Toward Dendrite-Free Deposition in Zinc-Based Flow Batteries: Status and Prospects
Abstract
:1. Introduction
Media | Types | Voltage (V) | Current Density (mA cm−2) | Energy Efficiency (EE) (%) | Areal Capacity (mA h cm−2) | Cycle Number |
---|---|---|---|---|---|---|
Acid | Zn-V [29] | 1.85 | 20 | 72 | 20 | 50 |
Zn-Fe [30] | 1.53 | 30 | 71.1 | - | 50 | |
Zn-PbO2 [31] | 2.4 | 20 | 83 | - | 10 | |
Zn-Ce [32] | 1.86 | 2 | 64 | - | 15 | |
Zn-Mn [33] | 1.66 | 20 | 75 | - | 300 | |
Neutral | Zn-Fe [34] | 1.32 | 30 | 86.7 | - | 2000 |
Zn-Mn [35] | 1.55 | 40 | 78 | 20 | 400 | |
Zn–I2 [36] | 1.38 | 20 | 70 | 5 | 600 | |
Zn-Br [37] | 1.84 | 180 | 63.5 | 40 | 400 | |
Zn-TEMPO [38] | 1.7 | 80 | ~52 | - | 1000 | |
Alkaline | Zn-Fe [39] | 1.88 | 80 | 86.8 | 20 | 120 |
Zn-Ni [40] | 1.70 | 80 | 77.5 | 25 | 60 | |
Zn-Air [41] | 1.53 | 10 | 60 | - | 2660 |
2. Mechanisms of Zn Dendrite Formation
3. Key Factors Affecting Zn Deposition
3.1. Effect of Electrode
3.2. Effect of Electrolyte Composition
3.3. Effect of Flow Rate
3.4. Effect of Current Density
3.5. Effect of Temperature
3.6. Effect of Parasitic Reactions
4. Strategies for Dendrite Suppression
4.1. Electrode Modification
4.2. Electrolyte Modulation
4.3. Membrane Engineering
5. Concluding Remarks and Outlook
- The currently demonstrated area capacity of deposited Zn is still relatively low. This is because dendrites become more severe at a higher areal capacity. Therefore, future works need to develop Zn electrodes that can operate at a high areal capacity without dendrite growth. Engineering porous electrodes (e.g., pore size, pore distribution, surface properties) to achieve uniform Zn deposition within the porous structure would be a promising approach.
- The underlying mechanisms of Zn deposition in porous electrodes remain unclear. In ZFBs, convective mass transfer is deemed to have a considerable impact on the Zn deposition as flowing electrolytes are applied to supply reactants. Yet, the interplay between transport phenomena, liquid–solid phase change, Zn deposition morphologies, and the corresponding electrochemical performance is unclear, hindering the development of effective strategies to address the Zn dendrite issue. More fundamental studies are needed to establish an in-depth understanding of the complex Zn electrodeposition process.
- The fundamental mechanisms of electrolyte modulation for Zn dendrite suppression need further exploration. The composition of the electrolyte will have a profound impact on the electrode/electrolyte interface properties and solvation structure of Zn2+ ions, which play a crucial role in determining the nucleation and growth process of Zn deposition. Unfortunately, the exact aqueous environment is dynamic and rather complex, especially in the presence of dendrite inhibitors, making it extremely challenging to clarify the fundamental interplay of electrolyte species and Zn electrochemistry. To resolve this challenge, advanced characterization techniques that can probe the solvation structures should be developed along with advanced mathematical modeling in the future.
- The role of the membrane in Zn dendrite suppression should be further explored. At present, only a few studies on membrane engineering to suppress Zn dendrites have been conducted. Considering that membranes determine the ion flux and may be in direct contact with the deposited Zn, membranes are a critical component of ZFBs to be studied to achieve dendrite-free Zn deposition. Ion selectivity, internal resistance, mechanical strength (Zn suppression capability), stability, and cost should be delicately considered.
Author Contributions
Funding
Conflicts of Interest
References
- Guangtao Cong, Y.-C.L. Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries. Acta Phys.-Chim. Sin. 2022, 38, 2106008. [Google Scholar] [CrossRef]
- Lou, X.; Yuan, D.; Yu, Y.; Lei, Y.; Ding, M.; Sun, Q.; Jia, C. A Cost-effective Nafion Composite Membrane as an Effective Vanadium-Ion Barrier for Vanadium Redox Flow Batteries. Chem. Asian J. 2020, 15, 2357–2363. [Google Scholar] [CrossRef] [PubMed]
- Holdren, J.P. Energy and sustainability. Science 2007, 315, 737. [Google Scholar] [CrossRef] [PubMed]
- Soloveichik, G.L. Flow batteries: Current status and trends. Chem. Rev. 2015, 115, 11533–11558. [Google Scholar] [CrossRef]
- Leung, P.; Li, X.; De León, C.P.; Berlouis, L.; Low, C.J.; Walsh, F.C. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012, 2, 10125–10156. [Google Scholar] [CrossRef]
- Wadia, C.; Albertus, P.; Srinivasan, V. Resource constraints on the battery energy storage potential for grid and transportation applications. J. Power Sources 2011, 196, 1593–1598. [Google Scholar] [CrossRef]
- Khor, A.; Leung, P.; Mohamed, M.; Flox, C.; Xu, Q.; An, L.; Wills, R.; Morante, J.; Shah, A. Review of zinc-based hybrid flow batteries: From fundamentals to applications. Mater. Today Energy 2018, 8, 80–108. [Google Scholar] [CrossRef]
- Yin, Y.; Yuan, Z.; Li, X. Rechargeable aqueous zinc-bromine battery: Overview and future perspective. Phys. Chem. Chem. Phys. 2021, 23, 26070–26084. [Google Scholar] [CrossRef]
- Gong, K.; Ma, X.; Conforti, K.M.; Kuttler, K.J.; Grunewald, J.B.; Yeager, K.L.; Bazant, M.Z.; Gu, S.; Yan, Y. A zinc–iron redox-flow battery under $100 per kW h of system capital cost. Energy Environ. Sci. 2015, 8, 2941–2945. [Google Scholar] [CrossRef]
- Rajarathnam, G.P. The Zinc/Bromine Flow Battery: Fundamentals and Novel Materials for Technology Advancement. Ph.D. Thesis, The University of Sydney, Sydney, NSW, Australia, 2016. [Google Scholar]
- Pistoia, G. Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Kondoh, J.; Ishii, I.; Yamaguchi, H.; Murata, A.; Otani, K.; Sakuta, K.; Higuchi, N.; Sekine, S.; Kamimoto, M. Electrical energy storage systems for energy networks. Energy Convers. Manag. 2000, 41, 1863–1874. [Google Scholar] [CrossRef]
- Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314. [Google Scholar] [CrossRef]
- Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafáfila-Robles, R. A review of energy storage technologies for wind power applications. Renew. Sust. Energ. Rev. 2012, 16, 2154–2171. [Google Scholar] [CrossRef]
- Zheng, Q.; Jiang, L.; Xu, Y.; Gao, S.; Liu, T.; Qu, C.; Chen, H.; Li, X. Research Progress and Development Suggestions of Energy Storage Technology under Background of Carbon Peak and Carbon Neutrality. Bull. Chin. Acad. Sci. (Chin. Version) 2022, 37, 529–540. [Google Scholar]
- Li, B.; Nie, Z.; Vijayakumar, M.; Li, G.; Liu, J.; Sprenkle, V.; Wang, W. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 2015, 6, 6303. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, L.; Zhang, C.; Zhang, J. Effects of bismuth ion and tetrabutylammonium bromide on the dendritic growth of zinc in alkaline zincate solutions. J. Power Sources 2001, 102, 139–143. [Google Scholar] [CrossRef]
- Yuan, Z.; Duan, Y.; Liu, T.; Zhang, H.; Li, X. Toward a low-cost alkaline zinc-iron flow battery with a polybenzimidazole custom membrane for stationary energy storage. IScience 2018, 3, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Zhang, H.; Xu, W.; Wang, W.; Li, X. A Long Cycle Life, Self-Healing Zinc–Iodine Flow Battery with High Power Density. Angew. Chem. 2018, 130, 11341–11346. [Google Scholar] [CrossRef]
- Jiang, H.; Wu, M.; Ren, Y.; Shyy, W.; Zhao, T. Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries. Appl. Energy 2018, 213, 366–374. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, R.; Kim, S.; Heo, J.; Kwon, H.; Yang, J.H.; Kim, H.-T. Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries. Energy Environ. Sci. 2020, 13, 2839–2848. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, C.; Chang, N.; Song, Y.; Zhang, H.; Yin, Y.; Li, X. Act in contravention: A non-planar coupled electrode design utilizing “tip effect” for ultra-high areal capacity, long cycle life zinc-based batteries. Sci. Bull. 2021, 66, 889–896. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, T.; Wei, L.; Jiang, H.; Zhang, R. Improved electrolyte for zinc-bromine flow batteries. J. Power Sources 2018, 384, 232–239. [Google Scholar] [CrossRef]
- Kim, D.; Jeon, J. A Zn(ClO4)2 supporting material for highly reversible zinc–bromine electrolytes. Bull. Korean Chem. Soc. 2016, 37, 299–304. [Google Scholar] [CrossRef]
- Bae, S.; Lee, J.; Kim, D.S. The effect of Cr3+-Functionalized additive in zinc-bromine flow battery. J. Power Sources 2019, 413, 167–173. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, C.; Li, T.; Yuan, Z.; Zhang, H.; Li, X. Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of turing membrane. J. Am. Chem. Soc. 2021, 143, 13135–13144. [Google Scholar] [CrossRef]
- Wu, J.; Dai, Q.; Zhang, H.; Li, X. A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device. Energy Stor. Mater. 2021, 35, 687–694. [Google Scholar] [CrossRef]
- Lu, W.; Li, T.; Yuan, C.; Zhang, H.; Li, X. Advanced porous composite membrane with ability to regulate zinc deposition enables dendrite-free and high-areal capacity zinc-based flow battery. Energy Stor. Mater. 2022, 47, 415–423. [Google Scholar] [CrossRef]
- Ulaganathan, M.; Suresh, S.; Mariyappan, K.; Periasamy, P.; Pitchai, R. New zinc–vanadium (Zn–V) hybrid redox flow battery: High-voltage and energy-efficient advanced energy storage system. ACS Sustain. Chem. Eng. 2019, 7, 6053–6060. [Google Scholar] [CrossRef]
- Xie, Z.; Su, Q.; Shi, A.; Yang, B.; Liu, B.; Chen, J.; Zhou, X.; Cai, D.; Yang, L. High performance of zinc-ferrum redox flow battery with Ac−/HAc buffer solution. J. Energy Chem. 2016, 25, 495–499. [Google Scholar] [CrossRef]
- Pan, J.; Wen, Y.; Cheng, J.; Pan, J.; Bai, S.; Yang, Y. Evaluation of substrates for zinc negative electrode in acid PbO2–Zn single flow batteries. Chin. J. Chem. Eng. 2016, 24, 529–534. [Google Scholar] [CrossRef]
- Li, Y.; Geysens, P.; Zhang, X.; Sniekers, J.; Fransaer, J.; Binnemans, K.; Vankelecom, I.F. Cerium-containing complexes for low-cost, non-aqueous redox flow batteries (RFBs). J. Power Sources 2020, 450, 227634. [Google Scholar] [CrossRef]
- Yu, X.; Song, Y.; Tang, A. Tailoring manganese coordination environment for a highly reversible zinc-manganese flow battery. J. Power Sources 2021, 507, 230295. [Google Scholar] [CrossRef]
- Yang, M.; Xu, Z.; Xiang, W.; Xu, H.; Ding, M.; Li, L.; Tang, A.; Gao, R.; Zhou, G.; Jia, C. High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy Storage Mater. 2022, 44, 433–440. [Google Scholar] [CrossRef]
- Xie, C.; Li, T.; Deng, C.; Song, Y.; Zhang, H.; Li, X. A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 2020, 13, 135–143. [Google Scholar] [CrossRef]
- Yang, J.; Song, Y.; Liu, Q.; Tang, A. High-capacity zinc–iodine flow batteries enabled by a polymer–polyiodide complex cathode. J. Mater. Chem. A 2021, 9, 16093–16098. [Google Scholar] [CrossRef]
- Tang, L.; Li, T.; Lu, W.; Li, X. Lamella-like electrode with high Br2-entrapping capability and activity enabled by adsorption and spatial confinement effects for bromine-based flow battery. Sci. Bull. 2022, 67, 1362–1371. [Google Scholar] [CrossRef]
- Winsberg, J.; Stolze, C.; Schwenke, A.; Muench, S.; Hager, M.D.; Schubert, U.S. Aqueous 2,2,6,6-tetramethylpiperidine-N-oxyl catholytes for a high-capacity and high current density oxygen-insensitive hybrid-flow battery. ACS Energy Lett. 2017, 2, 411–416. [Google Scholar] [CrossRef]
- Chen, D.; Kang, C.; Duan, W.; Yuan, Z.; Li, X. A non-ionic membrane with high performance for alkaline zinc-iron flow battery. J. Membr. Sci. 2021, 618, 118585. [Google Scholar] [CrossRef]
- Cheng, Y.; Guo, H. Interface modification of electrodes through polyethylene glycol in rechargeable zinc-nickel batteries. Chem. Eng. Sci. 2021, 232, 116372. [Google Scholar] [CrossRef]
- Li, X.; Liu, D.; Liu, Q.; Xiang, Z. A Pyrolysis-Free Method Toward Large-Scale Synthesis of Ultra-Highly Efficient Bifunctional Oxygen Electrocatalyst for Zinc-Air Flow Batteries. Small 2022, 18, 2201197. [Google Scholar] [CrossRef]
- Lu, W.; Xu, P.; Shao, S.; Li, T.; Zhang, H.; Li, X. Multifunctional Carbon Felt Electrode with N-Rich Defects Enables a Long-Cycle Zinc-Bromine Flow Battery with Ultrahigh Power Density. Adv. Funct. Mater. 2021, 31, 2102913. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, S.; Zhang, Q.; Song, Y.; Chang, N.; Pan, Y.; Zhang, H.; Li, X. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 2020, 32, 1906803. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-N.; Do, E.; Kim, Y.; Yu, J.-S.; Kim, K.J. Development of titanium 3D mesh interlayer for enhancing the electrochemical performance of zinc–bromine flow battery. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Zhi, L.; Li, T.; Liu, X.; Yuan, Z.; Li, X. Functional Complexed Zincate Ions Enable Dendrite-free Long Cycle Alkaline Zinc-based Flow Batteries. Nano Energy 2022, 102, 107697. [Google Scholar] [CrossRef]
- Jian, Q.; Wu, M.; Jiang, H.; Lin, Y.; Zhao, T. A trifunctional electrolyte for high-performance zinc-iodine flow batteries. J. Power Sources 2021, 484, 229238. [Google Scholar] [CrossRef]
- Trudgeon, D.P.; Qiu, K.; Li, X.; Mallick, T.; Taiwo, O.O.; Chakrabarti, B.; Yufit, V.; Brandon, N.P.; Crevillen-Garcia, D.; Shah, A. Screening of effective electrolyte additives for zinc-based redox flow battery systems. J. Power Sources 2019, 412, 44–54. [Google Scholar] [CrossRef]
- Yang, J.; Yan, H.; Hao, H.; Song, Y.; Li, Y.; Liu, Q.; Tang, A. Synergetic Modulation on Solvation Structure and Electrode Interface Enables a Highly Reversible Zinc Anode for Zinc–Iron Flow Batteries. ACS Energy Lett. 2022, 7, 2331–2339. [Google Scholar] [CrossRef]
- Hou, X.; Huang, K.; Xia, Y.; Mu, F.; Cao, H.; Xia, Y.; Wu, Y.; Lu, Y.; Wang, Y.; Xu, F. Fish-scale-like nano-porous membrane based on zeolite nanosheets for long stable zinc-based flow battery. AIChE J. 2022, 68, e17738. [Google Scholar] [CrossRef]
- Hu, J.; Yue, M.; Zhang, H.; Yuan, Z.; Li, X. A Boron Nitride Nanosheets Composite Membrane for a Long-Life Zinc-Based Flow Battery. Angew. Chem. Int. Ed. 2020, 59, 6715–6719. [Google Scholar] [CrossRef]
- Chang, N.; Yin, Y.; Yue, M.; Yuan, Z.; Zhang, H.; Lai, Q.; Li, X. A Cost-Effective Mixed Matrix Polyethylene Porous Membrane for Long-Cycle High Power Density Alkaline Zinc-Based Flow Batteries. Adv. Funct. Mater. 2019, 29, 1901674. [Google Scholar] [CrossRef]
- Jeena, C.B.; Elsa, P.J.; Moly, P.P.; Ambily, K.J.; Joy, V.T. A dendrite free Zn-Fe hybrid redox flow battery for renewable energy storage. Energy Stor. 2022, 4, e275. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc dendrite growth and inhibition strategies. Mater. Today Energy 2021, 20, 100692. [Google Scholar] [CrossRef]
- Mitha, A.; Yazdi, A.Z.; Ahmed, M.; Chen, P. Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. ChemElectroChem 2018, 5, 2409–2418. [Google Scholar] [CrossRef]
- Xu, M.; Ivey, D.; Qu, W.; Xie, Z. Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. J. Power Sources 2015, 274, 1249–1253. [Google Scholar] [CrossRef]
- Cheng, Y.; Xi, X.; Li, D.; Li, X.; Lai, Q.; Zhang, H. Performance and potential problems of high power density zinc–nickel single flow batteries. RSC Adv. 2015, 5, 1772–1776. [Google Scholar] [CrossRef]
- Lu, W.; Xie, C.; Zhang, H.; Li, X. Inhibition of zinc dendrite growth in zinc-based batteries. ChemSusChem 2018, 11, 3996–4006. [Google Scholar] [CrossRef]
- Yang, Q.; Liang, G.; Guo, Y.; Liu, Z.; Yan, B.; Wang, D.; Huang, Z.; Li, X.; Fan, J.; Zhi, C. Do zinc dendrites exist in neutral zinc batteries: A developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 2019, 31, 1903778. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Li, Y.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review. Carbon Energy 2020, 2, 540–560. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, X.; Qin, R.; Liu, X.; Fang, P.; Zheng, D.; Tong, Y.; Lu, X. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Zeng, X.; Li, D.; Mao, J.; Guo, Z. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 2020, 13, 3917–3949. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Du, H.; Kang, F. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem. 2012, 124, 957–959. [Google Scholar] [CrossRef]
- Han, C.; Li, W.; Liu, H.K.; Dou, S.; Wang, J. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 2020, 74, 104880. [Google Scholar] [CrossRef]
- Kundu, D.; Adams, B.D.; Duffort, V.; Vajargah, S.H.; Nazar, L.F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119. [Google Scholar] [CrossRef]
- Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J.A.; Xu, K.; Wang, C. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Shaigan, N.; Qu, W.; Takeda, T. Morphology control of electrodeposited zinc from alkaline zincate solutions for rechargeable zinc air batteries. ECS Trans. 2010, 28, 35. [Google Scholar] [CrossRef]
- Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039. [Google Scholar] [CrossRef]
- Stamm, J.; Varzi, A.; Latz, A.; Horstmann, B. Modeling nucleation and growth of zinc oxide during discharge of primary zinc-air batteries. J. Power Sources 2017, 360, 136–149. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, J.; Tang, Y.; Ji, X.; Wang, H. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 13180–13191. [Google Scholar] [CrossRef]
- Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139. [Google Scholar] [CrossRef]
- Yang, J.L.; Li, J.; Zhao, J.W.; Liu, K.; Yang, P.; Fan, H.J. Stable Zinc Anode Enabled by Zincophilic Polyanionic Hydrogel Layer. Adv. Mater. 2022, 34, 2202382. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, J.; Hu, Z.; Li, J.; Li, J.; Zhang, Y.; Wang, C.; Cui, G. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949. [Google Scholar] [CrossRef]
- Li, C.; Shyamsunder, A.; Hoane, A.G.; Long, D.M.; Kwok, C.Y.; Kotula, P.G.; Zavadil, K.R.; Gewirth, A.A.; Nazar, L.F. Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 2022, 6, 1103–1120. [Google Scholar] [CrossRef]
- Cui, B.-F.; Han, X.-P.; Hu, W.-B. Micronanostructured design of dendrite-free zinc anodes and their applications in aqueous zinc-based rechargeable batteries. Small Struct. 2021, 2, 2000128. [Google Scholar] [CrossRef]
- Gunawardena, G.; Hills, G.; Montenegro, I.; Scharifker, B. Electrochemical nucleation: Part I. general considerations. J. Electroanal. Chem. Interfacial Electrochem. 1982, 138, 225–239. [Google Scholar] [CrossRef]
- Guo, L.; Guo, H.; Huang, H.; Tao, S.; Cheng, Y. Inhibition of zinc dendrites in zinc-based flow batteries. Front. Chem. 2020, 8, 557. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Gao, H.; Gao, Y.; Yang, J.; Li, C.; Pu, J.; Du, J.; Yang, J.; Cai, D.; Pan, Z. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2103922. [Google Scholar] [CrossRef]
- Wu, C.; Xie, K.; Ren, K.; Yang, S.; Wang, Q. Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries. Dalton Trans. 2020, 49, 17629–17634. [Google Scholar] [CrossRef]
- Jian, Q.; Guo, Z.; Zhang, L.; Wu, M.; Zhao, T. A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chem. Eng. J. 2021, 425, 130643. [Google Scholar] [CrossRef]
- Yufit, V.; Tariq, F.; Eastwood, D.S.; Biton, M.; Wu, B.; Lee, P.D.; Brandon, N.P. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 2019, 3, 485–502. [Google Scholar] [CrossRef]
- Trudgeon, D.P.; Li, X. The effect of electrolyte and additive concentration on zinc–nickel flow cell performance. Electrochim. Acta 2021, 367, 137479. [Google Scholar] [CrossRef]
- Walsh, F.C.; Ponce de Léon, C.; Berlouis, L.; Nikiforidis, G.; Arenas-Martínez, L.F.; Hodgson, D.; Hall, D. The development of Zn–Ce hybrid redox flow batteries for energy storage and their continuing challenges. ChemPlusChem 2015, 80, 288–311. [Google Scholar] [CrossRef]
- Rajarathnam, G.P.; Schneider, M.; Sun, X.; Vassallo, A.M. The influence of supporting electrolytes on zinc half-cell performance in zinc/bromine flow batteries. J. Electrochem. Soc. 2015, 163, A5112. [Google Scholar] [CrossRef]
- Zheng, J.; Yin, J.; Zhang, D.; Li, G.; Bock, D.C.; Tang, T.; Zhao, Q.; Liu, X.; Warren, A.; Deng, Y. Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci. Adv. 2020, 6, eabb1122. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Z.; Yin, Y.; Li, T.; Chang, N.; Fan, F.; Zhang, H.; Li, X. A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation. Energy Environ. Sci. 2021, 14, 4077–4084. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Yin, Y.; Chang, N.; Zhang, H.; Li, X. High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive. Nano Energy 2022, 96, 107120. [Google Scholar] [CrossRef]
- Xu, P.; Li, T.; Zheng, Q.; Zhang, H.; Yin, Y.; Li, X. A low-cost bromine-fixed additive enables a high capacity retention zinc-bromine batteries. J. Energy Chem. 2022, 65, 89–93. [Google Scholar] [CrossRef]
- Turney, D.E.; Gallaway, J.W.; Yadav, G.G.; Ramirez, R.; Nyce, M.; Banerjee, S.; Chen-Wiegart, Y.-C.K.; Wang, J.; D’Ambrose, M.J.; Kolhekar, S. Rechargeable zinc alkaline anodes for long-cycle energy storage. Chem. Mater. 2017, 29, 4819–4832. [Google Scholar] [CrossRef]
- Yang, H.S.; Park, J.H.; Ra, H.W.; Jin, C.-S.; Yang, J.H. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc–bromine redox flow battery. J. Power Sources 2016, 325, 446–452. [Google Scholar] [CrossRef]
- Moshtev, R.; Zlatilova, P. Kinetics of growth of zinc dendrite precursors in zincate solutions. J. Appl. Electrochem. 1978, 8, 213–222. [Google Scholar] [CrossRef]
- Ito, Y.; Nyce, M.; Plivelich, R.; Klein, M.; Steingart, D.; Banerjee, S. Zinc morphology in zinc–nickel flow assisted batteries and impact on performance. J. Power Sources 2011, 196, 2340–2345. [Google Scholar] [CrossRef]
- Wang, G.; Zou, H.; Xu, Z.; Tang, A.; Zhong, F.; Zhu, X.; Qin, C.; Ding, M.; You, W.; Jia, C. Unlocking the solubility limit of ferrocyanide for high energy density redox flow batteries. Mater. Today Energy 2022, 28, 101061. [Google Scholar] [CrossRef]
- Han, D.; Shanmugam, S. Active material crossover suppression with bi-ionic transportability by an amphoteric membrane for Zinc–Bromine redox flow battery. J. Power Sources 2022, 540, 231637. [Google Scholar] [CrossRef]
- Chu, F.; Guo, L.; Wang, S.; Cheng, Y. Semi-solid zinc slurry with abundant electron-ion transfer interfaces for aqueous zinc-based flow batteries. J. Power Sources 2022, 535, 231442. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, X.; An, L.; Wei, L.; Zhao, T. A high-performance flow-field structured iron-chromium redox flow battery. J. Power Sources 2016, 324, 738–744. [Google Scholar] [CrossRef]
- Deng, Q.; Huang, P.; Zhou, W.X.; Ma, Q.; Zhou, N.; Xie, H.; Ling, W.; Zhou, C.J.; Yin, Y.X.; Wu, X.W. A high-performance composite electrode for vanadium redox flow batteries. Adv. Energy Mater. 2017, 7, 1700461. [Google Scholar] [CrossRef]
- Leung, P.; Mohamed, M.; Shah, A.; Xu, Q.; Conde-Duran, M. A mixed acid based vanadium–cerium redox flow battery with a zero-gap serpentine architecture. J. Power Sources 2015, 274, 651–658. [Google Scholar] [CrossRef]
- Yuan, Z.; Yin, Y.; Xie, C.; Zhang, H.; Yao, Y.; Li, X. Advanced materials for zinc-based flow battery: Development and challenge. Adv. Mater. 2019, 31, 1902025. [Google Scholar] [CrossRef]
- Narayanan, N.V.; Ashokraj, B.; Sampath, S. Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries. J. Colloid Interface Sci. 2010, 342, 505–512. [Google Scholar] [CrossRef]
- Chang, N.; Li, T.; Li, R.; Wang, S.; Yin, Y.; Zhang, H.; Li, X. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 2020, 13, 3527–3535. [Google Scholar] [CrossRef]
- Dyshin, A.A.; Eliseeva, O.V.; Kiselev, M.G. Density and Viscosity of Zinc Chloride Solution in N-Methylacetamide over the Temperature Range from 308.15 to 328.15 K at Atmospheric Pressure. J. Chem. Eng. Data 2018, 63, 3130–3135. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Sun, X.; Li, J.; Liu, Y.-N. Flexible wide-temperature zinc-ion battery enabled by an ethylene glycol-based organohydrogel electrolyte. ACS Appl. Energy Mater. 2021, 4, 12718–12727. [Google Scholar] [CrossRef]
- Nikiforidis, G.; Berlouis, L.; Hall, D.; Hodgson, D. A study of different carbon composite materials for the negative half-cell reaction of the zinc cerium hybrid redox flow cell. Electrochim. Acta 2013, 113, 412–423. [Google Scholar] [CrossRef]
- Afifi, S.; Ebaid, A.; Hegazy, M.; Donya, K. On the electrowinning of zinc from alkaline zincate solutions. J. Electrochem. Soc. 1991, 138, 1929. [Google Scholar] [CrossRef]
- Guo, Y.; Li, D.; Xiong, R.; Li, H. Investigation of the temperature-dependent behaviours of Li metal anode. Chem. Commun. 2019, 55, 9773–9776. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. Temperature-dependent Nucleation and Growth of Dendrite-free Lithium Metal Anodes. Angew. Chem. 2019, 131, 11486–11490. [Google Scholar] [CrossRef]
- Leung, P.; Ponce-de-León, C.; Low, C.; Walsh, F. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery. Electrochim. Acta 2011, 56, 6536–6546. [Google Scholar] [CrossRef]
- Galvani, F.; Carlos, I.A. The effect of the additive glycerol on zinc electrodeposition on steel. Met. Finish. 1997, 95, 70–72. [Google Scholar] [CrossRef]
- Leung, P.; Ponce-de-León, C.; Recio, F.; Herrasti, P.; Walsh, F. Corrosion of the zinc negative electrode of zinc–cerium hybrid redox flow batteries in methanesulfonic acid. J. Appl. Electrochem. 2014, 44, 1025–1035. [Google Scholar] [CrossRef]
- Lim, H.; Lackner, A.; Knechtli, R. Zinc-bromine secondary battery. J. Electrochem. Soc. 1977, 124, 1154. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Zhang, S.; Yang, F.; Zeng, X.; Zhang, S.; Bo, G.; Wang, C.; Guo, Z. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, C.; Zhang, H.; Li, X. Anode for zinc-based batteries: Challenges, strategies, and prospects. ACS Energy Lett. 2021, 6, 2765–2785. [Google Scholar] [CrossRef]
- Gabe, D. The role of hydrogen in metal electrodeposition processes. J. Appl. Electrochem. 1997, 27, 908–915. [Google Scholar] [CrossRef]
- Ganne, F.; Cachet, C.; Maurin, G.; Wiart, R.; Chauveau, E.; Petitjean, J. Impedance spectroscopy and modelling of zinc deposition in chloride electrolyte containing a commercial additive. J. Appl. Electrochem. 2000, 30, 665–673. [Google Scholar] [CrossRef]
- Thomas, S.; Birbilis, N.; Venkatraman, M.; Cole, I. Corrosion of zinc as a function of pH. Corros., J. Sci. Eng. 2012, 68, 015009-015001–015009-015009. [Google Scholar] [CrossRef]
- Bayaguud, A.; Fu, Y.; Zhu, C. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 2022, 64, 246–262. [Google Scholar] [CrossRef]
- Ma, L.; Li, Q.; Ying, Y.; Ma, F.; Chen, S.; Li, Y.; Huang, H.; Zhi, C. Toward practical high-areal-capacity aqueous zinc-metal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 2021, 33, 2007406. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Mo, J.; Huang, J.; Liu, J.; Liu, C.; Zeng, X.; Zhou, W.; Yue, J.; Wu, X.; Wu, Y. An Aqueous Hybrid Zinc-Bromine Battery with High Voltage and Energy Density. ChemElectroChem 2020, 7, 1531–1536. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, J.; Lu, Q.; Dong, H.; Karnaushenko, D.D.; Becker, C.; Karnaushenko, D.; Li, Y.; Tang, H.; Qu, Z. A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 2021, 33, 2007497. [Google Scholar] [CrossRef]
- Hao, J.; Li, B.; Li, X.; Zeng, X.; Zhang, S.; Yang, F.; Liu, S.; Li, D.; Wu, C.; Guo, Z. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, 2003021. [Google Scholar] [CrossRef]
- Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T. Zinc anode for mild aqueous zinc-ion batteries: Challenges, strategies, and perspectives. Nano-Micro Lett. 2022, 14, 1–47. [Google Scholar] [CrossRef]
- Alfantazi, A.; Dreisinger, D. The role of zinc and sulfuric acid concentrations on zinc electrowinning from industrial sulfate based electrolyte. J. Appl. Electrochem. 2001, 31, 641–646. [Google Scholar] [CrossRef]
- Yan, Y.; Shu, C.; Zeng, T.; Wen, X.; Liu, S.; Deng, D.; Zeng, Y. Surface-Preferred Crystal Plane Growth Enabled by Underpotential Deposited Monolayer toward Dendrite-Free Zinc Anode. ACS Nano 2022, 16, 9150–9162. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhao, Q.; Tang, T.; Yin, J.; Quilty, C.D.; Renderos, G.D.; Liu, X.; Deng, Y.; Wang, L.; Bock, D.C. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kohn, B.; Scheler, U.; Wang, F.; Oswald, S.; Löffler, M.; Tan, D.; Zhang, P.; Zhang, J.; Feng, X. A High-Voltage, Dendrite-Free, and Durable Zn–Graphite Battery. Adv. Mater. 2020, 32, 1905681. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.D.; Gong, C.; Tang, Y.T.; Ning, Z.; Liu, J.; Zhang, S.; Yuan, Y.; Melvin, D.; Yang, S.; Pi, L. Achieving Ultra-High Rate Planar and Dendrite-Free Zinc Electroplating for Aqueous Zinc Battery Anodes. Adv. Mater. 2022, 34, 2202552. [Google Scholar] [CrossRef] [PubMed]
- Su, T.T.; Wang, K.; Chi, B.Y.; Ren, W.F.; Sun, R.C. Stripy zinc array with preferential crystal plane for the ultra-long lifespan of zinc metal anodes for zinc ion batteries. EcoMat 2022, e12219. [Google Scholar] [CrossRef]
- Youssef, K.M.; Koch, C.; Fedkiw, P. Influence of additives and pulse electrodeposition parameters on production of nanocrystalline zinc from zinc chloride electrolytes. J. Electrochem. Soc. 2004, 151, C103. [Google Scholar] [CrossRef]
- Gomes, A.; da Silva Pereira, M. Pulsed electrodeposition of Zn in the presence of surfactants. Electrochim. Acta 2006, 51, 1342–1350. [Google Scholar] [CrossRef]
- Youssef, K.M.; Koch, C.; Fedkiw, P. Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corros. Sci. 2004, 46, 51–64. [Google Scholar] [CrossRef]
- Saber, K.; Koch, C.; Fedkiw, P. Pulse current electrodeposition of nanocrystalline zinc. Mater. Sci. Eng. A 2003, 341, 174–181. [Google Scholar] [CrossRef]
- Kavitha, B.; Santhosh, P.; Renukadevi, M.; Kalpana, A.; Shakkthivel, P.; Vasudevan, T. Role of organic additives on zinc plating. Surf. Coat. Technol. 2006, 201, 3438–3442. [Google Scholar] [CrossRef]
- Yu, H.; Chen, Y.; Wang, H.; Ni, X.; Wei, W.; Ji, X.; Chen, L. Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries. Nano Energy 2022, 99, 107426. [Google Scholar] [CrossRef]
- Di, S.; Nie, X.; Ma, G.; Yuan, W.; Wang, Y.; Liu, Y.; Shen, S.; Zhang, N. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase. Energy Stor. Mater. 2021, 43, 375–382. [Google Scholar] [CrossRef]
- Sun, K.E.; Hoang, T.K.; Doan, T.N.L.; Yu, Y.; Chen, P. Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chem. Eur. J. 2018, 24, 1667–1673. [Google Scholar] [CrossRef]
- Yuan, L.; Hao, J.; Kao, C.-C.; Wu, C.; Liu, H.-K.; Dou, S.-X.; Qiao, S.-Z. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 2021, 14, 5669–5689. [Google Scholar] [CrossRef]
- Otani, T.; Okuma, T.; Homma, T. Effect of indium and tin additives on the surface morphology of zinc negative electrodes for Zn-Ni flow-assisted batteries. J. Electroanal. Chem. 2020, 878, 114583. [Google Scholar] [CrossRef]
- Bockelmann, M.; Kunz, U.; Turek, T. Electrically rechargeable zinc-oxygen flow battery with high power density. Electrochem. Commun. 2016, 69, 24–27. [Google Scholar] [CrossRef]
- Nikiforidis, G.; Daoud, W.A. Indium modified graphite electrodes on highly zinc containing methanesulfonate electrolyte for zinc-cerium redox flow battery. Electrochim. Acta 2015, 168, 394–402. [Google Scholar] [CrossRef]
- Elrouby, M.; Shilkamy, H.A.E.S.; Elsayed, A. Development of the electrochemical performance of zinc via alloying with indium as anode for alkaline batteries application. J. Alloys Compd. 2021, 854, 157285. [Google Scholar] [CrossRef]
- Sun, P.; Ma, L.; Zhou, W.; Qiu, M.; Wang, Z.; Chao, D.; Mai, W. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. 2021, 133, 18395–18403. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, Y.; Guo, S.; Cao, X.; Pan, A.; Fang, G.; Zhou, J.; Liang, S. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ. Sci. 2020, 13, 4625–4665. [Google Scholar] [CrossRef]
- Li, C.; Xie, X.; Liang, S.; Zhou, J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 2020, 3, 146–159. [Google Scholar] [CrossRef]
- Suresh, S.; Kesavan, T.; Munaiah, Y.; Arulraj, I.; Dheenadayalan, S.; Ragupathy, P. Zinc–bromine hybrid flow battery: Effect of zinc utilization and performance characteristics. RSC Adv. 2014, 4, 37947–37953. [Google Scholar] [CrossRef]
- Durmus, Y.E.; Montiel Guerrero, S.S.; Tempel, H.; Hausen, F.; Kungl, H.; Eichel, R.-A. Influence of Al alloying on the electrochemical behavior of Zn electrodes for Zn–Air batteries with neutral sodium chloride electrolyte. Front. Chem. 2019, 7, 800. [Google Scholar] [CrossRef]
- Chang, S.; Ye, J.; Zhou, W.; Wu, C.; Ding, M.; Long, Y.; Cheng, Y.; Jia, C. A low-cost SPEEK-K type membrane for neutral aqueous zinc-iron redox flow battery. Surf. Coat. Technol. 2019, 358, 190–194. [Google Scholar] [CrossRef]
- Xie, C.; Duan, Y.; Xu, W.; Zhang, H.; Li, X. A Low-Cost Neutral Zinc–Iron Flow Battery with High Energy Density for Stationary Energy Storage. Angew. Chem. Int. Ed. 2017, 56, 14953–14957. [Google Scholar] [CrossRef]
- Pan, J.; Wen, Y.; Cheng, J.; Pan, J.; Bai, Z.; Yang, Y. Zinc deposition and dissolution in sulfuric acid onto a graphite–resin composite electrode as the negative electrode reactions in acidic zinc-based redox flow batteries. J. Appl. Electrochem. 2013, 43, 541–551. [Google Scholar] [CrossRef]
- Banik, S.J.; Akolkar, R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive. J. Electrochem. Soc. 2013, 160, D519. [Google Scholar] [CrossRef]
- Banik, S.J.; Akolkar, R. Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive. Electrochim. Acta 2015, 179, 475–481. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, K.; Huo, W.; Wang, Y.; Yao, G.; Gu, X.; Cheng, H.; Mai, L.; Hu, C.; Wang, X. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 2019, 62, 275–281. [Google Scholar] [CrossRef]
- Ghavami, R.K.; Rafiei, Z. Performance improvements of alkaline batteries by studying the effects of different kinds of surfactant and different derivatives of benzene on the electrochemical properties of electrolytic zinc. J. Power Sources 2006, 162, 893–899. [Google Scholar] [CrossRef]
- Hosseini, S.; Han, S.J.; Arponwichanop, A.; Yonezawa, T.; Kheawhom, S. Ethanol as an electrolyte additive for alkaline zinc-air flow batteries. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Huang, Q.; Liang, M.; Lv, D.; Xu, M.; Li, H.; Li, W. Investigation on synergism of composite additives for zinc corrosion inhibition in alkaline solution. Mater. Chem. Phys. 2011, 128, 214–219. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, Q.; Li, Y.; Wang, J.; Lund, P.D. Review of zinc dendrite formation in zinc bromine redox flow battery. Renew. Sust. Energ. Rev. 2020, 127, 109838. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, J.; Feng, J.; Wang, Y.; Wu, X.; Ma, P.; Zhang, X.; Wang, G.; Yan, X. A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Stor. Mater. 2021, 38, 299–308. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, H.; Zhang, R.; Wei, L.; Chan, K.Y.; Zhao, T. N-doped graphene nanoplatelets as a highly active catalyst for Br2/Br− redox reactions in zinc-bromine flow batteries. Electrochim. Acta 2019, 318, 69–75. [Google Scholar] [CrossRef]
- Kim, R.; Yuk, S.; Lee, J.-H.; Choi, C.; Kim, S.; Heo, J.; Kim, H.-T. Scaling the water cluster size of Nafion membranes for a high performance Zn/Br redox flow battery. J. Membr. Sci. 2018, 564, 852–858. [Google Scholar] [CrossRef]
- Lai, Q.; Zhang, H.; Li, X.; Zhang, L.; Cheng, Y. A novel single flow zinc–bromine battery with improved energy density. J. Power Sources 2013, 235, 1–4. [Google Scholar] [CrossRef]
- Yuan, Z.; Liang, L.; Dai, Q.; Li, T.; Song, Q.; Zhang, H.; Hou, G.; Li, X. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage. Joule 2022, 6, 884–905. [Google Scholar] [CrossRef]
- Xie, C.; Liu, Y.; Lu, W.; Zhang, H.; Li, X. Highly stable zinc–iodine single flow batteries with super high energy density for stationary energy storage. Energy Environ. Sci. 2019, 12, 1834–1839. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, X.; Xu, W.; Duan, Y.; Zhang, H.; Li, X. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Hu, J.; Yuan, C.; Zhi, L.; Zhang, H.; Yuan, Z.; Li, X. In Situ Defect-Free Vertically Aligned Layered Double Hydroxide Composite Membrane for High Areal Capacity and Long-Cycle Zinc-Based Flow Battery. Adv. Funct. Mater. 2021, 31, 2102167. [Google Scholar] [CrossRef]
Methods | Type | Electrode | Membrane | Electrolyte | Current Density (mA cm−2) | Energy Efficiency (%) | Areal Capacity (mA h cm−2) | Cycle Number |
---|---|---|---|---|---|---|---|---|
Electrode modification | Zn-Br [42] | NTCF | Daramic HP (~900 μm) | 2 M ZnBr2 + 3 M KCl + 0.4 M MEPBr | 80 | 75.91 | 66.6 | - |
Zn-Br [21] | CZ-5 | SF600 separator | 2 M ZnBr2 + 0.5 M ZnCl2 + 4 M NH4Cl + 0.02 M MEPBr | 100 | >60 | 20 | 5000 | |
Zn-Br [43] | SH/PH | Daramic HP (~900 μm) | 2 M ZnBr2 + 3 M KCl + 0.8 M MEPBr | 40 | - | 40 | 142 | |
Zn-Br [44] | Titanium mesh + carbon paper + graphite plate/carbon paper + graphite plate | Nafion 115 | 2.25 M ZnBr2 + 3 M KCl | 80 | 34.68 | 10 | 650 | |
Electrolyte modulation | Zn-Fe [45] | Carbon felts | PBI membrane | 0.4 M Zn(OH)42−+ 3 M OH− + 0.01 M THEED/0.8 M Fe(CN)64− + 3 M OH− | 80 | ~85.4 | 100 | 180 |
Zn-I2 [46] | Graphite felts | Nafion 115 | 1 M ZnI2 + 1 M NH4Br | 40 | 85 | 40 | 100 | |
Zn-Br [23] | Graphite felt + poly-acrylonitrile felt/graphite felt | Nafion 212 | 2 M ZnBr2 + 1 M MSA | 40 | 75 | 20 | 50 | |
Zn-Br [25] | Graphite electrodes | Porous separator | 2.25 M ZnBr2 + 0.5 M ZnCl2 + 0.8 M MEPBr + 5 ml L−1 Br2 + HBr + 0.1 M CrCl3·6H2O/carbon slurry | 20 | 76.1 | ~85.14 | - | |
Zn-Ni [47] | Graphite + polyvinylidenefluoride composite/sintered nickel plate | - | 6 M KOH + 0.5 M ZnO + 5 mM TEAH | 20 | 79 | 5 | 50 | |
Zn-Fe [48] | Carbon felts | Perfluorinated sulfonic acid membrane | 0.5 M ZnCl2 + 0.05 M NAM + 3 M KCl/0.5 M K4Fe(CN)6·3H2O + 1 M KCl | 20 | 83 | 3.33 | 400 | |
Zn-Br [24] | Carbon felts | SF600 membrane | 0.5 M ZnBr2 + 0.125 M Zn(ClO4)2 | 20 | 71 | - | 25 | |
Membrane engineering | Zn-Br [28] | Carbon felts | Porous polyolefin/PEG composite membrane | 2 M ZnBr2 +3 M KCl + 0.8 M MEPBr | 40 | - | 40 | >100 |
Zn-Fe [49] | Carbon felts | ns-MFI-P/S-7 | 0.3 M Zn(OH)4 2− + 5 M NaOH/0.6 M K4Fe(CN)6 + 5 M NaOH | 80 | 81.9 | 13.33 | 600 | |
Zn-Fe [26] | Carbon felts | Turing-PBI-80 | 3.8 M NaOH + 0.2 M ZnO/3 M KOH + 0.4 M Na4[Fe(CN)6]·12H2O | 80 | 90.1 | 160 | 110 | |
Zn-Fe [50] | Carbon felts | BN-M membrane | 0.4 M Zn(OH)42− + 3 M OH−/0.8 M Fe(CN)64− + 3 M OH− | 80 | 87.6 | 66.67 | 500 | |
Zn-Fe [51] | Carbon felts | DM-HM | 0.4 M Zn(OH)42− + 3 M KOH/0.8 M Fe(CN)64− + 3 M KOH | 80 | 88.3 | 20 | 500 | |
Zn-Fe [52] | Graphite sheets | The self-made anion-exchange membrane | 1 M ZnCl2/0.5 M FeCl2 + 0.5 M FeCl3 + 2 M NH4Cl | 25 | 78.2 | 12.5 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Wu, M. Toward Dendrite-Free Deposition in Zinc-Based Flow Batteries: Status and Prospects. Batteries 2022, 8, 117. https://doi.org/10.3390/batteries8090117
Xu Z, Wu M. Toward Dendrite-Free Deposition in Zinc-Based Flow Batteries: Status and Prospects. Batteries. 2022; 8(9):117. https://doi.org/10.3390/batteries8090117
Chicago/Turabian StyleXu, Zeyu, and Maochun Wu. 2022. "Toward Dendrite-Free Deposition in Zinc-Based Flow Batteries: Status and Prospects" Batteries 8, no. 9: 117. https://doi.org/10.3390/batteries8090117
APA StyleXu, Z., & Wu, M. (2022). Toward Dendrite-Free Deposition in Zinc-Based Flow Batteries: Status and Prospects. Batteries, 8(9), 117. https://doi.org/10.3390/batteries8090117