Improving the Performance of LiFePO4 Cathodes with a Sulfur-Modified Carbon Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Fan, Z.; Xu, C.; Jiang, F.; Feng, X. Experimental investigation of thermal runaway characteristics of large-format Li(Ni0.8Co0.1Mn0.1)O2 Battery under Different Heating Powers and Areas. Batteries 2024, 10, 241. [Google Scholar] [CrossRef]
- Das, D.; Manna, S.; Puravankara, S. Electrolytes, Additives and Binders for NMC cathodes in Li-ion batteries—A review. Batteries 2023, 9, 193. [Google Scholar] [CrossRef]
- Panda, P.K.; Cho, T.S.; Hsieh, C.-T.; Yang, P.C. Cobalt- and Copper-Doped NASICON-Type LATP Polymer Composite Electrolytes Enabling Lithium Titania Electrode for Solid-State Lithium Batteries with High-Rate Capability and Excellent Cyclic Performance. J. Energy Storage 2024, 95, 112559. [Google Scholar] [CrossRef]
- Joo, M.J.; Kim, M.; Chae, S.; Ko, M.; Park, Y.J. Additive-derived surface modification of cathodes in all-solid-state batteries: The effect of lithium difluorophosphate- and lithium Difluoro(Oxalato)Borate-derived coating layers. ACS Appl. Mater. Interfaces 2023, 15, 59389–59402. [Google Scholar] [CrossRef]
- Ji, Y.J.; Noh, S.; Seong, J.Y.; Lee, S.; Park, Y.J. Li3BO3-Li3PO4 Composites for Efficient Buffer Layer of Sulphide-Based All-Solid-State Batteries. Batteries 2024, 9, 292. [Google Scholar] [CrossRef]
- Madaoui, S.; Vinassa, J.M.; Sabatier, J.; Guillemard, F. An electrothermal model of an NMC lithium-ion prismatic battery cell for temperature distribution assessment. Batteries 2023, 9, 478. [Google Scholar] [CrossRef]
- Joo, M.J.; Park, Y.J. Stabilizing Li2O-based Cathode /Electrolyte interfaces through succinonitrile addition. J. Electrochem. Sci. Technol. 2023, 14, 231–242. [Google Scholar] [CrossRef]
- Hawley, W.B.; Li, M.; Li, J. Room-temperature eutectic synthesis for upcycling of cathode materials. Batteries 2023, 9, 498. [Google Scholar] [CrossRef]
- Ramasubramanian, B.; Sundarrajan, S.; Chellappan, V.; Reddy, M.V.; Ramakrishna, S.; Zaghib, K. Recent development in carbon-LiFePO4 cathodes for lithium-ion batteries: A mini review. Batteries 2022, 8, 133. [Google Scholar] [CrossRef]
- Mohanty, D.; Chang, M.J.; Hung, I.M. The effect of different amounts of conductive carbon material on the electrochemical performance of the LiFePO4 cathode in Li-ion batteries. Batteries 2023, 9, 515. [Google Scholar] [CrossRef]
- Wu, K.; Hu, N.; Wang, S.; Geng, Z.; Deng, W. Enhancing performance of LiFePO4 battery by using a novel gel composite polymer electrolyte. Batteries 2023, 9, 51. [Google Scholar] [CrossRef]
- Zhang, W.J. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 2011, 196, 2962–2970. [Google Scholar] [CrossRef]
- Chen, S.P.; Lv, D.; Chen, J.; Zhang, Y.H.; Shi, F.N. Review on defects and modification methods of LiFePO4 Cathode material for lithium-ion batteries. Energy Fuels 2022, 36, 1232–1251. [Google Scholar] [CrossRef]
- Prosini, P.P.; Lisi, M.; Jane, D.; Pasquali, M. Determination of the Diffusion Coefficient of LiFePO4. Solid State Ionics 2002, 148, 45–51. [Google Scholar] [CrossRef]
- Amin, R.; Balaya, P.; Maier, J. Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochem. Solid State Lett. 2007, 10, 13–16. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 2012, 5, 5163–5185. [Google Scholar] [CrossRef]
- Moon, H.; Kim, D.; Park, G.; Shin, K.; Cho, Y.; Gong, C.; Lee, Y.S.; Nam, H.; Hong, S.; Choi, N.S. Balancing ionic and electronic conduction at the LiFePO4 cathode–electrolyte interface and regulating solid electrolyte interphase in lithium-ion batteries. Adv. Funct. Mater. 2024, 34, 2403261. [Google Scholar] [CrossRef]
- Ni, H.; Liu, J.; Fan, L.Z. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries. Nanoscale 2013, 5, 2164–2168. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yuan, X.; Tan, H.; Jian, S.; Ma, Z.; Zhao, J.; Wang, X.; Chen, D.; Dong, Y. Three-dimensional carbon-coated LiFePO4 cathode with improved Li-ion battery performance. Coatings 2021, 11, 1137. [Google Scholar] [CrossRef]
- Qi, M.; Liu, Y.; Xu, M.; Feng, M.; Gu, J.; Liu, Y.; Wang, L. Improved electrochemical performances of carbon-coated LiFePO4 microspheres for Li-ion battery cathode. Mater. Res. Express 2019, 6, 115520. [Google Scholar] [CrossRef]
- Nien, Y.H.; Carey, J.R.; Chen, J.S. Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors. J. Power Sources 2009, 193, 822–827. [Google Scholar] [CrossRef]
- Mathur, P.; Shih, J.Y.; Li, Y.J.J.; Hung, T.F.; Thirumalraj, B.; Ramaraj, S.K.; Jose, R.; Karuppiah, C.; Yang, C.C. In situ metal organic framework (ZIF-8) and mechanofusion-assisted MWCNT coating of LiFePO4/C composite material for lithium-ion batteries. Batteries 2023, 9, 182. [Google Scholar] [CrossRef]
- Yoon, S.; Liao, C.; Sun, X.G.; Bridges, C.A.; Unocic, R.R.; Nanda, J.; Dai, S.; Paranthaman, M.P. Conductive surface modification of LiFePO4 with nitrogen-doped carbon layers for lithium-ion batteries. J. Mater. Chem. 2012, 22, 4611–4614. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Li, X.; Wang, D.; Liu, J.; Liang, G.; Gauthier, M.; Li, Y.; Geng, D.; Li, R.; et al. Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries. J. Mater. Chem. 2012, 22, 7537–7543. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, N.; Liu, Y.; Wang, J.; Yu, F.; Gu, J.; Li, W. Boron and Nitrogen Codoped carbon layers of LiFePO4 improve the high-rate electrochemical performance for lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 20134–20143. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, Z.; Hou, X.; Liu, L.; He, M.; He, X.; Huang, J.; Wen, Z. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries. Chem. Eng. J. 2020, 379, 122371. [Google Scholar] [CrossRef]
- Cho, J.; Kim, Y.J.; Park, B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 2000, 12, 3788–3791. [Google Scholar] [CrossRef]
- Chang, H.H.; Chang, C.C.; Su, C.Y.; Wu, H.C.; Yang, M.H.; Wu, N.L. Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J. Power Sources 2008, 185, 466–472. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, X.; Guo, R. Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating. J. Alloys Compd. 2010, 490, 236–240. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, X.; Guo, R. High rate electrochemical performances of nanosized ZnO and carbon co-coated LiFePO4 cathode. Mater. Res. Bull. 2010, 45, 844–849. [Google Scholar] [CrossRef]
- Cho, J.; Kim, Y.J.; Kim, T.J.; Park, B. Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew. Chem. Int. Ed. Engl. 2001, 40, 3367–3369. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.X.; Ding, H.; Wang, Y.C.; Li, B.H.; Nan, C.W. Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon. J. Alloys Compd. 2013, 566, 206–211. [Google Scholar] [CrossRef]
- Lee, S.B.; Cho, S.H.; Aravindan, V.; Kim, H.S.; Lee, Y.S. Improved cycle performance of sulfur doped LiFePO4 material at high temperatures. Koreascience 2009, 30, 2223–2226. [Google Scholar] [CrossRef]
- Xu, D.; Wang, P.; Shen, B. Synthesis and characterization of sulfur-doped carbon decorated LiFePO4 nanocomposite as high performance cathode material for lithium-ion batteries. Ceram. Int. 2016, 42, 5331–5338. [Google Scholar] [CrossRef]
- Wilcox, J.D.; Doeff, M.M.; Marcinek, M.; Kostecki, R. Factors influencing the quality of carbon coatings on LiFePO4. J. Electrochem. Soc. 2007, 154, A389–A395. [Google Scholar] [CrossRef]
- Ait Salah, A.; Mauger, A.; Zaghib, K.; Goodenough, J.B.; Ravet, N.; Gauthier, M.; Gendron, F.; Julien, C.M. Reduction Fe3+ of Impurities in LiFePO4 from Pyrolysis of Organic Precursor Used for Carbon Deposition. J. Electrochem. Soc. 2006, 153, A1692–A1701. [Google Scholar] [CrossRef]
- Doeff, M.M.; Wilcox, J.D.; Kostecki, R.; Lau, G. Optimization of carbon coatings on LiFePO4. J. Power Sources 2006, 163, 180–184. [Google Scholar] [CrossRef]
- Bao, S.J.; Liang, Y.Y.; Li, H.L. Synthesis and electrochemical properties of LiMn2O4 by microwave-assisted sol-gel method. Mater. Lett. 2005, 59, 3761–3765. [Google Scholar] [CrossRef]
- Nara, H.; Morita, K.; Mukoyama, D.; Yokoshima, T.; Momma, T.; Osaka, T. Impedance analysis of LiNi1/3Mn1/3Co1/3O2 cathodes with different secondary-particle size distribution in lithium-ion battery. Electrochim. Acta 2017, 241, 323–330. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, F.; Wang, G.; Wang, L.; Meng, Y.; Zhang, Y. Synthesis of LiFePO4/C using ionic liquid as carbon source for lithium ion batteries. Solid State Ion. 2017, 308, 133–138. [Google Scholar] [CrossRef]
- Guo, F.; Huang, X.; Li, Y.; Zhang, S.; He, X.; Liu, J.; Yu, Z.; Li, F. In Situ Low-Temperature Carbonization Capping of LiFePO4 with Coke for Enhanced Lithium Battery Performance. Molecules 2023, 28, 6083. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.; Peng, Z.; Yang, Y.; Li, L.; Raji, A.R.O.; Samuel, E.L.G.; Tour, J.M. LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes. Chem. Commun. 2014, 50, 7117–7119. [Google Scholar] [CrossRef] [PubMed]
- Pratheeksha, P.M.; Rajeshwari, J.S.; Daniel, P.J.; Rao, T.N.; Anandan, S. Investigation of In-Situ Carbon Coated LiFePO4 as a Superior Cathode Material for Lithium Ion Batteries. J. Nanosci. Nanotechnol. 2018, 19, 3002–3011. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Luo, E.; Ouyang, J.; Lu, Q.; Zhang, X.; Wei, D.; Han, W.K.; Xu, X.; Wei, L. Tuning the graphitization of the carbon coating layer on LiFePO4 Enables Superior Properties. Int. J. Electrochem. Sci. 2024, 19, 100450. [Google Scholar] [CrossRef]
- Chen, C.; Luo, C.; Jin, Y.; Li, J.; Zhao, Q.; Yang, W. Short-Process Spray-Drying Synthesis of Lithium Iron Phosphate@Carbon Composite for Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2024, 12, 14077–14086. [Google Scholar] [CrossRef]
Discharge Capacity (mAh·g−1) | Capacity Retention (%) | ||||||
---|---|---|---|---|---|---|---|
0.05 C (1st Cycle) | 0.1 C (2nd Cycle) | 0.3 C (5th Cycle) | 0.5 C (10th Cycle) | 1 C (15th Cycle) | 0.05 C (20th Cycle) | ||
Pristine LFP | 142.2 | 130.1 | 107.8 | 94.2 | 76.2 | 137.9 | 53.6 |
1-step S1500ppm | 146.1 | 133.7 | 109.9 | 96.4 | 78.6 | 140.8 | 53.8 |
1-step S2000ppm | 152.2 | 141.8 | 120.8 | 106.3 | 88.5 | 145.2 | 58.1 |
1-step S2500ppm | 151.3 | 140.2 | 119.5 | 106.0 | 88.6 | 146.7 | 58.5 |
2-step S250ppm | 143.9 | 130.2 | 105.3 | 91.7 | 75.1 | 138.1 | 52.2 |
2-step S500ppm | 152.8 | 140.9 | 118.2 | 101.6 | 83.0 | 147.6 | 54.3 |
2-step S750ppm | 146.9 | 134.8 | 112.5 | 98.2 | 80.5 | 142.2 | 54.8 |
a (Å) | b (Å) | c (Å) | V (Å3) | Rwp | GoF | |
---|---|---|---|---|---|---|
Pristine LFP | 10.3253 | 6.0190 | 4.6903 | 290.8579 | 2.0026 | 1.7312 |
1-step SLFP | 10.3320 | 6.0100 | 4.6920 | 291.3512 | 2.6242 | 2.4149 |
2-step SLFP | 10.3255 | 6.0046 | 4.6912 | 290.873 | 2.1400 | 1.9005 |
After 1 Cycle | After 100 Cycles | |||||||
---|---|---|---|---|---|---|---|---|
Rb (Ω) | RSEI (Ω) | RCT (Ω) | Rtotal (Ω) | Rb (Ω) | RSEI (Ω) | RCT (Ω) | Rtotal (Ω) | |
Pristine LFP | 4.96 | 7.63 | 43.94 | 56.54 | 25.53 | 16.09 | 54.28 | 95.90 |
1-step SLFP | 4.70 | 6.96 | 13.05 | 24.70 | 22.95 | 14.66 | 35.02 | 70.50 |
2-step SLFP | 4.11 | 7.90 | 30.43 | 42.44 | 16.75 | 12.52 | 35.84 | 67.25 |
Discharge Capacity (mAh·g−1) | Capacity Retention (%) | ||||||
---|---|---|---|---|---|---|---|
0.05 C (1st Cycle) | 0.1 C (2nd Cycle) | 0.3 C (5th Cycle) | 0.5 C (10th Cycle) | 1 C (15th Cycle) | 0.05 C (20th Cycle) | ||
Pristine LFP_7days | 143.97 | 130.54 | 104.41 | 87.40 | 67.45 | 134.31 | 46.85 |
1-step SLFP_7days | 148.60 | 130.78 | 100.27 | 83.68 | 65.07 | 138.50 | 43.79 |
2-step SLFP_7days | 147.46 | 134.74 | 109.58 | 93.24 | 73.89 | 138.23 | 50.11 |
Pristine LFP_10days | 140.59 | 127.97 | Cell fail | ||||
1-step SLFP_10days | 147.54 | 133.13 | 102.43 | 83.08 | 57.48 | 113.11 | 38.96 |
2-step SLFP_10days_ | 149.43 | 134.45 | 108.45 | 90.75 | 69.43 | 139.60 | 46.46 |
Pristine LFP_14days | Cell fail | ||||||
1-step SLFP_14days | 156.78 | 141.31 | 101.47 | Cell fail | |||
2-step SLFP_14days | 147.29 | 132.03 | 102.90 | 85.68 | Cell fail |
Cathode | Coating Source | Conditions | Discharge Capacity | Reference |
---|---|---|---|---|
LiFePO4 | [Velm]NTf2 | Room temperature 2.5 V–4.2 V | 0.1 C 136.4 mAh·g−1 | [40] |
LiFePO4 | Coke | 25 °C 2.5 V–4.2 V | 0.1 C 145.99 mAh·g−1 | [41] |
LiFePO4 | Graphene nanosheet | Room temperature 2.0 V–4.3 V | 0.1 C 145 mAh·g−1 | [42] |
LiFePO4 | Sucrose | 2.0 V–4.2 V | 0.1 C 128 mAh·g−1 | [20] |
LiFePO4 | Sucrose | 2.5 V–4.5 V | 0.1 C 125 mAh·g−1 | [43] |
LiFePO4 | Sucrose | 25 °C 2.5 V–3.8 V | 0.1 C 140 mAh·g−1 | [44] |
LiFePO4 | Sucrose | Room temperature 2.4 V–4.2 V | 0.1 C 132 mAh·g−1 | [45] |
LiFePO4 | Cellulose | 30 °C 2.5 V–4.2 V | 0.1 C 141.8 mAh·g−1 | Our study |
LiFePO4 | Cellulose | 30 °C 2.5 V–4.2 V | 0.1 C 140.9 mAh·g−1 | Our study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, S.-h.; Park, Y.J. Improving the Performance of LiFePO4 Cathodes with a Sulfur-Modified Carbon Layer. Batteries 2024, 10, 348. https://doi.org/10.3390/batteries10100348
Kwak S-h, Park YJ. Improving the Performance of LiFePO4 Cathodes with a Sulfur-Modified Carbon Layer. Batteries. 2024; 10(10):348. https://doi.org/10.3390/batteries10100348
Chicago/Turabian StyleKwak, Su-hyun, and Yong Joon Park. 2024. "Improving the Performance of LiFePO4 Cathodes with a Sulfur-Modified Carbon Layer" Batteries 10, no. 10: 348. https://doi.org/10.3390/batteries10100348
APA StyleKwak, S. -h., & Park, Y. J. (2024). Improving the Performance of LiFePO4 Cathodes with a Sulfur-Modified Carbon Layer. Batteries, 10(10), 348. https://doi.org/10.3390/batteries10100348