston, K.F. An ESR study at 4 K of the reaction between H and Ni(CO)4. J. Chem. Phys. 1984, 81, 5775–5778. [Google Scholar] [CrossRef]
- Schmitt, R.D.; Maki, A.H. Electronic ground state of bis (maleonitrile-dithiolene)nickel monoanion. Sulfur-33 hyperfine interaction. J. Am. Chem. Soc. 1968, 90, 2288–2292. [Google Scholar] [CrossRef]
- Scholl, H.J.; Hüttermann, J. ESR and ENDOR of copper(II) complexes with nitrogen donors: Probing parameters for prosthetic group modeling of superoxide dismutase. J. Phys. Chem. 1992, 96, 9684–9691. [Google Scholar] [CrossRef]
- Keijzers, C.P.; Snaathorst, D. Multi-centre contributions to the anisotropic hyperfine interactions in the Cu(II) bis(dithiocarbamate) complex. Proton hyperfine couplings. Chem. Phys. Lett. 1980, 69, 348–353. [Google Scholar] [CrossRef]
- Carter, E.; Hazeland, E.L.; Murphy, D.M.; Ward, B.D. Structure, EPR/ENDOR and DFT characterisation of a [CuII(en)2](OTf)2 complex. Dalton Trans. 2013, 42, 15088–15096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randall, D.W.; Sturgeon, B.E.; Ball, J.A.; Lorigan, G.A.; Chan, M.K.; Klein, M.P.; Armstrong, W.H.; Britt, R.D. 55Mn ESE-ENDOR of a Mixed Valence Mn(III)Mn(IV) Complex: Comparison with the Mn Cluster of the Photosynthetic Oxygen-Evolving Complex. J. Am. Chem. Soc. 1995, 117, 11780–11789. [Google Scholar] [CrossRef]
- Peloquin, J.M.; Campbell, K.A.; Britt, R.D. 55Mn Pulsed ENDOR Demonstrates That the Photosystem II “Split” EPR Signal Arises from a Magnetically-Coupled Mangano−Tyrosyl Complex. J. Am. Chem. Soc. 1998, 120, 6840–6841. [Google Scholar] [CrossRef]
- Peloquin, J.M.; Campbell, K.A.; Randall, D.W.; Evanchik, M.A.; Pecoraro, V.L.; Armstrong, W.H.; Britt, R.D. 55Mn ENDOR of the S2-State Multiline EPR Signal of Photosystem II: Implications on the Structure of the Tetranuclear Mn Cluster. J. Am. Chem. Soc. 2000, 122, 10926–10942. [Google Scholar] [CrossRef]
- Kulik, L.V.; Epel, B.; Lubitz, W.; Messinger, J. 55Mn Pulse ENDOR at 34 GHz of the S0 and S2 States of the Oxygen-Evolving Complex in Photosystem II. J. Am. Chem. Soc. 2005, 127, 2392–2393. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.; Ames, W.; Epel, B.; Kulik, L.V.; Rapatskiy, L.; Neese, F.; Messinger, J.; Wieghardt, K.; Lubitz, W. Electronic Structure of a Weakly Antiferromagnetically Coupled MnIIMnIII Model Relevant to Manganese Proteins: A Combined EPR, 55Mn-ENDOR, and DFT Study. Inorg. Chem. 2011, 50, 8238–8251. [Google Scholar] [CrossRef]
- Cox, N.; Rapatskiy, L.; Su, J.-H.; Pantazis, D.A.; Sugiura, M.; Kulik, L.; Dorlet, P.; Rutherford, A.W.; Neese, F.; Boussac, A.; et al. Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: A combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state. J. Am. Chem. Soc. 2011, 133, 3635–3648. [Google Scholar] [CrossRef]
- Mukherjee, S.; Stull, J.A.; Yano, J.; Stamatatos, T.C.; Pringouri, K.; Stich, T.A.; Abboud, K.A.; Britt, R.D.; Yachandra, V.K.; Christou, G. Synthetic model of the asymmetric [Mn3CaO4] cubane core of the oxygen-evolving complex of photosystem II. Proc. Natl. Acad. Sci. USA 2012, 109, 2257–2262. [Google Scholar] [CrossRef] [Green Version]
- Shafaat, H.S.; Griese, J.J.; Pantazis, D.A.; Roos, K.; Andersson, C.S.; Popović-Bijelić, A.; Gräslund, A.; Siegbahn, P.E.M.; Neese, F.; Lubitz, W.; et al. Electronic Structural Flexibility of Heterobimetallic Mn/Fe Cofactors: R2lox and R2c Proteins. J. Am. Chem. Soc. 2014, 136, 13399–13409. [Google Scholar] [CrossRef] [PubMed]
- Orio, M.; Pantazis, D.A.; Petrenko, T.; Neese, F. Magnetic and Spectroscopic Properties of Mixed Valence Manganese(III, IV) Dimers: A Systematic Study Using Broken Symmetry Density Functional Theory. Inorg. Chem. 2009, 48, 7251–7260. [Google Scholar] [CrossRef] [PubMed]
- Pantazis, D.A.; Orio, M.; Petrenko, T.; Zein, S.; Lubitz, W.; Messinger, J.; Neese, F. Structure of the oxygen-evolving complex of photosystem II: Information on the S2 state through quantum chemical calculation of its magnetic properties. Phys. Chem. Chem. Phys. 2009, 11, 6788–6798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schinzel, S.; Kaupp, M. Validation of Broken-Symmetry Density Functional Methods for the Calculation of Electron Paramagnetic Resonance Parameters of Dinuclear Mixed-Valence MnIVMnIII Complexes. Can. J. Chem. 2009, 87, 1521–1539. [Google Scholar] [CrossRef]
- Schinzel, S.; Schraut, J.; Arbuznikov, A.V.; Siegbahn, P.E.M.; Kaupp, M. Density Functional Calculations of 55Mn, 14N and 13C Electron Paramagnetic Resonance Parameters Support an Energetically Feasible Model System for the S2 State of the Oxygen-Evolving Complex of Photosystem II. Chem.—A Eur. J. 2010, 16, 10424–10438. [Google Scholar] [CrossRef]
- Krewald, V.; Neese, F.; Pantazis, D.A. On the Magnetic and Spectroscopic Properties of High-Valent Mn3CaO4 Cubanes as Structural Units of Natural and Artificial Water Oxidizing Catalysts. J. Am. Chem. Soc. 2013, 135, 5726–5739. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 77, 3865, Erratum in Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Hedegård, E.D.; Kongsted, J.; Sauer, S.P.A. Optimized Basis Sets for Calculation of Electron Paramagnetic Resonance Hyperfine Coupling Constants: Aug-cc-pVTZ-J for the 3d Atoms Sc–Zn. J. Chem. Theory Comput. 2011, 7, 4077–4087. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H–Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
Compound | Functional | A11 | A22 | A33 | AFC | A11SD | A22SD | A33SD |
---|---|---|---|---|---|---|---|---|
ScO | BP86 | 1923.2 | 1923.2 | 1981.8 | 1943.3 | −19.3 | −19.3 | 38.6 |
TPSS | 1766.1 | 1766.1 | 1825.7 | 1786.5 | −19.6 | −19.6 | 39.3 | |
TPSSh | 1763.5 | 1763.5 | 1825.1 | 1784.6 | −20.3 | −20.3 | 40.6 | |
B3LYP | 1970.0 | 1970.0 | 2031.2 | 1991.0 | −20.1 | −20.1 | 40.2 | |
BHandHLYP | 1932.1 | 1932.1 | 2000.5 | 1955.6 | −22.5 | −22.5 | 45.1 | |
CAM-B3LYP | 2024.0 | 2024.0 | 2087.2 | 2045.6 | −20.8 | −20.8 | 41.7 | |
SCAN | −218.3 | −218.3 | −328.3 | −252.1 | 35.2 | 35.2 | −70.5 | |
SCANh | −230.1 | −230.1 | −342.2 | −264.5 | 35.8 | 35.8 | −71.7 | |
SCAN0 | −247.7 | −247.7 | −363.2 | −283.2 | 36.8 | 36.8 | −73.6 | |
Exp. [42] | 1922 | 1922 | 1997 | 1947 | −25 | −25 | 50 | |
TiF3 | BP86 | −210.9 | −210.9 | −241.6 | −223.1 | 9.4 | 9.4 | −18.7 |
TPSS | −195.8 | −195.8 | −224.2 | −206.9 | 8.8 | 8.8 | −17.6 | |
TPSSh | −181.1 | −181.1 | −210.2 | −192.6 | 8.9 | 8.9 | −17.9 | |
B3LYP | −183.7 | −183.7 | −217.8 | −197.5 | 10.2 | 10.2 | −20.4 | |
BHandHLYP | −143.1 | −143.1 | −178.5 | −158.3 | 10.1 | 10.1 | −20.3 | |
CAM-B3LYP | −175.7 | −175.7 | −208.0 | −187.2 | 10.5 | 10.5 | −20.9 | |
SCAN | 34.0 | 34.1 | 84.1 | 48.1 | −16.2 | −14.9 | 31.1 | |
SCANh | 34.9 | 35.2 | 86.4 | 49.4 | −15.3 | −16.4 | 31.7 | |
SCAN0 | 36.0 | 37.0 | 89.9 | 51.1 | −15.9 | −16.7 | 32.6 | |
Exp. [43] | −178 | −178 | −199 | −185 | 7 | 7 | −14 | |
[V(H2O)6]2+ | BP86 | −170.5 | −170.5 | −170.8 | −161.2 | 0.0 | 0.0 | −0.1 |
TPSS | −179.8 | −179.8 | −180.0 | −171.6 | 0.0 | 0.0 | −0.1 | |
TPSSh | −191.9 | −191.9 | −192.1 | −183.4 | 0.0 | 0.0 | −0.1 | |
B3LYP | −169.4 | −169.4 | −169.7 | −159.4 | 0.1 | 0.1 | −0.1 | |
BHandHLYP | −202.2 | −202.2 | −202.6 | −191.4 | 0.1 | 0.1 | −0.1 | |
CAM-B3LYP | −162.1 | −162.1 | −162.3 | −158.1 | 0.0 | 0.0 | −0.1 | |
SCAN | −230.4 | −230.4 | −230.7 | −223.4 | 0.1 | 0.1 | −0.2 | |
SCANh | −236.7 | −236.7 | −237.1 | −229.5 | 0.1 | 0.1 | −0.2 | |
SCAN0 | −245.1 | −245.1 | −245.4 | −237.4 | 0.1 | 0.1 | −0.2 | |
Exp. [44] | −247 | −247 | −247 | |||||
[VO(H2O)5]2+ | BP86 | −162.4 | −163.3 | −471.0 | −252.3 | 97.1 | 96.4 | −193.5 |
TPSS | −179.8 | −180.5 | −485.8 | −270.4 | 97.2 | 96.7 | −193.9 | |
TPSSh | −204.5 | −205.0 | −514.5 | −295.5 | 98.1 | 97.8 | −195.9 | |
B3LYP | −178.8 | −179.1 | −503.2 | −271.8 | 101.2 | 101.0 | −202.1 | |
BHandHLYP | −269.2 | −272.8 | −599.0 | −361.4 | 102.7 | 99.5 | −202.2 | |
CAM-B3LYP | −175.4 | −175.9 | −489.0 | −273.6 | 101.7 | 101.2 | −202.9 | |
SCAN | −215.6 | −216.0 | −500.4 | −299.3 | 90.9 | 90.4 | −181.2 | |
SCANh | −238.9 | −239.6 | −527.1 | −323.1 | 91.8 | 91.1 | −183.0 | |
SCAN0 | −275.4 | −276.7 | −568.0 | −360.0 | 93.0 | 91.7 | −184.7 | |
Exp. [45] | −208 | −208 | −547 | |||||
MnF | BP86 | 433.5 | 433.5 | 495.1 | 444.3 | −14.7 | −14.7 | 29.3 |
TPSS | 413.8 | 413.8 | 478.8 | 432.7 | −16.1 | −16.1 | 32.1 | |
TPSSh | 397.3 | 397.3 | 467.2 | 417.0 | −17.3 | −17.3 | 34.5 | |
B3LYP | 443.0 | 443.0 | 507.1 | 441.8 | −16.5 | −16.5 | 32.9 | |
BHandHLYP | 457.2 | 457.2 | 525.3 | 430.7 | −18.7 | −18.7 | 37.4 | |
CAM-B3LYP | 402.3 | 402.3 | 464.2 | 423.7 | −17.9 | −17.9 | 35.7 | |
SCAN | 492.4 | 492.4 | 547.4 | 511.2 | −13.7 | −13.7 | 27.5 | |
SCANh | 478.7 | 478.7 | 537.9 | 498.5 | −14.8 | −14.7 | 29.5 | |
SCAN0 | 459.9 | 459.9 | 525.5 | 480.8 | −16.1 | −16.1 | 32.3 | |
Exp. [46] | 430 | 430 | 466 | 442 | −12 | −12 | 24 | |
MnO3 | BP86 | 1818.4 | 1818.4 | 2124.9 | 1934.2 | −96.9 | −96.9 | 193.7 |
TPSS | 1750.4 | 1750.4 | 2040.1 | 1859.4 | −92.0 | −91.9 | 183.9 | |
TPSSh | 1590.3 | 1590.4 | 1916.6 | 1712.5 | −104.4 | −104.4 | 208.8 | |
B3LYP | 1520.0 | 1520.0 | 1917.6 | 1667.8 | −128.5 | −128.4 | 256.9 | |
BHandHLYP | 1366.2 | 1366.2 | 1607.1 | 1455.8 | −75.9 | −75.9 | 151.9 | |
CAM-B3LYP | 1427.9 | 1427.9 | 1874.9 | 1586.5 | −147.2 | −147.2 | 294.4 | |
SCAN | 1714.2 | 1714.3 | 2016.3 | 1828.5 | −97.2 | −97.1 | 194.4 | |
SCANh | 1502.8 | 1502.9 | 1877.0 | 1642.9 | −121.8 | −121.7 | 243.5 | |
SCAN0 | 1163.6 | 1164.1 | 1656.6 | 1346.2 | −162.8 | −162.3 | 325.1 | |
Exp. [47] | 1532 | 1532 | 1775 | 1613 | −81 | −81 | 162 | |
[Mn(H2O)6]2+ | BP86 | −162.0 | −162.2 | −162.2 | −159.2 | 0.1 | 0.0 | 0.0 |
TPSS | −173.2 | −173.4 | −173.4 | −170.4 | 0.1 | −0.1 | −0.1 | |
TPSSh | −187.7 | −188.0 | −188.0 | −185.1 | 0.2 | −0.1 | −0.1 | |
B3LYP | −163.7 | −163.9 | −163.9 | −161.3 | 0.1 | −0.1 | −0.1 | |
BHandHLYP | −197.4 | −197.7 | −197.7 | −195.5 | 0.2 | −0.1 | −0.1 | |
CAM-B3LYP | −165.1 | −165.3 | −165.3 | −162.9 | 0.1 | −0.1 | −0.1 | |
SCAN | −221.7 | −222.1 | −222.1 | −219.0 | 0.2 | −0.1 | −0.1 | |
SCANh | −229.7 | −230.1 | −230.1 | −227.1 | 0.3 | −0.1 | −0.1 | |
SCAN0 | −240.3 | −240.7 | −240.7 | −238.0 | 0.3 | −0.1 | −0.1 | |
Exp. [48] | −245 | −245 | −245 | |||||
Mn(CO)5 | BP86 | −80.9 | −81.0 | 202.5 | 12.0 | −95.9 | −96.0 | 191.8 |
TPSS | −79.2 | −79.3 | 195.9 | 11.6 | −92.9 | −93.0 | 185.9 | |
TPSSh | −83.4 | −83.5 | 190.7 | 7.2 | −92.7 | −92.8 | 185.5 | |
B3LYP | −81.7 | −81.8 | 201.7 | 11.1 | −96.3 | −96.4 | 192.7 | |
BHandHLYP | −74.2 | −74.3 | 176.8 | 9.9 | −85.7 | −85.8 | 171.5 | |
CAM-B3LYP | −83.1 | −83.2 | 207.9 | 15.5 | −96.8 | −96.9 | 193.7 | |
SCAN | −109.1 | −109.2 | 161.0 | −19.4 | −90.7 | −90.8 | 181.5 | |
SCANh | −106.4 | −106.5 | 160.9 | −17.5 | −89.8 | −89.9 | 179.7 | |
SCAN0 | −96.2 | −96.4 | 162.5 | −9.9 | −87.0 | −87.2 | 174.2 | |
Exp. [49] | −86 | −86 | 190 | 6 | −92 | −2 | 194 | |
[Fe(CO)5]+ | BP86 | −15.2 | −15.3 | 36.5 | 0.6 | −18.1 | −18.1 | 36.1 |
TPSS | −14.9 | −14.9 | 36.1 | 1.0 | −17.7 | −17.7 | 35.5 | |
TPSSh | −16.9 | −17.0 | 34.9 | −1.0 | −18.1 | −18.2 | 36.3 | |
B3LYP | −17.4 | −17.5 | 36.4 | −1.5 | −19.2 | −19.2 | 38.4 | |
BHandHLYP | −21.5 | −21.5 | 32.2 | −6.3 | −19.7 | −19.8 | 39.5 | |
CAM-B3LYP | −20.8 | −20.9 | 37.2 | −1.7 | −19.6 | −19.6 | 39.2 | |
SCAN | −19.5 | −19.5 | 31.7 | −3.1 | −17.5 | −17.6 | 35.1 | |
SCANh | −21.3 | −21.3 | 30.4 | −4.8 | −17.8 | −17.8 | 35.6 | |
SCAN0 | −23.7 | −23.8 | 28.5 | −7.3 | −18.2 | −18.2 | 36.4 | |
Exp. [50] | −17 | −17 | 28 | −2 | −15 | −15 | 30 | |
NiH(CO)3 | BP86 | 50.7 | 50.7 | −88.1 | 12.8 | 50.1 | 50.2 | −100.3 |
TPSS | 49.5 | 49.6 | −91.3 | 11.0 | 50.8 | 50.8 | −101.5 | |
TPSSh | 52.6 | 52.6 | −94.1 | 15.2 | 53.9 | 54.0 | −107.9 | |
B3LYP | 55.3 | 55.3 | −95.0 | 21.7 | 57.2 | 57.2 | −114.3 | |
BHandHLYP | 46.9 | 46.9 | −107.7 | 36.1 | 67.6 | 67.6 | −135.2 | |
CAM-B3LYP | 77.4 | 77.5 | −95.5 | 25.1 | 59.8 | 59.8 | −119.7 | |
SCAN | 59.8 | 59.9 | −91.7 | 17.2 | 53.9 | 53.9 | −107.8 | |
SCANh | 69.0 | 69.1 | −88.3 | 27.2 | 56.7 | 56.8 | −113.5 | |
SCAN0 | 81.4 | 81.5 | −83.3 | 43.0 | 61.0 | 61.0 | −122.0 | |
Exp. [51] | 53 | 53 | −79 | |||||
[Ni(mnt)2]− | BP86 | −9.4 | −11.1 | 47.7 | 24.7 | −30.1 | −25.7 | 55.8 |
TPSS | −16.3 | −17.2 | 45.3 | 19.5 | −31.8 | −26.4 | 58.2 | |
TPSSh | −16.6 | −17.3 | 45.7 | 23.4 | −26.4 | −34.8 | 61.2 | |
B3LYP | −13.8 | −16.0 | 41.1 | 26.8 | −24.6 | −33.6 | 58.2 | |
BHandHLYP | 6.3 | −13.5 | 35.2 | 23.9 | −12.4 | −15.4 | 27.8 | |
CAM-B3LYP | −0.9 | −11.1 | 75.8 | 28.0 | −24.7 | −36.1 | 60.8 | |
SCAN | 1.1 | 1.8 | 70.1 | 38.9 | −27.9 | −32.9 | 60.8 | |
SCANh | 0.1 | −2.4 | 69.4 | 40.4 | −27.5 | −36.7 | 64.3 | |
SCAN0 | 1.8 | −8.6 | 64.8 | 43.9 | −24.3 | −41.1 | 65.4 | |
Exp. [52] | <6 | 9 | 45 | |||||
[Cu(NH3)4]2+ | BP86 | −11.1 | −11.1 | −516.4 | −264.4 | 206.2 | 206.2 | −412.5 |
TPSS | −6.9 | −7.0 | −542.6 | −266.0 | 213.5 | 213.4 | −426.9 | |
TPSSh | −25.7 | −25.7 | −593.7 | −308.7 | 229.9 | 229.8 | −459.7 | |
B3LYP | −18.6 | −18.6 | −584.0 | −324.1 | 240.7 | 240.7 | −481.4 | |
BHandHLYP | −2.7 | −2.8 | −618.4 | −388.1 | 288.1 | 288.0 | −576.1 | |
CAM-B3LYP | −67.4 | −67.4 | −755.9 | −342.0 | 250.8 | 250.7 | −501.4 | |
SCAN | −48.8 | −50.5 | −684.6 | −326.4 | 239.7 | 238.0 | −477.7 | |
SCANh | −66.0 | −67.8 | −734.3 | −363.0 | 254.1 | 252.2 | −506.3 | |
SCAN0 | −76.6 | −77.8 | −782.4 | −401.4 | 273.2 | 271.8 | −545.0 | |
Exp. [53] | −27 | −27 | −586 | |||||
[Cu(dtc)2] | BP86 | −45.5 | −50.0 | −393.6 | −199.2 | 132.9 | 129.8 | −262.7 |
TPSS | −46.6 | −50.5 | −413.9 | −207.7 | 139.4 | 136.7 | −276.1 | |
TPSSh | −74.3 | −78.7 | −468.2 | −251.1 | 151.5 | 148.3 | −299.8 | |
B3LYP | −78.3 | −83.8 | −479.8 | −264.5 | 157.9 | 154.1 | −312.0 | |
BHandHLYP | −111.8 | −116.5 | −627.2 | −376.4 | 214.7 | 211.1 | −425.7 | |
CAM-B3LYP | −133.6 | −139.4 | −606.1 | −319.2 | 171.1 | 165.9 | −337.0 | |
SCAN | −97.5 | −100.6 | −510.5 | −271.7 | 153.3 | 151.1 | −304.4 | |
SCANh | −116.5 | −120.2 | −556.7 | −305.9 | 165.2 | 162.5 | −327.7 | |
SCAN0 | −137.3 | −141.4 | −624.4 | −353.6 | 186.0 | 182.9 | −368.9 | |
Exp. [54] | −107 | −125 | −476 | |||||
[Cu(en)2]2+ | BP86 | −43.4 | −43.5 | −536.3 | −279.3 | 197.3 | 196.2 | −393.5 |
TPSS | −41.5 | −41.6 | −560.6 | −283.8 | 204.3 | 203.2 | −407.5 | |
TPSSh | −66.2 | −66.5 | −617.6 | −330.9 | 220.4 | 218.9 | −439.3 | |
B3LYP | −64.5 | −64.8 | −619.4 | −348.7 | 231.2 | 229.7 | −460.9 | |
BHandHLYP | −58.8 | −58.9 | −681.9 | −423.4 | 282.4 | 281.6 | −564.1 | |
CAM-B3LYP | −105.3 | −107.1 | −773.3 | −370.3 | 242.9 | 240.7 | −483.6 | |
SCAN | −91.1 | −91.9 | −695.1 | −351.9 | 226.9 | 225.8 | −452.7 | |
SCANh | −113.5 | −113.9 | −752.2 | −393.9 | 241.9 | 240.9 | −482.9 | |
SCAN0 | −128.9 | −130.0 | −13.8 | −439.4 | 263.8 | 262.6 | −526.4 | |
Exp. [55] | −78 | −82 | −602 |
Compound | A11 | A22 | A33 | AFC | A11SD | A22SD | A33SD |
---|---|---|---|---|---|---|---|
ScO | −199.8 | −199.8 | −299.9 | −230.2 | 31.8 | 31.8 | −63.7 |
TiF3 | 27.3 | 28.1 | 79.9 | 42.3 | −17.1 | −15.1 | 32.2 |
[V(H2O)6]2+ | −222.2 | −222.2 | −222.5 | −214.7 | 0.1 | 0.1 | −0.2 |
[VO(H2O)5]2+ | −206.4 | −206.8 | −503.3 | −293.3 | 94.5 | 94.0 | −188.5 |
MnF | 402.0 | 402.0 | 478.5 | 428.4 | −21.3 | −21.3 | 42.6 |
MnO3 | 1800.2 | 1800.2 | 2081.7 | 1909.4 | −89.8 | −89.8 | 179.6 |
[Mn(H2O)6]2+ | −210.8 | −211.2 | −211.2 | −207.2 | 0.3 | −0.2 | −0.2 |
Mn(CO)5 | −90.4 | −90.5 | 183.4 | 1.4 | −91.6 | −91.7 | 183.4 |
[Fe(CO)5]+ | −17.1 | −17.1 | 34.5 | −0.4 | −17.6 | −17.6 | 35.3 |
NiH(CO)3 | 53.0 | 53.0 | −100.2 | 9.2 | 54.1 | 54.2 | −108.3 |
[Ni(mnt)2]− | −6.0 | −7.2 | 59.5 | 29.3 | −31.2 | −27.2 | 58.4 |
[Cu(NH3)4]2+ | −63.2 | −65.1 | −721.2 | −349.2 | 247.5 | 245.5 | −493.0 |
[Cu(dtc)2] | −118.9 | −121.6 | −544.6 | −298.5 | 157.7 | 156.1 | −313.8 |
[Cu(en)2]2+ | −104.6 | −105.0 | −731.7 | −374.5 | 234.9 | 234.2 | −469.1 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantazis, D.A. First-Principles Calculation of Transition Metal Hyperfine Coupling Constants with the Strongly Constrained and Appropriately Normed (SCAN) Density Functional and its Hybrid Variants. Magnetochemistry 2019, 5, 69. https://doi.org/10.3390/magnetochemistry5040069
Pantazis DA. First-Principles Calculation of Transition Metal Hyperfine Coupling Constants with the Strongly Constrained and Appropriately Normed (SCAN) Density Functional and its Hybrid Variants. Magnetochemistry. 2019; 5(4):69. https://doi.org/10.3390/magnetochemistry5040069
Chicago/Turabian StylePantazis, Dimitrios A. 2019. "First-Principles Calculation of Transition Metal Hyperfine Coupling Constants with the Strongly Constrained and Appropriately Normed (SCAN) Density Functional and its Hybrid Variants" Magnetochemistry 5, no. 4: 69. https://doi.org/10.3390/magnetochemistry5040069
APA StylePantazis, D. A. (2019). First-Principles Calculation of Transition Metal Hyperfine Coupling Constants with the Strongly Constrained and Appropriately Normed (SCAN) Density Functional and its Hybrid Variants. Magnetochemistry, 5(4), 69. https://doi.org/10.3390/magnetochemistry5040069