Interface Effects on Magnetic Anisotropy and Domain Wall Depinning Fields in Pt/Co/AlOx Thin Films
Abstract
:1. Introduction
2. Experimental Details
3. Results
3.1. Magnetic Characterization
3.2. Domain Wall Velocity and Depinning Fields
3.3. Material and Morphological Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tudu, B.; Tiwari, A. Recent developments in perpendicular magnetic anisotropy thin films for data storage applications. Vacuum 2017, 146, 329–341. [Google Scholar] [CrossRef]
- Speetzen, N.; Stadler, B.J.H.; Yuan, E.; Victora, R.H.; Qi, X.; Judy, J.H.; Supper, N.; Pohkil, T. Co/Pd multilayers for perpendicular magnetic recording media. J. Magn. Magn. Mater. 2005, 287, 181–187. [Google Scholar] [CrossRef]
- Honda, N.; Ariake, J.; Ouchi, K.; Iwasaki, S.I. Low noise Co-Cr-Nb perpendicular recording media with high squareness. IEEE Trans. Magn. 1998, 34, 1651–1653. [Google Scholar] [CrossRef]
- Iwasaki, S.I. Perpendicular magnetic recording—Its development and realization. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009, 85, 37–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef]
- Yu, G.; Upadhyaya, P.; Shao, Q.; Wu, H.; Yin, G.; Li, X.; He, C.; Jiang, W.; Han, X.; Amiri, P.K.; et al. Room-temperature skyrmion shift device for memory application. Nano Lett. 2017, 17, 261–268. [Google Scholar] [CrossRef]
- Thomas, L.; Yang, S.H.; Ryu, K.S.; Hughes, B.; Rettner, C.; Wang, D.S.; Tsai, C.H.; Shen, K.H.; Parkin, S.S.P. Racetrack memory: A high-performance, low-cost, non-volatile memory based on magnetic domain walls. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 535–538. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Wang, L.; Yu, G.; Wang, K.L.; Zhao, W. Interface control of domain wall depinning field. AIP Adv. 2018, 8, 056314. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Wang, M.; Yang, H.; Zeng, L.; Nan, J.; Zhou, J.; Zhang, Y.; Hallal, A.; Chshiev, M.; Wang, K.L.; et al. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/Metallic capping layer structures. Sci. Rep. 2015, 5, 18173. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.T.; Bloemen, P.J.H.; Den Broeder, F.J.A.; De Vries, J.J. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 1996, 59, 1409–1458. [Google Scholar] [CrossRef]
- Belmeguenai, M.; Adam, J.P.; Roussigné, Y.; Eimer, S.; Devolder, T.; Kim, J.V.; Cherif, S.M.; Stashkevich, A.; Thiaville, A. Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by brillouin light spectroscopy. Phys. Rev. B—Condens. Matter Mater. Phys. 2015, 91, 180405. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Yu, G.; Razavi, S.A.; Sasaki, S.S.; Li, X.; Hao, K.; Tolbert, S.H.; Wang, K.L.; Li, X. Dzyaloshinskii-Moriya interaction across an antiferromagnet-ferromagnet interface. Phys. Rev. Lett. 2017, 119, 027202. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.M.; Zheng, W.T.; Jiang, Q. Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature. J. Phys. D: Appl. Phys. 2007, 40, 320–325. [Google Scholar] [CrossRef]
- Dimitrov, D.; Zhang, S. Effect of exchange interactions at antiferromagnetic/ferromagnetic interfaces on exchange bias and coercivity. Phys. Rev. B—Condens. Matter Mater. Phys. 1998, 58, 12090–12094. [Google Scholar] [CrossRef]
- Sabet, S.; Moradabadi, A.; Gorji, S.; Fawey, M.H.; Hildebrandt, E.; Radulov, I.; Wang, D.; Zhang, H.; Kübel, C.; Alff, L. Correlation of interface structure with magnetic exchange in a hard/soft magnetic model nanostructure. Phys. Rev. Appl. 2019, 11, 054078. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.C.; Lepadatu, S.; Claydon, J.S.; Marrows, C.H.; Bending, S.J. Optimization of Co/Pt multilayers for applications of current-driven domain wall propagation. J. Appl. Phys. 2011, 110, 083913. [Google Scholar] [CrossRef] [Green Version]
- Rodmacq, B.; Manchon, A.; Ducruet, C.; Auffret, S.; Dieny, B. Influence of thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AlOx trilayers. Phys. Rev. B—Condens. Matter Mater. Phys. 2009, 79, 024423. [Google Scholar] [CrossRef]
- Garad, H.; Fettar, F.; Gay, F.; Joly, Y.; Auffret, S.; Rodmacq, B.; Dieny, B.; Ortega, L. Temperature variation of magnetic anisotropy in Pt/Co/AlOx trilayers. Phys. Rev. Appl. 2017, 7, 034023. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.A.; Miron, I.M.; Gaudin, G.; Serret, G.; Auffret, S.; Rodmacq, B.; Schuhl, A.; Pizzini, S.; Vogel, J.; Bonfim, M. High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy. Appl. Phys. Lett. 2008, 93, 262504. [Google Scholar] [CrossRef] [Green Version]
- Jué, E.; Thiaville, A.; Pizzini, S.; Miltat, J.; Sampaio, J.; Buda-Prejbeanu, L.D.; Rohart, S.; Vogel, J.; Bonfim, M.; Boulle, O.; et al. Domain wall dynamics in ultrathin Pt/Co/AlOx microstrips under large combined magnetic fields. Phys. Rev. B 2016, 93, 014403. [Google Scholar] [CrossRef]
- Ha Pham, T.; Vogel, J.; Sampaio, J.; Vaňatka, M.; Rojas-Sánchez, J.C.; Bonfim, M.; Chaves, D.S.; Choueikani, F.; Ohresser, P.; Otero, E.; et al. Very large domain wall velocities in Pt/Co/GdOx and Pt/Co/Gd trilayers with Dzyaloshinskii-Moriya interaction. EPL 2016, 113, 67001. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.H.; Cho, J.; Jung, J.; Han, D.S.; Yin, Y.; Kim, J.S.; Swagten, H.J.M.; Lee, K.; Jung, M.H.; You, C.Y. Role of top and bottom interfaces of a Pt/Co/AlOx system in Dzyaloshinskii-Moriya interaction, interface perpendicular magnetic anisotropy, and magneto-optical Kerr effect. AIP Adv. 2017, 7, 035213. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ma, R.; Cui, B.; Yun, J.; Quan, Z.; Zuo, Y.; Xi, L.; Xu, X. Effect of the oxide layer on the interfacial Dyzaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/SmOx and Pt/Co/AlOx heterostructures. Appl. Surf. Sci. 2020, 513, 145768. [Google Scholar] [CrossRef]
- Sankhi, B.R.; Echeverria, E.; Nembach, H.T.; Shaw, J.M.; Mandal, S.; Annaorazov, M.; Sachan, R.; Mcllroy, D.N.; Meyers, D.; Turgut, E. Engineering of heterostructure Pt/Co/AlOx for the enhancement of Dyzaloshinskii-Moria interaction. arXiv 2022, arXiv:2205.15940. [Google Scholar] [CrossRef]
- Kang, M.G.; Choi, J.G.; Jeong, J.; Park, J.Y.; Park, H.J.; Kim, T.; Lee, T.; Kim, K.J.; Kim, K.W.; Oh, J.H.; et al. Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures. Nat. Commun. 2021, 12, 7111. [Google Scholar] [CrossRef] [PubMed]
- Schott, M.; Ranno, L.; Béa, H.; Baraduc, C.; Auffret, S.; Bernand-Mantel, A. Electric field control of interfacial Dzyaloshinskii-Moriya interaction in Pt/Co/AlOx thin films. J. Magn. Magn. Mater. 2021, 520, 167122. [Google Scholar] [CrossRef]
- Yang, M.; Luo, J.; Ji, Y.; Zheng, H.-Z.; Wang, K.; Deng, Y.; Wu, Z.; Cai, K.; Edmonds, K.W.; Li, Y.; et al. Spin logic devices via electric field controlled magnetization reversal by spin-orbit torque. IEEE Electron Device Lett. 2019, 40, 1554–1557. [Google Scholar] [CrossRef] [Green Version]
- Moodera, J.S.; Kinder, L.R.; Wong, T.M.; Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995, 74, 3273–3276. [Google Scholar] [CrossRef]
- Liu, R.S.; Michalak, L.; Canali, C.M.; Samuelson, L.; Pettersson, H. Tunneling anisotropic magnetoresistance in Co/AlOx/Au tunnel junctions. Nano Lett. 2008, 8, 848–852. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ba, Y.; Chen, A.; He, W.; Wang, W.; Zheng, X.; Zou, L.; Zhang, Y.; Yang, Q.; Yan, L.; et al. Electric-field modulation of interface magnetic anisotropy and spin reorientation transition in (Co/Pt)3/PMN-PT heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 10855–10864. [Google Scholar] [CrossRef]
- Sankhi, B.R.; Turgut, E. A low-cost vibrating sample magnetometry based on audio components. J. Magn. Magn. Mater. 2020, 502, 166560. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Q.; Jia, J.; Zheng, Y.; Wang, Y.; Fan, X.; Cao, J. Tuning Slonczewski-like torque and Dzyaloshinskii-Moriya interaction by inserting a Pt spacer layer in Ta/CoFeB/MgO structures. Appl. Phys. Lett. 2018, 112, 232402. [Google Scholar] [CrossRef]
- Cao, A.; Zhang, X.; Koopmans, B.; Peng, S.; Zhang, Y.; Wang, Z.; Yan, S.; Yang, H.; Zhao, W. Tuning the Dzyaloshinskii-Moriya interaction in Pt/Co/MgO heterostructures through the MgO thickness. Nanoscale 2018, 10, 12062–12067. [Google Scholar] [CrossRef] [Green Version]
- Jeudy, V.; Mougin, A.; Bustingorry, S.; Savero Torres, W.; Gorchon, J.; Kolton, A.B.; Lemaître, A.; Jamet, J.P. Universal pinning energy barrier for driven domain walls in thin ferromagnetic films. Phys. Rev. Lett. 2016, 117, 057201. [Google Scholar] [CrossRef] [Green Version]
- Caballero, N.B.; Fernández Aguirre, I.; Albornoz, L.J.; Kolton, A.B.; Rojas-Sánchez, J.C.; Collin, S.; George, J.M.; Diaz Pardo, R.; Jeudy, V.; Bustingorry, S.; et al. Excess velocity of magnetic domain walls close to the depinning field. Phys. Rev. B 2017, 96, 224422. [Google Scholar] [CrossRef] [Green Version]
- Diaz Pardo, R.; Savero Torres, W.; Kolton, A.B.; Bustingorry, S.; Jeudy, V. Universal depinning transition of domain walls in ultrathin ferromagnets. Phys. Rev. B 2017, 95, 184434. [Google Scholar] [CrossRef] [Green Version]
- Garad, H.; Ortega, L.; Ramos, A.Y.; Joly, Y.; Fettar, F.; Auffret, S.; Rodmacq, B.; Diény, B.; Proux, O.; Erko, A.I. Competition between CoOx and CoPt phases in Pt/Co/AlO x semi tunnel junctions. J. Appl. Phys. 2013, 114, 053508. [Google Scholar] [CrossRef] [Green Version]
- Myagkov, V.G.; Bykova, L.E.; Zhigalov, V.S.; Matsynin, A.A.; Velikanov, D.A.; Bondarenko, G.N. Solid-state synthesis, rotatable magnetic anisotropy and characterization of Co1-xPtx phases in 50Pt/50fccCo(001) and 32Pt/ 68fccCo(001) thin films. J. Alloys Compd. 2021, 861, 157938. [Google Scholar] [CrossRef]
- Silva, E.F.; Corrêa, M.A.; Della Pace, R.D.; Plá Cid, C.C.; Kern, P.R.; Carara, M.; Chesman, C.; Alves Santos, O.; Rodríguez-Suárez, R.L.; Azevedo, A.; et al. Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. J. Phys. D. Appl. Phys. 2017, 50, 185001. [Google Scholar] [CrossRef]
- Jafri, Y.; Sharma, G.; Gupta, A.; Gupta, M.; Reddy, V.R. Thickness dependent magnetic properties of ferromagnetic films (Fe, Co) interfaced with Ta. Thin Solid Films 2021, 719, 138490. [Google Scholar] [CrossRef]
- Jiang, Q.; Yang, H.N.; Wang, G.C. Effect of interface roughness on hysteresis loops of ultrathin Co films from 2 to 30 ML on Cu(001) surfaces. Surf. Sci. 1997, 373, 181–194. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Gamache, R.M.; Wang, G.C.; Lu, T.M.; Palasantzas, G.; De Hosson, J.T.M. Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity. J. Appl. Phys. 2001, 89, 1325–1330. [Google Scholar] [CrossRef] [Green Version]
- Martinez, E. The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness. J. Phys. Condens. Matter 2012, 24, 024206. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.M.; Nembach, H.T.; Silva, T.J. Roughness induced magnetic inhomogeneity in Co/Ni multilayers: Ferromagnetic resonance and switching properties in nanostructures. J. Appl. Phys. 2010, 108, 093922. [Google Scholar] [CrossRef]
- Lourembam, J.; Ghosh, A.; Zeng, M.; Wong, S.K.; Yap, Q.J.; Ter Lim, S. Thickness-dependent perpendicular magnetic anisotropy and gilbert damping in Hf/Co20Fe60 B20/Mg O heterostructures. Phys. Rev. Appl. 2018, 10, 044057. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankhi, B.R.; Lamichhane, U.; Mandal, S.; Sachan, R.; Turgut, E.; Meyers, D. Interface Effects on Magnetic Anisotropy and Domain Wall Depinning Fields in Pt/Co/AlOx Thin Films. Magnetochemistry 2022, 8, 154. https://doi.org/10.3390/magnetochemistry8110154
Sankhi BR, Lamichhane U, Mandal S, Sachan R, Turgut E, Meyers D. Interface Effects on Magnetic Anisotropy and Domain Wall Depinning Fields in Pt/Co/AlOx Thin Films. Magnetochemistry. 2022; 8(11):154. https://doi.org/10.3390/magnetochemistry8110154
Chicago/Turabian StyleSankhi, Babu Ram, Ujjal Lamichhane, Soumya Mandal, Ritesh Sachan, Emrah Turgut, and Derek Meyers. 2022. "Interface Effects on Magnetic Anisotropy and Domain Wall Depinning Fields in Pt/Co/AlOx Thin Films" Magnetochemistry 8, no. 11: 154. https://doi.org/10.3390/magnetochemistry8110154
APA StyleSankhi, B. R., Lamichhane, U., Mandal, S., Sachan, R., Turgut, E., & Meyers, D. (2022). Interface Effects on Magnetic Anisotropy and Domain Wall Depinning Fields in Pt/Co/AlOx Thin Films. Magnetochemistry, 8(11), 154. https://doi.org/10.3390/magnetochemistry8110154