Superconducting Gap Structure of Filled Skutterudite LaOs4As12 Compound through μSR Investigations
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Crystal Structure and Physical Properties
3.2. Superconducting Gap Structure: TF-SR
3.3. Preserved Time Reversal Symmetry: ZF-SR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumbach, R.; Maple, M. Filled Skutterudites: Magnetic and Electrical Transport Properties. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Sales, B.; Mandrus, D.; Williams, R.K. Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials. Science 1996, 272, 1325–1328. [Google Scholar] [CrossRef] [PubMed]
- Keppens, V.; Mandrus, D.; Sales, B.C.; Chakoumakos, B.; Dai, P.; Coldea, R.; Maple, M.; Gajewski, D.; Freeman, E.; Bennington, S. Localized vibrational modes in metallic solids. Nature 1998, 395, 876–878. [Google Scholar] [CrossRef]
- Bauer, E.; Frederick, N.; Ho, P.C.; Zapf, V.; Maple, M. Superconductivity and heavy fermion behavior in PrOs4Sb12. Phys. Rev. B 2002, 65, 100506. [Google Scholar] [CrossRef]
- Kotegawa, H.; Yogi, M.; Imamura, Y.; Kawasaki, Y.; Zheng, G.Q.; Kitaoka, Y.; Ohsaki, S.; Sugawara, H.; Aoki, Y.; Sato, H. Evidence for Unconventional Strong-Coupling Superconductivity in PrOs4Sb12: An Sb Nuclear Quadrupole Resonance Study. Phys. Rev. Lett. 2003, 90, 027001. [Google Scholar] [CrossRef]
- Adroja, D.; Hillier, A.; Park, J.G.; Goremychkin, E.; McEwen, K.; Takeda, N.; Osborn, R.; Rainford, B.; Ibberson, R. Probing the vortex state of PrRu4Sb12 through muon spin rotation and relaxation. Phys. Rev. B 2005, 72, 184503. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Jiao, L.; Gumeniuk, R.; Nicklas, M.; Chen, Y.; Yang, L.; Fu, B.; Schnelle, W.; Rosner, H.; et al. Multiband superconductivity in PrPt4Ge12 single crystals. Phys. Rev. B 2013, 87, 064502. [Google Scholar] [CrossRef]
- Kawamura, Y.; Deminami, S.; Salamakha, L.; Sidorenko, A.; Heinrich, P.; Michor, H.; Bauer, E.; Sekine, C. Filled skutterudite superconductor CaOs4P12 prepared by high-pressure synthesis. Phys. Rev. B 2018, 98, 024513. [Google Scholar] [CrossRef]
- Takeda, N.; Ishikawa, M. Superconducting and Magnetic Properties of Filled Skutterudite Compounds RERu 4Sb12 (RE=La, Ce, Pr, Nd and Eu). J. Phys. Soc. Jpn. 2000, 69, 868–873. [Google Scholar] [CrossRef]
- Adroja, D.; Park, J.G.; McEwen, K.; Takeda, N.; Ishikawa, M.; So, J.Y. Spin gap formation in the heavy fermion skutterudite compound CeRu4Sb12. Phys. Rev. B 2003, 68, 094425. [Google Scholar] [CrossRef]
- Adroja, D.; Park, J.; Goremychkin, E.; McEwen, K.; Takeda, N.; Rainford, B.; Knight, K.; Taylor, J.; Park, J.; Walker, H.; et al. Observation of two spin gap energies in the filled skutterudite compound CeOs4Sb12. Phys. Rev. B 2007, 75, 014418. [Google Scholar] [CrossRef]
- Baumbach, R.; Ho, P.; Sayles, T.; Maple, M.; Wawryk, R.; Cichorek, T.; Pietraszko, A.; Henkie, Z. The filled skutterudite CeOs4As12: A hybridization gap semiconductor. Proc. Natl. Acad. Sci. USA 2008, 105, 17307–17311. [Google Scholar] [CrossRef]
- Shankar, A.; Chaki, T.; Barman, N.; Chatterjee, S.; Thapa, R.; Mandal, P. CeOs4As12: A hybridized gap semiconductor. Indian J. Phys. 2019, 93, 1419–1425. [Google Scholar] [CrossRef]
- Sanada, S.; Aoki, Y.; Aoki, H.; Tsuchiya, A.; Kikuchi, D.; Sugawara, H.; Sato, H. Exotic Heavy-Fermion State in Filled Skutterudite SmOs4Sb12. J. Phys. Soc. Jpn. 2005, 74, 246–249. [Google Scholar] [CrossRef]
- Shirotani, I.; Uchiumi, T.; Ohno, K.; Sekine, C.; Nakazawa, Y.; Kanoda, K.; Todo, S.; Yagi, T. Superconductivity of filled skutterudites LaRu4As12 and PrRu4As12. Phys. Rev. B 1997, 56, 7866. [Google Scholar] [CrossRef]
- Maple, M.; Frederick, N.; Ho, P.C.; Yuhasz, W.; Yanagisawa, T. Unconventional Superconductivity and Heavy Fermion Behavior in PrOs4Sb12. J. Supercond. Nov. Magn. 2006, 19, 299–315. [Google Scholar] [CrossRef]
- Nordström, L.; Singh, D.J. Electronic structure of Ce-filled skutterudites. Phys. Rev. B 1996, 53, 1103. [Google Scholar] [CrossRef]
- Meisner, G. Superconductivity and magnetic order in ternary rare earth transition metal phosphides. Phys. B + C 1981, 108, 763–764. [Google Scholar] [CrossRef]
- Shirotani, I.; Adachi, T.; Tachi, K.; Todo, S.; Nozawa, K.; Yagi, T.; Kinoshita, M. Electrical conductivity and superconductivity of metal phosphides with skutterudite-type structure prepared at high pressure. J. Phys. Chem. Solids 1996, 57, 211–216. [Google Scholar] [CrossRef]
- Uchiumi, T.; Shirotani, I.; Sekine, C.; Todo, S.; Yagi, T.; Nakazawa, Y.; Kanoda, K. Superconductivity of LaRu4X12 (X = P, As and Sb) with skutterudite structure. J. Phys. Chem. Solids 1999, 60, 689–695. [Google Scholar] [CrossRef]
- Shirotani, I.; Ohno, K.; Sekine, C.; Yagi, T.; Kawakami, T.; Nakanishi, T.; Takahashi, H.; Tang, J.; Matsushita, A.; Matsumoto, T. Electrical conductivity and superconductivity of LaT4As12(T=Fe, Ru and Os) with skutterudite-type structure. Phys. B Condens. Matter 2000, 281, 1021–1023. [Google Scholar] [CrossRef]
- Matsuhira, K.; Sekine, C.; Wakeshima, M.; Hinatsu, Y.; Namiki, T.; Takeda, K.; Shirotani, I.; Sugawara, H.; Kikuchi, D.; Sato, H. Systematic study of lattice specific heat of filled skutterudites. J. Phys. Soc. Jpn. 2009, 78, 124601. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Adroja, D.; Koza, M.; Tsutsui, S.; Cichorek, T.; Hillier, A. Multigap superconductivity in the filled-skutterudite compound LaRu4As12 probed by muon spin rotation. Phys. Rev. B 2022, 106, 134516. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Panda, K.; Adroja, D.; Kase, N.; Biswas, P.; Saha, S.; Das, T.; Lees, M.; Hillier, A. Investigation of superconducting gap structure in HfIrSi using muon spin relaxation/rotation. J. Phys. Condens. Matter 2019, 32, 085601. [Google Scholar] [CrossRef] [PubMed]
- Juraszek, J.; Henkie, Z.; Cichorek, T. Specific Heatof the Filled Skutterudite Superconductor LaOs4As12. Acta Phys. Pol. A 2016, 130, 597–599. [Google Scholar] [CrossRef]
- Juraszek, J.; Wawryk, R.; Henkie, Z.; Konczykowski, M.; Cichorek, T. Symmetry of Order Parameters in Multiband Superconductors LaRu4 As12 and PrOs4 Sb12 Probed by Local Magnetization Measurements. Phys. Rev. Lett. 2020, 124, 027001. [Google Scholar] [CrossRef]
- Marek Koza, M.; Adroja, D.; Takeda, N.; Henkie, Z.; Cichorek, T. Vibrational Dynamics of Filled Skutterudites LaT4 X12 (T = Fe, Ru, Os, X = As, Sb). J. Phys. Soc. Jpn. 2013, 82, 114607. [Google Scholar] [CrossRef]
- Ferreira, P.; Lucrezi, R.; Heil, C.; Eleno, L. Electronic structure of filled skutterudite LaOs4As12 compound. 2023, unpublished. [Google Scholar]
- Henkie, Z.; Maple, M.B.; Pietraszko, A.; Wawryk, R.; Cichorek, T.; Baumbach, R.E.; Yuhasz, W.M.; Ho, P.C. Crystal growth and properties of the filled skutterudite arsenides. J. Phys. Soc. Jpn. 2008, 77, 128–134. [Google Scholar] [CrossRef]
- Lee, S.L.; Cywinski, R.; Kilcoyne, S. Muon Science: Muons in Physics, Chemistry and Materials; CRC Press: Boca Raton, FL, USA, 1999; Volume 51. [Google Scholar]
- Sonier, J.E.; Brewer, J.H.; Kiefl, R.F. μSR studies of the vortex state in type-II superconductors. Rev. Mod. Phys. 2000, 72, 769. [Google Scholar] [CrossRef]
- Pratt, F. WIMDA: A muon data analysis program for the Windows PC. Phys. B Condens. Matter 2000, 289, 710–714. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Adroja, D.T.; Smidman, M.; Anand, V.K. A brief review on μSR studies of unconventional Fe- and Cr-based superconductors. Sci. China Phys. Mech. Astron. 2018, 61, 127402. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Adroja, D.T.; Panda, K.; Saha, S.; Das, T.; Machado, A.J.S.; Cigarroa, O.V.; Grant, T.W.; Fisk, Z.; Hillier, A.D.; et al. Evidence of a Nodal Line in the Superconducting Gap Symmetry of Noncentrosymmetric ThCoC2. Phys. Rev. Lett. 2019, 122, 147001. [Google Scholar] [CrossRef]
- Adroja, D.T.; Bhattacharyya, A.; Sato, Y.J.; Lees, M.R.; Biswas, P.K.; Panda, K.; Anand, V.K.; Stenning, G.B.G.; Hillier, A.D.; Aoki, D. Pairing symmetry of an intermediate valence superconductor CeIr3 investigated using μSR measurements. Phys. Rev. B 2021, 103, 104514. [Google Scholar] [CrossRef]
- Brandt, E. Magnetic field density of perfect and imperfect flux line lattices in type II superconductors. I. Application of periodic solutions. J. Low Temp. Phys. 1988, 73, 355–390. [Google Scholar] [CrossRef]
- Brandt, E.H. Properties of the ideal Ginzburg-Landau vortex lattice. Phys. Rev. B 2003, 68, 054506. [Google Scholar] [CrossRef]
- Prozorov, R.; Giannetta, R.W. Magnetic penetration depth in unconventional superconductors Supercond. Sci. Technol. 2006, 19, R41–R67. [Google Scholar] [CrossRef]
- Adroja, D.T.; Bhattacharyya, A.; Telling, M.; Feng, Y.; Smidman, M.; Pan, B.; Zhao, J.; Hillier, A.D.; Pratt, F.L.; Strydom, A.M. Superconducting ground state of quasi-one-dimensional K2Cr3As3 investigated using μSR measurements. Phys. Rev. B 2015, 92, 134505. [Google Scholar] [CrossRef]
- McMillan, W.L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968, 167, 331–344. [Google Scholar] [CrossRef]
- Chia, E.E.M.; Salamon, M.B.; Sugawara, H.; Sato, H. Probing the superconducting gap symmetry of PrRu4Sb12: A comparison with PrOs4Sb12. Phys. Rev. B 2004, 69, 180509. [Google Scholar] [CrossRef]
- Amato, A. Heavy-fermion systems studied by μSR technique. Rev. Mod. Phys. 1997, 69, 1119–1180. [Google Scholar] [CrossRef]
- Panda, K.; Bhattacharyya, A.; Adroja, D.T.; Kase, N.; Biswas, P.K.; Saha, S.; Das, T.; Lees, M.R.; Hillier, A.D. Probing the superconducting ground state of ZrIrSi: A muon spin rotation and relaxation study. Phys. Rev. B 2019, 99, 174513. [Google Scholar] [CrossRef]
- Tran, V.H.; Hillier, A.D.; Adroja, D.T.; Kaczorowski, D. Muon spin rotation and relaxation studies of the filled skutterudite superconductor LaOs4As12 and LaRu4As12. J. Phy. Condens. Matter 2016, 22, 505701. [Google Scholar] [CrossRef] [PubMed]
Model | (meV) | 2/k | ||
---|---|---|---|---|
LaOsAs (s-wave) | 0.45 | 3.26 | 3.2 | 168 |
LaRuAs (s + s-wave) | 1.656, 0.064 | 3.73, 0.144 | 10.3 | 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharyya, A.; Adroja, D.T.; Hillier, A.D.; Biswas, P.K. Superconducting Gap Structure of Filled Skutterudite LaOs4As12 Compound through μSR Investigations. Magnetochemistry 2023, 9, 117. https://doi.org/10.3390/magnetochemistry9050117
Bhattacharyya A, Adroja DT, Hillier AD, Biswas PK. Superconducting Gap Structure of Filled Skutterudite LaOs4As12 Compound through μSR Investigations. Magnetochemistry. 2023; 9(5):117. https://doi.org/10.3390/magnetochemistry9050117
Chicago/Turabian StyleBhattacharyya, Amitava, Devashibhai T. Adroja, Adrian D. Hillier, and Pabitra Kumar Biswas. 2023. "Superconducting Gap Structure of Filled Skutterudite LaOs4As12 Compound through μSR Investigations" Magnetochemistry 9, no. 5: 117. https://doi.org/10.3390/magnetochemistry9050117
APA StyleBhattacharyya, A., Adroja, D. T., Hillier, A. D., & Biswas, P. K. (2023). Superconducting Gap Structure of Filled Skutterudite LaOs4As12 Compound through μSR Investigations. Magnetochemistry, 9(5), 117. https://doi.org/10.3390/magnetochemistry9050117