Antiferromagnetism and Structure of Sr1−xBaxFeO2F Oxyfluoride Perovskites
Abstract
:1. Introduction
2. Research Methodology
2.1. Structure and Magnetic Interaction Energy of Oxyfluoride Perovskites
ax = (1 − x) aSr + x. aBa
2.2. Experimental Section
2.2.1. NPD Data Acquisition
2.2.2. Mössbauer Spectroscopy
3. Results and Discussion
Mössbauer Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.-C.; Schmidt, J.; Botti, S.; Marques, M.A.L. A high-throughput study of oxynitride, oxyfluoride and nitrofluoride perovskites. J. Mater. Chem. A 2021, 9, 8501–8513. [Google Scholar] [CrossRef]
- Chikamatsu, A.; Maruyama, T.; Katayama, T.; Su, Y.; Tsujimoto, Y.; Yamaura, K.; Kitamura, M.; Horiba, K.; Kumigashira, H.; Hasegawa, T. Electronic properties of perovskite strontium chromium oxyfluoride epitaxial thin films fabricated via low-temperature topotactic reaction. Phys. Rev. Mater. 2020, 4, 025004. [Google Scholar] [CrossRef]
- Katsumata, T.; Suzuki, R.; Satoh, N.; Suzuki, S.; Nakashima, M.; Inaguma, Y.; Mori, D.; Aimi, A.; Yoned, Y. Synthesis of new perovskite-type oxyfluorides, BaInO2F and comparison of the structure among perovskite-type oxyfluorides. J. Solid State Chem. 2019, 279, 120919. [Google Scholar] [CrossRef]
- Katsumata, T.; Sawada, N.; Kuraya, R.; Hamagaki, T.; Aimi, A.; Mori, D.; Inaguma, Y.; Wang, R.P. Phase transitions and dielectric properties of perovskite-type oxyfluorides (1-x)KNbO3-xKMgF3. J. Fluor. Chem. 2018, 209, 65–72. [Google Scholar] [CrossRef]
- García-Ramos, C.A.; Retuerto, M.; Alonso, J.A. On the Sr1−xBaxFeO2F Oxyfluoride Perovskites: Structure and Magnetism from Neutron Diffraction and Mössbauer Spectroscopy. Materials 2016, 9, 970. [Google Scholar] [CrossRef] [Green Version]
- Al-Mamouri, M.; Edwards, P.; Greaves, C.; Slaski, M. Sintesis y propiedades de los superconductors de cobre de estroncio oxi-fluoruro Sr2CuO2F2+δ. Nature 1994, 369, 382. [Google Scholar]
- Blakely, C.K.; Davis, J.D.; Bruno, S.R.; Kraemer, S.K.; Zhu, M.; Ke, X.; Bi, W.; Alp, E.E.; Poltavets, V.V. Multistep synthesis of the SrFeO2F perovskite oxyfluoride via the SrFeO2 infinite layer intermediate. J. Fluor. Chem. 2014, 159, 8–14. [Google Scholar]
- Thompson, C.M.; Blakely, C.K.; Flacau, R.; Greedan, J.E.; Poltavets, V.V. Structural and magnetic behavior of the cubic oxyfluoride SrFeO2F studied by neutron diffraction. J. Solid State Chem. 2014, 219, 173–178. [Google Scholar] [CrossRef]
- Berry, F.; Ren, X.; Heap, R.; Slater, P.; Thomas, M. Fluorination of perovskite-related SrFeO3-δ. Solid State Commun. 2005, 134, 621. [Google Scholar] [CrossRef]
- Heap, R.; Slater, P.R.; Berry, F.J.; Helgason, O.; Wright, A.J. Synthesis and structural determination of the new oxides fluorides BaFeO2F. Solid State Comm. 2007, 141, 467–470. [Google Scholar]
- Malek, A.; Edwards, P.P.; Greaves, C.; Slater, P.R.; Slaski, M. Synthesis and structure of the calcium copper oxyfluoride, Ca 2 CuO2F2+δ. J. Mat. Chem. 1995, 5, 913–916. [Google Scholar]
- Slater, P.R.; Gover, R.K.B. Synthesis and structure of the new oxide fluorideSr2TiO3F2 from the low temperature fluorination of SrTiO4 an example of staged fluorine substitution/insertion reaction. J. Mater. Chem. 2002, 12, 291–294. [Google Scholar] [CrossRef]
- Clemens, O.; Haberkorn, R.; Slater, P.; Beck, H.P. Synthesis and characterization of the SrxBa1-xFeO3-y systems and the fluorinated phases SrxBa1−xFeO2F. Solid State Sci. 2010, 12, 1455–1463. [Google Scholar] [CrossRef]
- Berry, F.J.; Moore, E.A.; Ren, X.; Helgason, Ö.; Thomas, M.F.; Shim, S. Iron-57 Mossbauer spectroscopic study of fluorinated strontium orthoferrite. Hyperfine Interact 2008, 185, 111–114. [Google Scholar] [CrossRef]
- Helgason, O. Mossbauer spectroscopy of perovskite-related oxides fluoride of composition Ba0.5Sr0.5FeO2F at elevated temperatures. Hyperfine Interact 2009, 184, 143–146. [Google Scholar] [CrossRef]
- Griffits, D.J. Introduction to Electrodynamics, 2nd ed.; Prentice-Hall: Hoboken, NJ, USA, 1989. [Google Scholar]
- Reitz, J.R.; Milford, F.J.; Christy, R.W. Fundamentos de la Teoría Electromagnética, 4th ed.; Addison-Wesley Iberoamericana, S.A.: Wilmington, DE, USA, 1996. [Google Scholar]
- Kingman, R.; Rowland, S.C.; Popescu, S. An experimental observation of Faraday’s law of induction. Am. J. Phys. 2002, 70, 595–598. [Google Scholar] [CrossRef] [Green Version]
- MacLatchy, C.; Backman, P.; Bogan, L. A quantitative magnetic breaking experiment. Am. J. Phys. 1993, 61, 1096–1101. [Google Scholar] [CrossRef]
- Ku, J.G.; Liu, X.Y.; Chen, H.H.; Deng, R.D.; Yan, Q.X. Interaction between two magnetic dipoles in a uniform magnetic field. AIP Adv. 2016, 6, 025004. [Google Scholar] [CrossRef]
- Rietveld, H. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal. Recent advances in magnetic structure determination by neutron powder diffraction. Physics B 1993, 192, 55. [Google Scholar] [CrossRef]
- Ruskov, T.; García, C.; Asenov, S.; Spirov, I.; Mönch, I.; Graff, A.; Kozhuharova, R.; Leonhardt, A.; Muhl, T. Mossbauer transmission and back scattered conversion electron study of Fe nanowires encapsulated in multiwalled carbon nanotubes. J. Appl. Phys. 2004, 96, 7514–7518. [Google Scholar] [CrossRef] [Green Version]
- Shenoy, G.K.; Friedt, J.M.; Maleta, H.; Ruby, S.L. Curve fitting and the transmission integral: Warnings and suggestions. In Mössbauer Effect Methodology; Springer: New York, NY, USA, 1974; Volume 9, pp. 277–305. [Google Scholar]
- Cranshaw, T.E. The deduction of the best values of the parameters from Mossbauer spectra. J. Phys. E 1974, 7, 122. [Google Scholar] [CrossRef]
- Clemens, O.; Berry, F.; Wright, A.J.; Knight, K.S.; Perez-Mato, J.M.; Igartua, J.M.; Slater, P.R. Reply to “Structural and magnetic behavior of the cubic oxyfluoride SrFeO2F studied by neutron diffraction”. J. Solid State Chem. 2015, 226, 326–331. [Google Scholar] [CrossRef]
x (Ba Content) | 0 | 0.25 | 0.50 | 0.75 |
---|---|---|---|---|
a (Å) | 3.95500(7) | 3.98055(6) | 4.00610(5) | 4.03476(6) |
V (Å3) | 61.864(2) | 63.071(2) | 64.293(1) | 65.683(2) |
TN (K) | 740.08 | 733.10 | 715.31 | 683.40 |
TN/TNo | 1 | 0.99056 | 0.96788 | 0.922873 |
Logb (TN/TNo), b = 3.6544 | 0 | −0.0073122 | 0.0251911 | −0.061920 |
Sr/Ba 1b (½ ½ ½) | ||||
B (Å2) | 0.80(4) | 0.81(3) | 0.87(3) | 0.84(3) |
Fe 1a (0 0 0) | ||||
B (Å2) | 1.62(4) | 1.89(3) | 2.29(3) | 2.68(3) |
μB | 3.63(4) | 3.50(3) | 3.37(3) | 3.40(2) |
O/F 3d (0 0 ½) | ||||
B (Å2) | 2.36(4) | 1.55(3) | 1.30(3) | 1.10(2) |
Occupancy O/F | 1 | 1 | 0.98(1) | 0.96(1) |
Main bond distances (Å) | ||||
Sr-O/F (×12) | 2.79661(4) | 2.81467(3) | 2.83274(2) | 2.85301(3) |
Fe-O/F (×6) | 1.97750(4) | 1.99028(3) | 2.00305(2) | 2.01738(3) |
Peaks | A | B | C | D | E | F | SrFeO2F | Hhyp/T | T/K |
---|---|---|---|---|---|---|---|---|---|
Sextet | −8.685 | −4.981 | −1.178 | 1.678 | 5.481 | 9.385 | [mm/s] | 56.19 | |
µ = 0.093104 | [mm/Ts] = 4.475963 | [neV/T] = 3.69182 | Nuclear Bohr magn. | 77 | |||||
Sextet | −8.205 | −4.414 | −0.783 | 1.943 | 5.574 | 9.045 | [mm/s] | 53.64 | 300 |
µ = 0.093102 | [mm/Ts] = 4.475886 | [neV/T] = 3.691757 | Nuclear Bohr magn. | ||||||
Sr0.5Ba0.5FeO2F | |||||||||
Sextet | −9.424 | −5.551 | −1.678 | 1.23 | 5.13 | 9.976 | [mm/s] | 57.22 | |
µ = 0.097348 | [mm/Ts] = 4.680003 | [neV/T] = 3.860115 | Nuclear Bohr magn. | 77 | |||||
Sextet | −8.18 | −4.36 | −0.739 | 1.979 | 5.6 | 9.02 | [mm/s] | 53.48 | T/K |
µ = 0.09311 | [mm/Ts] = 4.476243 | [neV/T] = 3.692051 | Nuclear Bohr magn. | 300 |
, b = 3.6544 | |||||||
x\T[K] | 77 | 300 | 473 | 573 | 673 | 723 | 740.08 |
0.00 | 54.34|54.11 | 48.57|51.62 | 42.37|- | 37.26|39.18 | 29.03|- | 19.96|- | 0|0 |
0.25 | 54.32|56.00 | 48.49|51.62 | 42.19|- | 36.96|38.87 | 28.32|- | 17.63|15.59 | - |
0.50 | 54.28|55.35 | 48.25|51.00 | 41.63|44.47 | 35.98|37.94 | 25.79|25.18 | - | |
0.75 | 54.20|56.59 | 47.83|50.53 | 40.62|- | 34.11|37.31 | 18.51|- | - | - |
1.00 | 54.08|- | 47.18|- | 39.00|- | 30.73|- | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Ramos, C.A.; Krezhov, K.; Fernández-Díaz, M.T.; Alonso, J.A. Antiferromagnetism and Structure of Sr1−xBaxFeO2F Oxyfluoride Perovskites. Magnetochemistry 2023, 9, 78. https://doi.org/10.3390/magnetochemistry9030078
Garcia-Ramos CA, Krezhov K, Fernández-Díaz MT, Alonso JA. Antiferromagnetism and Structure of Sr1−xBaxFeO2F Oxyfluoride Perovskites. Magnetochemistry. 2023; 9(3):78. https://doi.org/10.3390/magnetochemistry9030078
Chicago/Turabian StyleGarcia-Ramos, Crisanto A., Kiril Krezhov, María T. Fernández-Díaz, and José A. Alonso. 2023. "Antiferromagnetism and Structure of Sr1−xBaxFeO2F Oxyfluoride Perovskites" Magnetochemistry 9, no. 3: 78. https://doi.org/10.3390/magnetochemistry9030078
APA StyleGarcia-Ramos, C. A., Krezhov, K., Fernández-Díaz, M. T., & Alonso, J. A. (2023). Antiferromagnetism and Structure of Sr1−xBaxFeO2F Oxyfluoride Perovskites. Magnetochemistry, 9(3), 78. https://doi.org/10.3390/magnetochemistry9030078