Characteristics and Recent Development of Fluoride Magneto-Optical Crystals
Abstract
:1. Introduction
2. Terbium (Tb3+)-Containing Fluoride Magneto-Optical Crystals for High-Power Laser Applications
2.1. KTb3F10 (KTF) and LiTbF4 (TLF) Crystal
Lattice Type | Thermal Conductivity (W·m−1·K−1) | Refractive Index (@ 1.06 μm) | dn/dT (×10−6 K−1 @ 300 K) | Verdet Constant (Rad·m−1·T−1) | Transmittance Range | |
---|---|---|---|---|---|---|
TGG | cubic | 4.94 [34,35] | 1.94 [18] | 17.5 [34] | 41.7 @ 1.06μm 133.2 @ 633 nm 20.39 @ 1.5 μm [11] | 400 nm~1.5 μm (480~500 nm excepted) |
LiTbF4 | tetragonal | - | no = 1.468 ne = 1.497 [20] | −5.67 [30] | 42.7 @ 1.06 μm [20] | |
KTb3 F10 | cubic | 1.67 [30] | 1.50 [18] | ~1 [26] | 34 @ 1.06 μm [18] | |
TbF3 | tetragonal | - | nx = 1.602 ny = 1.588 nz = 1.569 (@ 589 nm [36]) | - | 48 @ 1.06 μm [19] | |
CeF3 | trigonal | 2.51//−c [37] 1.92⊥c [37] | no = 1.6217 ne = 1.6147 (@ 531 nm [38]) | - | 39.5 @ 1.06 μm [11] | 300 nm~2.1 μm |
PrF3 | trigonal | - | no = 1.6240 ne = 1.6179 (@ 531 nm [38]) | - | 125.3 @ 633 nm [11] | 220~420 nm 500~560 nm 620~950 nm |
EuF2 | cubic | 2.13 [39] | 1.555 [40] | - | 21.36 @ 1.5 μm [22] | 1~7 μm (Eu3+ absorption excepted) [22] |
2.2. Other Tb3+-Containing Fluoride Magneto-Optical Crystals
3. Novel Fluoride Magneto-Optical Crystals for UV or MIR Laser Applications
3.1. CeF3—Faraday Rotators for High-Power System from UV to MIR Spectral Range
3.2. Absorption-Related Defects in CeF3
3.3. PrF3—Potential Faraday Rotators for UV Applications
3.4. EuF2-based Magneto-Optical Materials for MIR Lasers
4. Discussion
4.1. The Analysis of Thermal Effect in Fluoride Magneto-Optical Crystals
4.2. The Performances of FI Devices based on Uniaxial Crystals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dötsch, H.; Bahlmann, N.; Zhuromskyy, O.; Hammer, M.; Wilkens, L.; Gerhardt, R.; Hertel, P.; Popkov, A.F. Applications of magneto-optical waveguides in integrated optics: Review. J. Opt. Soc. Am. B 2005, 22, 240–253. [Google Scholar] [CrossRef]
- Stadler, B.J.H.; Mizumoto, T. Integrated Magneto-Optical Materials and Isolators: A Review. IEEE Photonics J. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Viotovich, A.V.; Palashov, O.V.; Khazanov, E.A. Review of Faraday Isolators for Kilowatt Average Power Lasers. IEEE J. Quantum Electron. 2014, 50, 434–443. [Google Scholar] [CrossRef]
- Vojna, D.; Slezák, O.; Lucianetti, A.; Mocek, T. Verdet Constant of Magneto-Active Materials Developed for High-Power Faraday Devices. Appl. Sci. 2019, 9, 3160. [Google Scholar] [CrossRef] [Green Version]
- Schulz, P.A. Wavelength independent Faraday isolator. Appl. Opt. 1989, 28, 4458–4464. [Google Scholar] [CrossRef]
- Mironov, E.A.; Starobor, A.V.; Snetkov, I.L.; Palashov, O.V.; Furuse, H.; Tokita, S.; Yasuhara, R. Thermo-optical and magneto-optical characteristics of CeF3 crystal. Opt. Mater. 2017, 69, 196–201. [Google Scholar] [CrossRef]
- Starobor, A.; Mironov, E.A.; Palashov, O.V. Thermal lens in magneto-active fluoride crystals. Opt. Mater. 2019, 98, 109469. [Google Scholar] [CrossRef]
- Vojna, D.; Slezák, O.; Yusuhara, R.; Furuse, H.; Lucianetti, A.; Mocek, T. Faraday Rotation of Dy2O3, CeF3 and Y3Fe5O12 at the Mid-Infrared Wavelengths. Materials 2020, 13, 5324. [Google Scholar] [CrossRef]
- Carothers, K.J.; Norwood, R.A.; Pyun, J. High Verdet Constant Materials for Magneto-Optical Faraday Rotation: A Review. Chem. Mater. 2022, 34, 2531–2544. [Google Scholar] [CrossRef]
- Mironov, E.A.; Zheleznov, D.S.; Starobor, A.V.; Voitovich, A.V.; Palashov, O.V.; Bulkanov, A.M.; Demidenko, A.G. Large-aperture Faraday isolator based on a terbium gallium garnet crystal. Opt. Lett. 2015, 40, 2794–2797. [Google Scholar] [CrossRef] [PubMed]
- Molina, P.; Vasyliev, V.; Shimamura, K. CeF3 and PrF3 as UV-Visible Faraday rotators. Opt. Express 2011, 19, 11786–11791. [Google Scholar] [CrossRef]
- Srinivasan, K.; Stadler, B.J.H. Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators: A review. Opt. Mater. Express 2018, 8, 3307–3318. [Google Scholar] [CrossRef]
- Krinchik, G.S.; Chetkin, M.V. Transparent Ferromagnets. Sov. Phys. Uspekhi 1969, 12, 307–319. [Google Scholar] [CrossRef]
- Komatsu, H. Mechanism of crystal growth of yttrium-ion garnet and magnetoplumbite synthesized by flux method. Miner. J. 1964, 4, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.; Shindo, I. Single crystal growth of YIG by the floating zone method. J. Cryst. Growth 1977, 41, 192–198. [Google Scholar] [CrossRef]
- Hibiya, T. Liquid phase epitaxial growth of thick garnet films—“Perfectness” of crystal quality. J. Magn. Soc. Jpn. 1987, 11, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Li, J. Promising magneto-optical ceramics for high power Faraday isolators. Scr. Mater. 2018, 155, 78–84. [Google Scholar] [CrossRef]
- Jalali, A.A.; Rogers, E.; Stevens, K. Characterization and extinction measurement of potassium terbium fluoride single crystal for high laser power applications. Opt. Lett. 2017, 42, 899–902. [Google Scholar] [CrossRef]
- Starobor, A.V.; Mironov, E.A.; Palashov, O.V.; Savelyev, A.G.; Karimov, D.N. Dispersion of optical and magneto-optical properties in a biaxial TbF3 crystal. Laser Phys. Lett. 2021, 18, 115801. [Google Scholar] [CrossRef]
- Vasyliev, V.; Villora, E.G.; Nakamura, M.; Sugahara, Y.; Shimamura, K. UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3. Opt. Express 2012, 20, 14460–14470. [Google Scholar] [CrossRef]
- Snetkov, I.L. Features of Thermally Induced Depolarization in Magneto-Active Media With Negative Optical Anisotropy Parameter. IEEE J. Quantum Electron. 2018, 54, 7000108. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V.; Karimov, D.N. EuF2-based crystals as media for high-power mid-infrared Faraday isolators. Scr. Mater. 2019, 162, 54–57. [Google Scholar] [CrossRef]
- Starobor, A.; Mironov, E.; Snetkov, I.; Palashov, O.; Furuse, H.; Tokita, S.; Yasuhara, R. Cryogenically cooled CeF3 crystal as media for high-power magneto-optical devices. Opt. Lett. 2017, 42, 1864–1866. [Google Scholar] [CrossRef] [PubMed]
- Starobor, A.; Mironov, E.; Palashov, O. High-power Faraday isolator on a uniaxial CeF3 crystal. Opt. Lett. 2019, 44, 1297–2199. [Google Scholar] [CrossRef]
- Berger, S.B.; Rubinstein, C.B.; Kurkjian, C.R.; Treptaw, A.W. Faraday Rotation of Rare-Earth (III) Phosphate Glasses. Phys. Rev. 1964, 133, A723–A727. [Google Scholar] [CrossRef]
- Stevens, K.T.; Schlichting, W.; Foundos, G.; Payne, A.; Rogers, E. Promising Materials for High Power Laser Isolators. Laser Tech. J. 2016, 3, 18–21. [Google Scholar] [CrossRef]
- Griffin, J.A.; Folkins, J.; Weber, M.J.; Morgret, R.; Litster, J.D.; Gabbe, D.; Linz, A. Magnetic, optical, and magneto-optical behavior of LiTbF4 and KTb3F10 crystals. J. Appl. Phys. 1978, 49, 2209–2211. [Google Scholar] [CrossRef]
- Weber, M.J.; Morgret, R.; Leung, S.Y.; Griffin, J.A.; Gabbe, D.; Linz, A. Magneto-optical properties of KTb3F10 and LiTbF4 crystals. J. Appl. Phys. 1978, 49, 3464–3469. [Google Scholar] [CrossRef]
- Abbasalizadeh, A.; Sridar, S.; Chen, Z.; Sluiter, M.; Yang, Y.; Sietsma, J.; Seetharaman, S.; Hari Kumar, K.C. Experimental investigation and thermodynamic modelling of LiF-NdF3-DyF3 system. J. Alloy. Compd. 2018, 753, 388–394. [Google Scholar] [CrossRef]
- Zelmon, D.E.; Erdman, E.C.; Stevens, K.T.; Foundos, G.; Kim, J.R.; Brady, A. Optical properties of lithium terbium fluoride and implications for performance in high power lasers. Appl. Opt. 2016, 55, 834–837. [Google Scholar] [CrossRef]
- Kukharchyk, N.; Sholokhov, D.; Morozov, O.; Korableva, S.L.; Kalachev, A.A.; Bushev, P.A. Optical coherence of 166Er:7LiYF4 crystal below 1 K. New J. Phys. 2018, 20, 023044. [Google Scholar] [CrossRef]
- Karimov, D.N.; Buchinskaya, I.I. Growth of KR3F10 (R = Tb–Er) Crystals by the Vertical Directional Crystallization Technique. I: Optimization of the Melt Composition for the Growth of KTb3F10 and Correction of the Phase Diagram of the KF–TbF3 System. Crystallogr. Rep. 2021, 66, 535–540. [Google Scholar] [CrossRef]
- Karimov, D.N.; Buchinskaya, I.I.; Arkharova, N.A.; Ivanova, A.G.; Savelyev, A.G.; Sorokin, N.I.; Popov, P.A. Growth Peculiarities and Properties of KR3F10 (R = Y, Tb) Single Crystals. Crystals 2021, 11, 285. [Google Scholar] [CrossRef]
- Furuse, H.; Yasuhara, R.; Hiraga, K. Thermo-optic effects of ceramic TGG in the 300–500 K temperature range. Opt. Mater. Express 2015, 5, 1266. [Google Scholar] [CrossRef]
- Yasuhara, R.; Tokita, S.; Kawanaka, J.; Kawashima, T.; Kan, H.; Yagi, H.; Nozawa, H.; Yanagitani, T.; Fujimoto, Y.; Yoshida, H.; et al. Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser. Rev. Laser Eng. 2007, 35, 806–810. [Google Scholar] [CrossRef] [Green Version]
- Valiev, U.V.; Karimov, D.N.; Burdick, G.W.; Rakhimov, R.; Pelenovich, V.O.; Fu, D. Growth and magnetooptical properties of anisotropic TbF3 single crystals. J. Appl. Phys. 2017, 121, 243105. [Google Scholar] [CrossRef] [Green Version]
- Karimov, D.N.; Lisovenko, D.S.; Ivanova, A.G.; Grebenev, V.V.; Popov, P.A.; Sizova, N.L. Bridgman Growth and Physical Properties Anisotropy of CeF3 Single Crystals. Crystals 2021, 11, 793. [Google Scholar] [CrossRef]
- Laiho, R.L.; Lakkisto, M. Investigation of the refractive indices of LaF3, CeF3, PrF3, and NdF3. Philos. Mag. B 1983, 48, 203–207. [Google Scholar] [CrossRef]
- Popov, P.A.; Moiseev, N.V.; Karimov, D.N.; Sorokin, N.I.; Sulyanova, E.A.; Sobolev, B.P. Thermophysical Characteristics of EuF2.136 Crystal. Crystallogr. Rep. 2015, 60, 740–743. [Google Scholar] [CrossRef]
- Shannon, R.D.; Shannon, R.C.; Medenbach, O.; Fischer, R.X. Refractive Index and Dispersion of Fluorides and Oxides. J. Phys. Chem. Ref. Data 2002, 31, 931–970. [Google Scholar] [CrossRef]
- Karimov, D.N.; Sobolev, B.P.; Ivanov, I.A.; Kanorsky, S.I.; Masalov, A.V. Growth and Magneto Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal. Crystallogr. Rep. 2014, 59, 718–723. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V.; Voitovich, A.V.; Kaminov, D.N.; Ivanov, I.A. Investigation of thermo-optical characteristics of magneto-active crystal Na0.37Tb0.63F2.26. Opt. Lett. 2015, 40, 4919–4922. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V.; Naumov, A.K.; Aglyamov, R.D.; Semashko, V.V. Faraday isolator based on NTF crystal in critical orientation. Appl. Phys. Lett. 2021, 119, 073502. [Google Scholar] [CrossRef]
- Allain, J.L.; Couchaud, M.; Ferrand, B.; Grange, Y.; Utts, B.; Wyon, C. Crystal Growth and Scintillation Properties of CeF3. Mat. Res. Soc. Symp. Proc. 1994, 348, 105–110. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Cerulli, R.; Dai, C.J.; Danevich, F.A.; Incicchitti, A.; Kobychev, V.V.; Ponkratenko, O.A.; Prosperi, D.; Tretyak, V.I.; et al. Performances of a CeF3 crystal scintillator and its application to the search for rare processes. Nucl. Instrum. Methods Phys. Res. A 2003, 498, 352–361. [Google Scholar] [CrossRef]
- Dissertori, G.; Lecomte, P.; Luckey, D.; Nessi-Tedaldi, F.; Pauss, F.; Otto, T.S.; Roesler, S.; Urscheler, C. A study of high-energy proton induced damage in cerium fluoride in comparison with measurements in lead tungstate calorimeter crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 622, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.; Asahi, T. Determination of the Faraday rotation perpendicular to the optical axis in uniaxial CeF3 crystal by using the Generalized-High Accuracy Universal Polarimeter. Sci. Rep. 2019, 9, 18453. [Google Scholar] [CrossRef] [Green Version]
- Vojna, D.; Yasuhara, R.; Slezák, O.; Mužík, J.; Lucianetti, A.; Mocek, T. Verdet constant dispersion of CeF3 in the visible and near-infrared spectral range. Opt. Eng. 2017, 56, 067105. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Chen, J.; Dai, Y.; Su, L.; Li, X.; Kalashnikova, M.; Wu, A. Bridgman growth and magneto-optical properties of CeF3 crystal as Faraday Rotator. Opt. Mater. 2020, 100, 109675. [Google Scholar] [CrossRef]
- Yan, X.; Liu, Q.; Chen, H.; Fu, X.; Gong, M.; Wang, D. 35.1 W all-solid-state 355 nm ultraviolet laser. Laser Phys. Lett. 2020, 7, 563. [Google Scholar] [CrossRef]
- Villora, E.G.; Shimamura, K.; Plaza, G.R. Ultraviolet-visible optical isolators based on CeF3 Faraday rotator. J. Appl. Phys. 2015, 117, 233101. [Google Scholar] [CrossRef]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2017, 7, e54. [Google Scholar] [CrossRef]
- Federov, P.P.; Sobolev, B.P. Morphotropic transitions in the rare-earth trifluoride series. Crystallogr. Rep. 1995, 40, 315–321. [Google Scholar]
- Jiang, G.; Zhang, Z.; Li, H.; Shen, H.; Wu, A.; Li, J.; Wang, J.; Su, L.; Xu, J. TGT growth and magneto-optical properties of PrF3 crystal. Phys. B Phys. Condens. Matter 2021, 614, 413031. [Google Scholar] [CrossRef]
- Valiev, U.V.; Uzokov, A.A.; Rakhimov, S.A.; Gruber, J.B.; Nash, K.L.; Sardar, D.K.; Burdick, G.W. Faraday effect and magnetic susceptibility analyses in TbAlO3. J. Appl. Phys. 2008, 104, 073903. [Google Scholar] [CrossRef] [Green Version]
TGG | CeF3 | KTF | NTF | |
---|---|---|---|---|
Length of sample when (mm) | 10.6 | 10.8 | 11.2 | 12.9 |
(10−8 W−1) | 57 | −8.9 ± 1.1 | −2.5 ± 0.3 | −14 ± 1.7 |
(10−8 W−1·m) | 6.04 | −0.96 ± 0.12 | −0.28 ± 0.02 | −1.81 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wu, Z.; Zhang, Z.; Su, L.; Wu, A.; Li, Y.; Lan, J. Characteristics and Recent Development of Fluoride Magneto-Optical Crystals. Magnetochemistry 2023, 9, 41. https://doi.org/10.3390/magnetochemistry9020041
Zhang Z, Wu Z, Zhang Z, Su L, Wu A, Li Y, Lan J. Characteristics and Recent Development of Fluoride Magneto-Optical Crystals. Magnetochemistry. 2023; 9(2):41. https://doi.org/10.3390/magnetochemistry9020041
Chicago/Turabian StyleZhang, Zhonghan, Zhen Wu, Zhen Zhang, Liangbi Su, Anhua Wu, Yang Li, and Jianghe Lan. 2023. "Characteristics and Recent Development of Fluoride Magneto-Optical Crystals" Magnetochemistry 9, no. 2: 41. https://doi.org/10.3390/magnetochemistry9020041
APA StyleZhang, Z., Wu, Z., Zhang, Z., Su, L., Wu, A., Li, Y., & Lan, J. (2023). Characteristics and Recent Development of Fluoride Magneto-Optical Crystals. Magnetochemistry, 9(2), 41. https://doi.org/10.3390/magnetochemistry9020041