Microstructure, Critical Behavior and Magnetocaloric Properties of Melt-Spun Ni51.82Mn32.37In15.81
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Morphology
3.2. Magnetic Properties
3.3. Critical Behavior
3.4. Magnetocaloric Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sutou, Y.; Imano, N.; Koeda, N.; Omori, T.; Kainuma, R.; Ishida, K.; Oikawa, K. Magnetic and martensitic transformations of Ni-Mn_X (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phy. Lett. 2004, 85, 4358–4360. [Google Scholar] [CrossRef]
- Şaşmaz, M. Metamagnetic transition and magnetocaloric properties of Ni45Mn42In13 Heusler alloy. Phase Transit. 2021, 94, 289–297. [Google Scholar] [CrossRef]
- Fan, J.L.; Zhao, G.M.; Ai, Y.L.; Ouyang, S.; Zhu, Y. Partially ordered hierarchical substructure of as cast? phase in Ni-Mn-Ga alloys. Mater. Design 2022, 219, 110780. [Google Scholar] [CrossRef]
- Zhou, L.; Mehta, A.; Giri, A.; Cho, K.; Sohn, Y. Martensitic transformation and mechanical properties of Ni49+xMn36−xIn15 (x = 0, 0.5, 1.0, 1.5 and 2.0) Alloy. Mater. Sci. Eng. A 2015, 646, 57–65. [Google Scholar] [CrossRef]
- Wederni, A.; Ipatov, M.; González, J.M.; Khitouni, M.; Suñol, J.J. Ni-Mn-Sn-Cu alloys after thermal cycling: Thermal and magnetic response. Materials 2021, 14, 6851. [Google Scholar] [CrossRef]
- Dubiel, Ł.; Stefaniuk, I.; Wal, A.; Żywczak, A.; Dziedzic, A.; Maziarz, W. Magnetic and structural phase transition in Ni50Mn35.5In14.5 ribbon. J. Magn. Magn. Mater. 2019, 485, 21–26. [Google Scholar] [CrossRef]
- González-Legarreta, L.; González-Alonso, D.; Rosa, W.O.; Caballero-Flores, R.; Suñol, J.J.; González, J.; Hernando, B. Magnetostructural phase transition in off-stoichiometric Ni–Mn–In Heusler alloy ribbons with low In content. J. Magn. Magn. Mater. 2015, 383, 190–195. [Google Scholar] [CrossRef]
- Czaja, P.; Przewoźnik, J.; Hawelek, L.; Chrobak, A.; Zackiewicz, P.; Maziarz, W. Martensitic transformation, magnetic entropy, and adiabatic temperature changes in bulk and ribbon Ni48Mn39.5Sn12.5−xInx (x = 2, 4, 6) metamagnetic shape memory alloys. J. Mater. Res. 2021, 36, 3317–3328. [Google Scholar] [CrossRef]
- Cejpek, P.; Proschek, P.; Straka, L.; Heczko, O. Dependence of martensitic transformation temperature on magnetic field in Ni2MnGa and Ni2MnGa0.95In0.05 single crystals. J. Alloys Compd. 2022, 908, 164514. [Google Scholar] [CrossRef]
- Liao, X.; Gao, L.; Wang, Y.; Xu, X.; Khan, M.T.; Chang, T.; Chen, K.; Zeng, Y.-J.; Yang, S.; Svedlindh, P. Large exchange bias in magnetic shape memory alloys by tuning magnetic ground state and magnetic-field history. Sci. China Mater. 2020, 63, 1291–1299. [Google Scholar] [CrossRef]
- Yang, J.; Li, Z.; Yang, B.; Yan, H.; Cong, D.; Zhao, X.; Zuo, L. Effects of Co and Si co-doping on magnetostructural transformation and magnetocaloric effect in Ni-Mn-Sn based alloys. J. Alloys Compd. 2022, 892, 162190. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Hu, L.; Wang, X.; Li, L.; Yan, M. Excellent magnetocaloric performance in the carbide compounds RE2Cr2C3 (RE = Er, Ho, and Dy) and their composites. Mater. Today Phys. 2022, 27, 100786. [Google Scholar] [CrossRef]
- Guo, D.; Moreno-Ramírez, L.M.; Law, J.Y.; Zhang, Y.; Franco, V. Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE = Dy, Ho, or Er) compounds. Sci. China Mater. 2022, 1–8. [Google Scholar] [CrossRef]
- Rodionov, I.D.; Koshkid’ko, Y.S.; Cwik, J.; Quetz, A.; Pandey, S.; Aryal, A.; Dubenko, I.S.; Stadler, S.; Ali, N.; Titov, L.S.; et al. Magnetocaloric effect in Ni50Mn35In15 Heusler alloy in low and high magnetic fields. JETP Lett. 2015, 101, 385–389. [Google Scholar] [CrossRef]
- Umetsu, R.Y.; Ito, W.; Ito, K.; Koyama, K.; Fujita, A.; Oikawa, K.; Kanomata, T.; Kainuma, R.; Ishida, K. Anomaly in entropy change between parent and martensite phases in the Ni50Mn34In16 Heusler alloy. Scr. Mater. 2009, 60, 25–28. [Google Scholar] [CrossRef]
- Alves, R.F.; Correa, M.A.; Torquato, R.A.; dos Passos, T.A.; Bohn, F.; da Silva, R.B.; de Oliveira, D.F. Observation of quasi-diamagnetism and a transition from negative to positive in the exchange bias of a NiMnIn Heusler alloy. J. Magn. Magn. Mater. 2020, 493, 165691. [Google Scholar] [CrossRef]
- Jing, C.; Chen, J.; Li, Z.; Qiao, Y.; Kang, B.; Cao, S.; Zhang, J. Exchange bias behavior and inverse magnetocaloric effect in Ni50Mn35In15 Heusler alloy. J. Alloys Compd 2009, 475, 1–4. [Google Scholar] [CrossRef]
- Zhou, Z.N.; Yang, L.; Li, R.C.; Li, J.; Hu, Q.D.; Li, J.G. Martensitic transformations and kinetics in Ni-Mn-In-Mg shape memory alloys. Intermetallics 2018, 92, 49–54. [Google Scholar] [CrossRef]
- Ma, T.Y.; Zhang, K.; Han, B.L.; Zhao, L.; Zhao, W.B.; Wang, C.; Liu, R.; Tian, X.H.; Tan, C.L. Simultaneous improvement on magnetic-field-induced working temperature and mechanical properties in Ni-Mn-In shape memory alloy. AIP Adv. 2022, 12, 065107. [Google Scholar] [CrossRef]
- Liang, X.Z.; Bal, J.; Guang, Z.Q.; Zhang, Y.; Gu, J.L.; Zhang, Y.D.; Esling, C.; Zhao, X.; Zuo, L. Unravelong the phase stability and physical property of modulated martensite in Ni2Mn1.5In0.1 alloy by first-principles calculations. Materials 2022, 15, 4032. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.X.; Tian, F.H.; Cao, Y.F.; Ke, X.Q.; Zhang, Y.; Yang, S.; Zuo, W.L.; Liu, Y.; Ma, T.Y.; Song, X.P. Understanding of the giant magnetic entropy change around the co-occurrence point of martensitic and magnetic transitions in Ni-Mn-In Heusler alloy. Acta Mater. 2022, 229, 117839. [Google Scholar] [CrossRef]
- Ren, J.; Li, H.; Feng, S.; Zhai, Q.; Fu, J.; Luo, Z.; Zheng, H. Giant magnetocaloric effect in a Heusler Mn50Ni40In10 unidirectional crystal. Intermetallics 2015, 65, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Bhobe, P.A.; Priolkar, K.R.; Nigam, A.K. Room temperature magnetocaloric effect in Ni–Mn–In. Appl. Phys. Lett. 2007, 91, 242503. [Google Scholar] [CrossRef]
- Pathak, A.K.; Khan, M.; Gautam, B.R.; Stadler, S.; Dubenko, I.; Ali, N. Exchange bias in bulk Ni–Mn–In-based Heusler alloys. J. Magn. Magn. Mater. 2009, 321, 963–965. [Google Scholar] [CrossRef]
- Sánchez-Llamazares, J.L.; Flores-Zuñiga, H.; Sánchez-Valdes, C.; Ross, C.A.; García, C. Refrigerant capacity of austenite in as-quenched and annealed Ni51.1Mn31.2In17.7 melt spun ribbons. J. Appl. Phys. 2012, 111, 07A932. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.X.; Wu, D.; Xue, S.; Frenzel, J.; Eggeler, G.; Zhai, Q. Martensitic transformation in rapidly solidified Heusler Ni49Mn39Sn12 alloys. Acta Mater. 2012, 59, 5692–5699. [Google Scholar] [CrossRef]
- Hernando, B.; Sánchez-Llamazares, J.L.; Santos, J.D.; Prida, V.M.; Baldomir, D.; Serantes, D.; Varga, R.; González, J. Magnetocaloric effect in melt spun Ni50.3Mn35.5Sn14.4 ribbons. Appl. Phys. Lett. 2008, 92, 132507. [Google Scholar] [CrossRef]
- Dadda, K.; Alleg, S.; Souilah, S.; Suňol, J.J.; Dhahri, E.; Bessais, L.; Hlil, E.K. Critical behavior, magnetic and magnetocaloric properties of melt-spun Ni50Mn35Sn15 ribbons. J. Alloys Compd. 2018, 735, 1662–1672. [Google Scholar] [CrossRef]
- Huang, K. Statistical Mechanics, 2nd ed.; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Lutterotti, L.; Matthies, S.; Wenk, H.R. MAUD: A friendly Java program for material analysis using diffraction. Newsl. CPD 1999, 21, 14–15. Available online: http://maud.radiographema.com (accessed on 30 September 2021).
- Çakır, A.; Acet, M.; Wiedwald, U.; Krenke, T.; Farle, M. Shell-ferromagnetic precipitation in martensitic off-stoichiometric Ni-Mn-In Heusler alloys produced by temper-Annealing under magnetic field. Acta Mater. 2017, 127, 117–123. [Google Scholar] [CrossRef]
- Yan, H.; Sánchez-Valdés, C.F.; Zhang, Y.; Llamazares, J.S.; Li, Z.; Yang, B.; Esling, C.; Zhao, X.; Zuo, L. Correlation between crystallographic and microstructural features and low hysteresis behavior in Ni50Mn35.25In14.75 melt-spun ribbons. J. Alloys Compd. 2018, 767, 544–551. [Google Scholar] [CrossRef]
- Cicek, M.M.; Saritas, S.; Yildirim, O.; Emre, B. Effect of the low constituent boron on martensitic transformation, magnetic, and magnetocaloric properties of Ni50Mn35In15 Heusler alloys. J. Alloys Compd. 2020, 845, 155493. [Google Scholar] [CrossRef]
- Banerjee, S.K. On a generalised approach to first and second order magnetic transitions. Phys. Lett. 1964, 12, 16–17. [Google Scholar] [CrossRef]
- Stern-Taulats, E.; Castillo-Villa, P.O.; Mañosa, L.; Frontera, C.; Pramanick, S.; Majumdar, S.; Planes, A. Magnetocaloric effect in the low hysteresis Ni-Mn-In metamagnetic shape-memory Heusler Alloys. J. Appl. Phys. 2014, 115, 173907. [Google Scholar] [CrossRef]
- Wederni, A.; Ipatov, M.; Pineda, E.; Suñol, J.J.; Escoda, L.; González, J.M.; Alleg, S.; Khitouni, M.; Zuberek, R.; Chumak, O.; et al. Magnetic properties, martensitic and magnetostructural transformations of ferromagnetic Ni–Mn–Sn–Cu shape memory alloys. Appl. Phys. A 2020, 126, 320. [Google Scholar] [CrossRef]
- Arrott, A.; Noakes, J.E. Approximate Equation of State for Nickel Near its Critical Temperature. Phys. Rev. Lett. 1967, 19, 786–789. [Google Scholar] [CrossRef]
- Nan, W.Z.; Thanh, T.D.; Nam, G.; You, T.S.; Piao, H.G.; Pan, L.Q.; Yu, S.C. Critical behavior near the ferromagnetic-paramagnetic transformation in the austenite phase of Ni43Mn46Sn8X3 (X = In and Cr) Heusler alloys. J. Magn. Magn. Mater. 2017, 443, 171–178. [Google Scholar] [CrossRef]
- Fisher, M.E.; Ma, S.K.; Nickel, B.G. Critical Exponents for Long-Range Interactions. Phys. Rev. Lett. 1972, 29, 917–920. [Google Scholar] [CrossRef] [Green Version]
- Kouvel, J.S.; Fisher, M.E. Detailed Magnetic Behavior of Nickel Near its Curie Point. Phys. Rev. 1964, 136, 1626. [Google Scholar] [CrossRef]
- Widom, B. Surface Tension and Molecular Correlations near the Critical Point. J. Chem. Phys. 1965, 43, 3892–3897. [Google Scholar] [CrossRef]
- Zarai, E.; Issaoui, F.; Tozri, A.; Husseinc, M.; Dhahri, E. Critical behavior near the paramagnetic to ferromagnetic phase transition temperature in Sr1.5Nd0.5MnO4 compound. J. Supercond. Nov. Magn. 2016, 29, 869–877. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, J.; Fan, J.; Ge, M.; Ling, L.; Zhang, C.; Zhang, Y. Critical behavior of the half-doped perovskite Pr0.5 Sr0.5CoO3−Δ. J. Alloys Compd. 2014, 588, 294–299. [Google Scholar] [CrossRef]
- Stanley, H.E. Introduction to Phase Transitions and Critical Phenomena; Oxford University Press: Oxford, UK, 1971. [Google Scholar]
- Das, R.; Alagarsamy, P.; Srinivasan, A. Critical behavior and magnetic entropy change at magnetic phase transitions in Ni 50Mn35In14Si1 ferromagnetic shape memory Alloys. Europhy. Lett. 2014, 108, 66004. [Google Scholar]
- Amaral, V.S.; Amaral, J.S. Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials. J. Magn. Magn. Mater. 2004, 272, 2104–2105. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifschitz, E.M. Statistical Physics Part 2. Course of Theoretical Physics; Robert Maxwell, M.C., Ed.; P.I. Library: Oxford, NY, USA, 1958. [Google Scholar]
Sample | Method | e/a | Phase | a, b, c (Å) | Tc (K) | ±ΔS (J/kg.K) | Hc (Oe) | Ref. |
---|---|---|---|---|---|---|---|---|
Ni51.82Mn32.37In15.81 | Melt spinning | 7.922 | cubic B2 14 M | a = 2.968 a = 4.327 b = 5.567 c = 29.035 | 194.2 | 0.92 (5 T) | 48.54 (2 T) | This work |
Ni50Mn35In15 | Arc melting and annealing at 1073K for 2h | 7.902 | 10 M | a = 4.391 b = 5.882 c = 21.184 | [2] | |||
Ni51Mn33.4In15.6 | Arc melting and annealing at 1173K for 48 h | cubic L21 | a = 6.008 | 309.5 | 15 (5 T) | [35] | ||
Ni52Mn32.5In15.5 | Arc melting and annealing at 1173K for 48 h | cubic L21 orthorhombic | a = 6.010 a = 17.961 b = 10.766 c = 4.608 | 182 | [31] |
Material | Technique | Ref. | |||
---|---|---|---|---|---|
Ni51.82Mn32.37In15.81 | MAPs | 0.500 ± 0.015 | 1.282 ± 0.055 | ---- | This work |
K-F | 0.554 ± 0.017 | 1.304 ± 0.044 | 3.353 ± 0.027 | ||
CI | ---- | ---- | 3.003 ± 0.002 | ||
Ni50Mn35In14Si1 | MAPs | 0.510 | 0.987 | 2.935 | [44] |
CI | ---- | ---- | 2.950 | ||
MAPs | 0.550 | 0.944 | 2.716 | ||
CI | ---- | ---- | 2.670 | ||
Ni50Mn35Sn15 | MAPs | 0.50 ± 0.03 | 0.92 ± 0.03 | ---- | [30] |
K-F | 0.45 ± 0.01 | 0.88 ± 0.03 | 2.92 | ||
CI | 3.02 ± 0.02 | ||||
Mean field model | 0.5 | 1.0 | 3.0 | [29] | |
3D Heisenberg model | 0.365 | 1.336 | 4.80 | [29] | |
3D Ising model | 0.325 | 1.241 | 4.82 | [29] | |
Tricritical mean field | 0.25 | 1.0 | 5.0 | [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadda, K.; Alleg, S.; Souilah, S.; Daza, J.; Saurina, J.; Suñol, J.-J.; Bessais, L.; Hlil, E.-K. Microstructure, Critical Behavior and Magnetocaloric Properties of Melt-Spun Ni51.82Mn32.37In15.81. Magnetochemistry 2022, 8, 179. https://doi.org/10.3390/magnetochemistry8120179
Dadda K, Alleg S, Souilah S, Daza J, Saurina J, Suñol J-J, Bessais L, Hlil E-K. Microstructure, Critical Behavior and Magnetocaloric Properties of Melt-Spun Ni51.82Mn32.37In15.81. Magnetochemistry. 2022; 8(12):179. https://doi.org/10.3390/magnetochemistry8120179
Chicago/Turabian StyleDadda, Karima, Safia Alleg, Saida Souilah, Jason Daza, Joan Saurina, Joan-Josep Suñol, Lotfi Bessais, and El-Kebir Hlil. 2022. "Microstructure, Critical Behavior and Magnetocaloric Properties of Melt-Spun Ni51.82Mn32.37In15.81" Magnetochemistry 8, no. 12: 179. https://doi.org/10.3390/magnetochemistry8120179
APA StyleDadda, K., Alleg, S., Souilah, S., Daza, J., Saurina, J., Suñol, J. -J., Bessais, L., & Hlil, E. -K. (2022). Microstructure, Critical Behavior and Magnetocaloric Properties of Melt-Spun Ni51.82Mn32.37In15.81. Magnetochemistry, 8(12), 179. https://doi.org/10.3390/magnetochemistry8120179