Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2695 KiB  
Article
Percolation Behavior of a Sulfide Electrolyte–Carbon Additive Matrix for Composite Cathodes in All-Solid-State Batteries
by Elias Reisacher, Pinar Kaya and Volker Knoblauch
Batteries 2023, 9(12), 595; https://doi.org/10.3390/batteries9120595 - 15 Dec 2023
Viewed by 1868
Abstract
To achieve high energy densities with sufficient cycling performance in all-solid-state batteries, the fraction of active material has to be maximized while maintaining ionic and electronic conduction throughout the composite cathode. It is well known that low-surface-area carbon additives added to the composite [...] Read more.
To achieve high energy densities with sufficient cycling performance in all-solid-state batteries, the fraction of active material has to be maximized while maintaining ionic and electronic conduction throughout the composite cathode. It is well known that low-surface-area carbon additives added to the composite cathode enhance the rate capability; however, at the same time, they can lead to rapid decomposition of the solid electrolyte in thiophosphate-based cells. Thus, the fraction of such conductive additives has to be well balanced. Within this study we determined the electronic percolation threshold of a conducting matrix consisting of Li6PS5Cl and C65. Furthermore, we systematically investigated the microstructure and effective conductivity (σeff) of the conducting matrix. The percolation threshold pc was determined as ~4 wt.-% C65, and it is suggested that below pc, the ionic contribution is dominant, which can be seen in temperature-dependent σeff and blocked charge transport at low frequencies. Above pc, the impedance of the conducting matrix becomes frequency-independent, and the ohmic law applies. Thus, the conducting matrix in ASSB can be regarded as an electronic and ionic conducting phase between active material particles. Additionally, guidelines are provided to enable electronic conduction in the conducting matrix with minimal C65 content. Full article
Show Figures

Figure 1

16 pages, 2918 KiB  
Article
Qualitative Characterization of Lead–Acid Batteries Fabricated Using Different Technological Procedures: An EIS Approach
by Olivia Bruj and Adrian Calborean
Batteries 2023, 9(12), 593; https://doi.org/10.3390/batteries9120593 - 14 Dec 2023
Viewed by 1498
Abstract
Electrochemical impedance spectroscopy techniques were applied in this work to nine industrially fabricated lead–acid battery prototypes, which were divided into three type/technology packages. Frequency-dependent impedance changes were interpreted during successive charge/discharge cycles in two distinct stages: (1) immediately after fabrication and (2) after [...] Read more.
Electrochemical impedance spectroscopy techniques were applied in this work to nine industrially fabricated lead–acid battery prototypes, which were divided into three type/technology packages. Frequency-dependent impedance changes were interpreted during successive charge/discharge cycles in two distinct stages: (1) immediately after fabrication and (2) after a controlled aging procedure to 50% depth of discharge following industrial standards. To investigate their state of health behavior vs. electrical response, three methods were employed, namely, the Q-Q0 total charge analysis, the decay values of the constant-phase element in the equivalent Randles circuits, and the resonance frequency of the circuit. A direct correlation was found for the prediction of the best-performing batteries in each package, thus allowing for a qualitative analysis that was capable of providing the decay of the batteries’ states of health. We found which parameters were directly connected with their lifetime performance in both stages and, as a consequence, which type/technology battery prototype displayed the best performance. Based on this methodology, industrial producers can further establish the quality of novel batteries in terms of performance vs. lifespan, allowing them to validate the novel technological innovations implemented in the current prototypes. Full article
(This article belongs to the Special Issue Electrochemistry of Lead-Acid Batteries)
Show Figures

Figure 1

10 pages, 1035 KiB  
Article
Silicon Negative Electrodes—What Can Be Achieved for Commercial Cell Energy Densities
by William Yourey
Batteries 2023, 9(12), 576; https://doi.org/10.3390/batteries9120576 - 28 Nov 2023
Viewed by 1507
Abstract
Historically, lithium cobalt oxide and graphite have been the positive and negative electrode active materials of choice for commercial lithium-ion cells. It has only been over the past ~15 years in which alternate positive electrode materials have been used. As new positive and [...] Read more.
Historically, lithium cobalt oxide and graphite have been the positive and negative electrode active materials of choice for commercial lithium-ion cells. It has only been over the past ~15 years in which alternate positive electrode materials have been used. As new positive and negative active materials, such as NMC811 and silicon-based electrodes, are being developed, it is crucial to evaluate the potential of these materials at a stack or cell level to fully understand the possible increases in energy density which can be achieved. Comparisons were made between electrode stack volumetric energy densities for designs containing either LCO or NMC811 positive electrode and silicon-graphite negative electrodes, where the weight percentages of silicon were evaluated between zero and ninety percent. Positive electrode areal loadings were evaluated between 2.00 and 5.00 mAh cm−2. NMC811 at 200 mAh g−1 has the ability to increase stack energy density between 11% and 20% over LCO depending on percentage silicon and areal loading. At a stack level, the percentage of silicon added results in large increases in energy density but delivers a diminishing return, with the greatest increase observed as the percentage of silicon is increased from zero percent to approximately 25–30%. Full article
Show Figures

Figure 1

22 pages, 4151 KiB  
Review
Second-Life Batteries: A Review on Power Grid Applications, Degradation Mechanisms, and Power Electronics Interface Architectures
by Ali Hassan, Shahid Aziz Khan, Rongheng Li, Wencong Su, Xuan Zhou, Mengqi Wang and Bin Wang
Batteries 2023, 9(12), 571; https://doi.org/10.3390/batteries9120571 - 27 Nov 2023
Cited by 1 | Viewed by 3011
Abstract
The adoption of electric vehicles (EVs) is increasing due to governmental policies focused on curbing climate change. EV batteries are retired when they are no longer suitable for energy-intensive EV operations. A large number of EV batteries are expected to be retired in [...] Read more.
The adoption of electric vehicles (EVs) is increasing due to governmental policies focused on curbing climate change. EV batteries are retired when they are no longer suitable for energy-intensive EV operations. A large number of EV batteries are expected to be retired in the next 5–10 years. These retired batteries have 70–80% average capacity left. Second-life use of these battery packs has the potential to address the increasing energy storage system (ESS) demand for the grid and also to create a circular economy for EV batteries. The needs of modern grids for frequency regulation, power smoothing, and peak shaving can be met using retired batteries. Moreover, these batteries can also be employed for revenue generation for energy arbitrage (EA). While there are articles reviewing the general applications of retired batteries, this paper presents a comprehensive review of the research work on applications of the second-life batteries (SLBs) specific to the power grid and SLB degradation. The power electronics interface and battery management systems for the SLB are also thoroughly reviewed. Full article
(This article belongs to the Special Issue Second-Life Batteries)
Show Figures

Figure 1

16 pages, 3567 KiB  
Article
Sustainable Lithium Ferro-Phosphate Cathode Manufacturing: A Semi-Dry Approach with Water-Based Processing and Polytetrafluorethylene Binders
by Eike Wiegmann, Steffen Fischer, Matthias Leeb and Arno Kwade
Batteries 2023, 9(12), 567; https://doi.org/10.3390/batteries9120567 - 24 Nov 2023
Viewed by 2049
Abstract
A novel water-based lithium ferro-phosphate (LFP) cathode manufacturing process characterized by a significant reduction in the amount of solvent has been developed (semi-dry). To establish and validate this new process, Polytetrafluorethylene (PTFE) is used as a binder, with a binder content of 1 [...] Read more.
A novel water-based lithium ferro-phosphate (LFP) cathode manufacturing process characterized by a significant reduction in the amount of solvent has been developed (semi-dry). To establish and validate this new process, Polytetrafluorethylene (PTFE) is used as a binder, with a binder content of 1 wt.%, minimizing the amount of inactive material within the electrode. Extrusion screws with multiple kneading zones stress the PTFE more intensively and thus produce more and smaller fibrils. The resulting extent of fibrillation is quantified by melting enthalpy as well as mechanical electrode properties. The degree of fibrillation of the binder in an electrode is known to influence the conductive electric and ionic pathways, which in turn affect the discharge capacity. It is shown that this process provides a flexible cathode layer that achieves a specific capacitance of 155 mAh g−1 in initial cycling tests at 0.1 C. Compared to a conventionally processed LFP cathode, the discharge capacity and overall energy output are significantly increased, and the overall energy consumption decreases for the semi-dry processed LFP cathodes. Full article
Show Figures

Figure 1

29 pages, 3715 KiB  
Review
Lithium-Ion Battery Manufacturing: Industrial View on Processing Challenges, Possible Solutions and Recent Advances
by Aslihan Örüm Aydin, Franziska Zajonz, Till Günther, Kamil Burak Dermenci, Maitane Berecibar and Lisset Urrutia
Batteries 2023, 9(11), 555; https://doi.org/10.3390/batteries9110555 - 15 Nov 2023
Cited by 2 | Viewed by 6803
Abstract
Developments in different battery chemistries and cell formats play a vital role in the final performance of the batteries found in the market. However, battery manufacturing process steps and their product quality are also important parameters affecting the final products’ operational lifetime and [...] Read more.
Developments in different battery chemistries and cell formats play a vital role in the final performance of the batteries found in the market. However, battery manufacturing process steps and their product quality are also important parameters affecting the final products’ operational lifetime and durability. In this review paper, we have provided an in-depth understanding of lithium-ion battery manufacturing in a chemistry-neutral approach starting with a brief overview of existing Li-ion battery manufacturing processes and developing a critical opinion of future prospectives, including key aspects such as digitalization, upcoming manufacturing technologies and their scale-up potential. In this sense, the review paper will promote an understanding of the process parameters and product quality. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

13 pages, 4091 KiB  
Article
Gaining a New Technological Readiness Level for Laser-Structured Electrodes in High-Capacity Lithium-Ion Pouch Cells
by Alexandra Meyer, Penghui Zhu, Anna Smith and Wilhelm Pfleging
Batteries 2023, 9(11), 548; https://doi.org/10.3390/batteries9110548 - 09 Nov 2023
Cited by 1 | Viewed by 1581
Abstract
For the first time, the laser structuring of large-footprint electrodes with a loading of 4 mAh cm−2 has been validated in a relevant environment, including subsequent multi-layer stack cell assembly and electrochemical characterization of the resulting high-capacity lithium-ion pouch cell prototypes, i.e., [...] Read more.
For the first time, the laser structuring of large-footprint electrodes with a loading of 4 mAh cm−2 has been validated in a relevant environment, including subsequent multi-layer stack cell assembly and electrochemical characterization of the resulting high-capacity lithium-ion pouch cell prototypes, i.e., a technological readiness level of 6 has been achieved for the 3D battery concept. The structuring was performed using a high-power ultrashort-pulsed laser, resulting in well-defined line structures in electrodes without damaging the current collector, and without melting or altering the battery active materials. For cells containing structured electrodes, higher charge and discharge capacities were measured for C-rates >1C compared to reference cells based on unstructured electrodes. In addition, cells with structured electrodes showed a three-fold increase in cycle lifetime at a C-rate of 1C compared to those with reference electrodes. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

21 pages, 30585 KiB  
Article
Arcing in Li-Ion Batteries
by Theo Ledinski, Andrey W. Golubkov, Oskar Schweighofer and Simon Erker
Batteries 2023, 9(11), 540; https://doi.org/10.3390/batteries9110540 - 31 Oct 2023
Cited by 1 | Viewed by 2707
Abstract
Lithium-Ion battery cells and automotive battery systems are constantly improving as a result of the rising popularity of electric vehicles. With higher energy densities of the cells, the risks in case of failure rise as well. In the worst case, a fast exothermic [...] Read more.
Lithium-Ion battery cells and automotive battery systems are constantly improving as a result of the rising popularity of electric vehicles. With higher energy densities of the cells, the risks in case of failure rise as well. In the worst case, a fast exothermic reaction known as thermal runaway can occur. During thermal runaway, the cell can emit around 66% of its mass as gas and particles. An experimental setup was designed and showed that the gas-particle-vent of a cell going through thermal runaway can cause electric breakthroughs. These breakthroughs could start electric arcing in the battery system, which could lead to additional damages such as burning through the casing or igniting the vent gas, making the damage more severe and difficult to control. Uncontrollable battery fires must be prevented. The emitted gas was analyzed and the ejected particles were examined to discuss the potential causes of the breakthroughs. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

10 pages, 1622 KiB  
Article
Microwave-Assisted Recovery of Spent LiCoO2 Battery from the Corresponding Black Mass
by Matteo Scaglia, Antonella Cornelio, Alessandra Zanoletti, Daniele La Corte, Giada Biava, Ivano Alessandri, Angelo Forestan, Catya Alba, Laura Eleonora Depero and Elza Bontempi
Batteries 2023, 9(11), 536; https://doi.org/10.3390/batteries9110536 - 28 Oct 2023
Cited by 4 | Viewed by 1651
Abstract
The literature indicates that utilizing pyrometallurgical methods for processing spent LiCoO2 (LCO) batteries can lead to cobalt recovery in the forms of Co3O4, CoO, and Co, while lithium can be retrieved as Li2O or Li2 [...] Read more.
The literature indicates that utilizing pyrometallurgical methods for processing spent LiCoO2 (LCO) batteries can lead to cobalt recovery in the forms of Co3O4, CoO, and Co, while lithium can be retrieved as Li2O or Li2CO3. However, the technology’s high energy consumption has also been noted as a challenge in this recovery process. Recently, an innovative and sustainable approach using microwave (MW) radiation has been proposed as an alternative to traditional pyrometallurgical methods for treating used lithium-ion batteries (LiBs). This method aims to address the shortcomings of the conventional approach. In this study, the treatment of the black mass (BM) from spent LCO batteries is explored for the first time using MW–materials interaction under an air atmosphere. The research reveals that the process can trigger carbothermic reactions. However, MW makes the BM so reactive that it causes rapid heating of the sample in a few minutes, also posing a fire risk. This paper presents and discusses the benefits and potential hazards associated with this novel technology for the recovery of spent LCO batteries and gives information about real samples of BM. The work opens the possibility of using a microwave for raw material recovery in spent LIBs, allowing to obtain rapid and more efficient reactions. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Graphical abstract

47 pages, 14335 KiB  
Review
A Review of Sodium-Metal Chloride Batteries: Materials and Cell Design
by Salvatore Gianluca Leonardi, Mario Samperi, Leone Frusteri, Vincenzo Antonucci and Claudia D’Urso
Batteries 2023, 9(11), 524; https://doi.org/10.3390/batteries9110524 - 24 Oct 2023
Cited by 2 | Viewed by 3201
Abstract
The widespread electrification of various sectors is triggering a strong demand for new energy storage systems with low environmental impact and using abundant raw materials. Batteries employing elemental sodium could offer significant advantages, as the use of a naturally abundant element such as [...] Read more.
The widespread electrification of various sectors is triggering a strong demand for new energy storage systems with low environmental impact and using abundant raw materials. Batteries employing elemental sodium could offer significant advantages, as the use of a naturally abundant element such as sodium is strategic to satisfy the increasing demand. Currently, lithium-ion batteries represent the most popular energy storage technology, owing to their tunable performance for various applications. However, where large energy storage systems are required, the use of expensive lithium-ion batteries could result disadvantageous. On the other hand, high-temperature sodium batteries represent a promising technology due to their theoretical high specific energies, high energy efficiency, long life and safety. Therefore, driven by the current market demand and the awareness of the potential that still needs to be exploited, research interest in high-temperature sodium batteries has regained great attention. This review aims to highlight the most recent developments on this topic, focusing on actual and prospective active materials used in sodium-metal chloride batteries. In particular, alternative formulations to conventional nickel cathodes and advanced ceramic electrolytes are discussed, referring to the current research challenges centered on cost reduction, lowering of the operating temperature and performance improvement. Moreover, a comprehensive overview on commercial tubular cell design and prototypal planar design is presented, highlighting advantages and limitations based on the analysis of research papers, patents and technical documents. Full article
(This article belongs to the Special Issue Recent Progress in Energy Storage Materials and Devices)
Show Figures

Graphical abstract

15 pages, 2710 KiB  
Article
Scale-Up of Lithium Iron Phosphate Cathodes with High Active Materials Contents for Lithium Ion Cells
by Geanina Apachitei, Rob Heymer, Michael Lain, Daniela Dogaru, Marc Hidalgo, James Marco and Mark Copley
Batteries 2023, 9(10), 518; https://doi.org/10.3390/batteries9100518 - 21 Oct 2023
Cited by 2 | Viewed by 2345
Abstract
The size of a lithium iron phosphate (LFP) cathode mix was increased by a factor of thirty, and the capacity of the cells produced with it by a factor of three-hundred. As well as rate and cycling tests, the coatings were also characterised [...] Read more.
The size of a lithium iron phosphate (LFP) cathode mix was increased by a factor of thirty, and the capacity of the cells produced with it by a factor of three-hundred. As well as rate and cycling tests, the coatings were also characterised for adhesion and resistivity. The adhesion and total through-plane resistance were both dependent on the drying conditions during coating. The discharge capacities at high rates and the pulse resistances showed much less influence from the drying temperature. The mix formulation contained 97 wt% LFP, and was based on an earlier design of experiments (DoE) study, using relatively high active material contents. Overall, the mix exceeded the performance predicted by the modelling study. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

27 pages, 4817 KiB  
Review
Unraveling the Correlation between Structure and Lithium Ionic Migration of Metal Halide Solid-State Electrolytes via Neutron Powder Diffraction
by Hao Zhang, Feilong Xu, Xingyu Chen and Wei Xia
Batteries 2023, 9(10), 510; https://doi.org/10.3390/batteries9100510 - 15 Oct 2023
Cited by 1 | Viewed by 2030
Abstract
Metal halide solid-state electrolytes (SSEs) (Li-M-X system, typically Li3MX6 and Li2MX4; M is metal or rare-earth element, X is halogen) exhibit significant potential in all solid-state batteries (ASSB) due to wide stability windows (0.36–6.71 V vs. Li/Li [...] Read more.
Metal halide solid-state electrolytes (SSEs) (Li-M-X system, typically Li3MX6 and Li2MX4; M is metal or rare-earth element, X is halogen) exhibit significant potential in all solid-state batteries (ASSB) due to wide stability windows (0.36–6.71 V vs. Li/Li+), excellent compatibility with cathodes, and a water-mediated facile synthesis route for large-scale fabrication. Understanding the dynamics of Li+ transportation and the influence of the host lattice is the prerequisite for developing advanced Metal halide SSEs. Neutron powder diffraction (NPD), as the most cutting-edge technology, could essentially reflect the nuclear density map to determine the whole crystal structure. Through NPD, the Li+ distribution and occupation are clearly revealed for transport pathway analysis, and the influence of the host ion lattice on Li+ migration could be discussed. In this review, we stress NPD utilization in metal halide SSEs systems in terms of defect chemistry, phase transition, cation/anion disorder effects, dual halogen, lattice dynamics/polarizability, and in situ analysis of phase evolution. The irreplaceable role of NPD technology in designing metal halide SSEs with enhanced properties is stressed, and a perspective on future developments of NPD in metal halide SSEs is also presented. Full article
(This article belongs to the Special Issue Advanced Characterizations in Solid-State Batteries)
Show Figures

Graphical abstract

14 pages, 5292 KiB  
Article
A Layered Hybrid Oxide–Sulfide All-Solid-State Battery with Lithium Metal Anode
by Juliane Hüttl, Nicolas Zapp, Saoto Tanikawa, Kristian Nikolowski, Alexander Michaelis and Henry Auer
Batteries 2023, 9(10), 507; https://doi.org/10.3390/batteries9100507 - 10 Oct 2023
Cited by 1 | Viewed by 2019
Abstract
Different classes of solid electrolytes for all-solid-state batteries (ASSB) are currently being investigated, with each of them suitable for a different ASSB concept. Their combination in hybrid battery cells enables the use of their individual benefits while mitigating their disadvantages. The cubic stuffed [...] Read more.
Different classes of solid electrolytes for all-solid-state batteries (ASSB) are currently being investigated, with each of them suitable for a different ASSB concept. Their combination in hybrid battery cells enables the use of their individual benefits while mitigating their disadvantages. The cubic stuffed garnet Li7La3Zr2O12 (LLZO), for example, is stable in contact with metallic lithium but has only moderate ionic conductivity, whereas the thiophosphate Li10SnP2S12 (LSPS) is processable using conventional battery manufacturing technologies and has an excellent lithium-ion conductivity but an inferior electrochemical stability. In this work, we, therefore, present a layered hybrid all-solid-state full-cell concept that accommodates a lithium metal anode, a LiNi0.8Co0.1Mn0.1O2-based composite cathode with an LSPS catholyte (LSPS/NCM811) and a sintered monolithic LLZO separator. The electrochemical stability of LLZO and LSPS at cathodic potentials (up to 4.2 V) was investigated via cyclic voltammetry in test cells, as well as by cycling half cells with LSPS or a mixed LSPS/LLZO catholyte. Furthermore, the pressure-dependency of the galvanostatic cycling of a Li | LLZO | LSPS/NCM811 full cell was investigated, as well as the according effect of the Li | LLZO interface in symmetric test cells. An operation pressure of 12.5 MPa was identified as the optimal value, which assures both sufficient inter-layer contact and impeded lithium penetration through the separator and cell short-circuiting. Full article
Show Figures

Figure 1

18 pages, 5041 KiB  
Review
Molecular Engineering of Redox Couples for Non-Aqueous Redox Flow Batteries
by Casey M. Davis, Claire E. Boronski, Tianyi Yang, Tuo Liu and Zhiming Liang
Batteries 2023, 9(10), 504; https://doi.org/10.3390/batteries9100504 - 04 Oct 2023
Cited by 2 | Viewed by 2141
Abstract
Redox flow batteries (RFBs) have attracted significant attention as a promising electrochemical energy storage technology, offering various advantages such as grid-scale electricity production with variable intermittent electricity delivery, enhanced safety compared to metal-ion batteries, decoupled energy and power density, and simplified manufacturing processes. [...] Read more.
Redox flow batteries (RFBs) have attracted significant attention as a promising electrochemical energy storage technology, offering various advantages such as grid-scale electricity production with variable intermittent electricity delivery, enhanced safety compared to metal-ion batteries, decoupled energy and power density, and simplified manufacturing processes. For this review, we exclusively focus on organic, non-aqueous redox flow batteries. Specifically, we address the most recent progress and the major challenges related to the design and synthesis of robust redox-active organic compounds. An extensive examination of the synthesis and characterization of a wide spectrum of redox-active molecules, focusing particularly on derivatives of posolytes such as quinone, nitroxyl radicals, dialkoxybenzenes, and phenothiazine and negolytes such as viologen and pyridiniums, is provided. We explore the incorporation of various functional groups as documented in the references, aiming to enhance the chemical and electrochemical stability, as well as the solubility, of both the neutral and radical states of redox-active molecules. Additionally, we offer a comprehensive assessment of the cell-cycling performance exhibited by these redox-active molecules. Full article
(This article belongs to the Special Issue Energy Storage of Redox-Flow Batteries)
Show Figures

Figure 1

12 pages, 2651 KiB  
Article
Chemically and Physically Cross-Linked Inorganic–Polymer Hybrid Solvent-Free Electrolytes
by Yamato Kanai, Koji Hiraoka, Mutsuhiro Matsuyama and Shiro Seki
Batteries 2023, 9(10), 492; https://doi.org/10.3390/batteries9100492 - 26 Sep 2023
Viewed by 1229
Abstract
Safe, self-standing, all-solid-state batteries with improved solid electrolytes that have adequate mechanical strength, ionic conductivity, and electrochemical stability are strongly desired. Hybrid electrolytes comprising flexible polymers and highly conductive inorganic electrolytes must be compatible with soft thin films with high ionic conductivity. Herein, [...] Read more.
Safe, self-standing, all-solid-state batteries with improved solid electrolytes that have adequate mechanical strength, ionic conductivity, and electrochemical stability are strongly desired. Hybrid electrolytes comprising flexible polymers and highly conductive inorganic electrolytes must be compatible with soft thin films with high ionic conductivity. Herein, we propose a new type of solid electrolyte hybrid comprising a glass–ceramic inorganic electrolyte powder (Li1+x+yAlxTi2−xSiyP3−yO12; LICGC) in a poly(ethylene)oxide (PEO)-based polymer electrolyte that prevents decreases in ionic conductivity caused by grain boundary resistance. We investigated the cross-linking processes taking place in hybrid electrolytes. We also prepared chemically cross-linked PEO/LICGC and physically cross-linked poly(norbornene)/LICGC electrolytes, and evaluated them using thermal and electrochemical analyses, respectively. All of the obtained electrolyte systems were provided with homogenous, white, flexible, and self-standing thin films. The main ionic conductive phase changed from the polymer to the inorganic electrolyte at low temperatures (close to the glass transition temperature) as the LICGC concentration increased, and the Li+ ion transport number also improved. Cyclic voltammetry using [Li metal|Ni] cells revealed that Li was reversibly deposited/dissolved in the prepared hybrid electrolytes, which are expected to be used as new Li+-conductive solid electrolyte systems. Full article
Show Figures

Figure 1

20 pages, 1197 KiB  
Article
Investigating the Production Atmosphere for Sulfide-Based Electrolyte Layers Regarding Occupational Health and Safety
by Tina Kreher, Patrick Jäger, Fabian Heim and Kai Peter Birke
Batteries 2023, 9(9), 472; https://doi.org/10.3390/batteries9090472 - 19 Sep 2023
Viewed by 1568
Abstract
In all-solid-state battery (ASSB) research, the importance of sulfide electrolytes is steadily increasing. However, several challenges arise concerning the future mass production of this class of electrolytes. Among others, the high reactivity with atmospheric moisture forming toxic and corrosive hydrogen sulfide (H2 [...] Read more.
In all-solid-state battery (ASSB) research, the importance of sulfide electrolytes is steadily increasing. However, several challenges arise concerning the future mass production of this class of electrolytes. Among others, the high reactivity with atmospheric moisture forming toxic and corrosive hydrogen sulfide (H2S) is a major issue. On a production scale, excessive exposure to H2S leads to serious damage of production workers’ health, so additional occupational health and safety measures are required. This paper investigates the environmental conditions for the commercial fabrication of slurry-based sulfide solid electrolyte layers made of Li3PS4 (LPS) and Li10GeP2S12 (LGPS) for ASSBs. First, the identification of sequential production steps and processing stages in electrolyte layer production is carried out. An experimental setup is used to determine the H2S release of intermediates under different atmospheric conditions in the production chain, representative for the production steps. The H2S release rates obtained on a laboratory scale are then scaled up to mass production dimensions and compared to occupational health and safety limits for protection against H2S. It is shown that, under the assumptions made for the production of a slurry-based electrolyte layer with LPS or LGPS, a dry room with a dew point of τ=40 C and an air exchange rate of AER=30 1h is sufficient to protect production workers from health hazards caused by H2S. However, the synthesis of electrolytes requires an inert gas atmosphere, as the H2S release rates are much higher compared to layer production. Full article
Show Figures

Graphical abstract

20 pages, 7957 KiB  
Review
Understanding High-Voltage Behavior of Sodium-Ion Battery Cathode Materials Using Synchrotron X-ray and Neutron Techniques: A Review
by Vadim Shipitsyn, Rishivandhiga Jayakumar, Wenhua Zuo, Bing Sun and Lin Ma
Batteries 2023, 9(9), 461; https://doi.org/10.3390/batteries9090461 - 11 Sep 2023
Cited by 2 | Viewed by 1946
Abstract
Despite substantial research efforts in developing high-voltage sodium-ion batteries (SIBs) as high-energy-density alternatives to complement lithium-ion-based energy storage technologies, the lifetime of high-voltage SIBs is still associated with many fundamental scientific questions. In particular, the structure phase transition, oxygen loss, and cathode–electrolyte interphase [...] Read more.
Despite substantial research efforts in developing high-voltage sodium-ion batteries (SIBs) as high-energy-density alternatives to complement lithium-ion-based energy storage technologies, the lifetime of high-voltage SIBs is still associated with many fundamental scientific questions. In particular, the structure phase transition, oxygen loss, and cathode–electrolyte interphase (CEI) decay are intensely discussed in the field. Synchrotron X-ray and neutron scattering characterization techniques offer unique capabilities for investigating the complex structure and dynamics of high-voltage cathode behavior. In this review, to accelerate the development of stable high-voltage SIBs, we provide a comprehensive and thorough overview of the use of synchrotron X-ray and neutron scattering in studying SIB cathode materials with an emphasis on high-voltage layered transition metal oxide cathodes. We then discuss these characterizations in relation to polyanion-type cathodes, Prussian blue analogues, and organic cathode materials. Finally, future directions of these techniques in high-voltage SIB research are proposed, including CEI studies for polyanion-type cathodes and the extension of neutron scattering techniques, as well as the integration of morphology and phase characterizations. Full article
(This article belongs to the Special Issue Behavior of Cathode Materials at High Voltage)
Show Figures

Graphical abstract

21 pages, 4912 KiB  
Article
Model Development for Binder Migration within Lithium-Ion Battery Electrodes during the Drying Process
by Christiane Zihrul, Mark Lippke and Arno Kwade
Batteries 2023, 9(9), 455; https://doi.org/10.3390/batteries9090455 - 05 Sep 2023
Cited by 3 | Viewed by 2214
Abstract
In the drying process of electrodes for lithium-ion batteries, the layer structure is defined and can only be influenced slightly in the subsequent process steps. An essential point in the drying process is the fixation of the binder, ensuring both the adhesive and [...] Read more.
In the drying process of electrodes for lithium-ion batteries, the layer structure is defined and can only be influenced slightly in the subsequent process steps. An essential point in the drying process is the fixation of the binder, ensuring both the adhesive and cohesive strength of the electrode. It is known that high drying rates lead to the segregation of the binder in the direction of the coating surface, which results in reduced mechanical stability of the electrode. In a previous publication, an experimental approach was used to investigate the underlying processes that influence binder migration. These results are now used in a model-based approach to describe the binder migration using the convection–diffusion equation. The convective term originates from the shrinkage behavior of the layer during drying due to the relative movement between the active material particles and the solvent in which the binder is dissolved or dispersed; it is expected to be the cause of the binder migration. The diffusive term, representing the binder movement in the solvent, counteracts segregation. The interaction of these forces is simulated at different drying temperatures and the associated drying rates. Full article
Show Figures

Figure 1

15 pages, 6975 KiB  
Article
Thermal Propagation Test Bench with Multi Pouch Cell Setup for Reproducibility Investigations
by Björn Mulder, Jan Schöberl and Kai Peter Birke
Batteries 2023, 9(9), 447; https://doi.org/10.3390/batteries9090447 - 31 Aug 2023
Cited by 1 | Viewed by 1282
Abstract
Thermal propagation events of the traction batteries in electric vehicles are rare. However, their impact on the passengers in form of fire, smoke and heat can be severe. Current data on the dependencies and the reproducibility of thermal propagation is limited despite these [...] Read more.
Thermal propagation events of the traction batteries in electric vehicles are rare. However, their impact on the passengers in form of fire, smoke and heat can be severe. Current data on the dependencies and the reproducibility of thermal propagation is limited despite these major implications. Therefore, a thermal propagation test bench was developed for custom multi pouch experiments. This setup includes a multitude of temperature sensors throughout the module, voltage monitoring and a mass flow sensor. Two distinct experiments were initiated by nail penetration. These show a high degree of reproducibility thus allowing for future experiments regarding the dependencies of initial module temperatures and State of Charge (SoC) variations. Full article
(This article belongs to the Special Issue The Precise Battery—towards Digital Twins for Advanced Batteries)
Show Figures

Figure 1

37 pages, 3234 KiB  
Review
Multiscale Modelling Methodologies of Lithium-Ion Battery Aging: A Review of Most Recent Developments
by Mir A. Ali, Carlos M. Da Silva and Cristina H. Amon
Batteries 2023, 9(9), 434; https://doi.org/10.3390/batteries9090434 - 24 Aug 2023
Cited by 1 | Viewed by 3231
Abstract
Lithium-ion batteries (LIBs) are leading the energy storage market. Significant efforts are being made to widely adopt LIBs due to their inherent performance benefits and reduced environmental impact for transportation electrification. However, achieving this widespread adoption still requires overcoming critical technological constraints impacting [...] Read more.
Lithium-ion batteries (LIBs) are leading the energy storage market. Significant efforts are being made to widely adopt LIBs due to their inherent performance benefits and reduced environmental impact for transportation electrification. However, achieving this widespread adoption still requires overcoming critical technological constraints impacting battery aging and safety. Battery aging, an inevitable consequence of battery function, might lead to premature performance losses and exacerbated safety concerns if effective thermo-electrical battery management strategies are not implemented. Battery aging effects must be better understood and mitigated, leveraging the predictive power of aging modelling methods. This review paper presents a comprehensive overview of the most recent aging modelling methods. Furthermore, a multiscale approach is adopted, reviewing these methods at the particle, cell, and battery pack scales, along with corresponding opportunities for future research in LIB aging modelling across these scales. Battery testing strategies are also reviewed to illustrate how current numerical aging models are validated, thereby providing a holistic aging modelling strategy. Finally, this paper proposes a combined multiphysics- and data-based modelling framework to achieve accurate and computationally efficient LIB aging simulations. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Batteries)
Show Figures

Figure 1

15 pages, 2415 KiB  
Article
Evolution of Safety Behavior of High-Power and High-Energy Commercial Li-Ion Cells after Electric Vehicle Aging
by Pierre Kuntz, Loïc Lonardoni, Sylvie Genies, Olivier Raccurt and Philippe Azaïs
Batteries 2023, 9(8), 427; https://doi.org/10.3390/batteries9080427 - 16 Aug 2023
Cited by 3 | Viewed by 1234
Abstract
The Li-ion battery is one of the key components in electric car development due to its performance in terms of energy density, power density and cyclability. However, this technology is likely to present safety problems with the appearance of cell thermal runaway, which [...] Read more.
The Li-ion battery is one of the key components in electric car development due to its performance in terms of energy density, power density and cyclability. However, this technology is likely to present safety problems with the appearance of cell thermal runaway, which can cause a car fire in the case of propagation in the battery pack. Today, standards describing safety compliance tests, which are a prerequisite for marketing Li-ion cells, are carried out on fresh cells only. It is therefore important to carry out research into the impact of cell aging on battery safety behavior in order to ensure security throughout the life of the battery, from manufacturing to recycling. In this article, the impact of Li-ion cell aging on safety is studied. Three commercial 18,650 cells with high-power and high-energy designs were aged using a Battery Electric Vehicle (BEV) aging profile in accordance with the International Electrotechnical Commission standard IEC 62-660. Several thermal (Accelerating Rate Calorimetry—ARC) and standardized safety (short-circuit, overcharge) tests were performed on fresh and aged cells. This study highlights the impact of aging on safety by comparing the safety behavior of fresh and aged cells with their aging conditions and the degradation mechanisms involved. Full article
(This article belongs to the Special Issue Thermal Safety of Lithium Ion Batteries)
Show Figures

Graphical abstract

22 pages, 6773 KiB  
Article
Analysis of the Energy Efficiency of a Hybrid Energy Storage System for an Electric Vehicle
by Florin Mariasiu and Edmond A. Kelemen
Batteries 2023, 9(8), 419; https://doi.org/10.3390/batteries9080419 - 11 Aug 2023
Cited by 4 | Viewed by 2260
Abstract
The large-scale introduction of electric vehicles into traffic has appeared as an immediate necessity to reduce the pollution caused by the transport sector. The major problem of replacing propulsion systems based on internal combustion engines with electric ones is the energy storage capacity [...] Read more.
The large-scale introduction of electric vehicles into traffic has appeared as an immediate necessity to reduce the pollution caused by the transport sector. The major problem of replacing propulsion systems based on internal combustion engines with electric ones is the energy storage capacity of batteries, which defines the autonomy of the electric vehicle. Furthermore, considering the high cost of the battery, it is necessary to consider the implementation of command-and-control systems that extend the life of a battery for as long as possible. The topic covered in this article refers to the analysis by modeling and simulation of the efficiency of a hybrid energy storage system (battery–supercapacitor) adapted for an electric vehicle (e-Golf). Based on the simulations carried out, considering that the operating mode corresponds to the WLTP test cycle, the major conclusion was reached that the use of such a system leads to a decrease in energy consumption by 2.95% per 100 km. Simulations of the model were also carried out to obtain the variation in electricity consumption and vehicle autonomy depending on the number of passengers. Electricity consumption if the vehicle is equipped with a hybrid energy storage system increases by 0.67% on average for each passenger (of 75 kg) added and by 0.73% on average if the vehicle is not equipped with supercapacitors. Moreover, the use of the supercapacitor’s properties leads to the reduction in the peaks in energy taken/given by the battery with a direct effect on extending its life. Full article
Show Figures

Graphical abstract

17 pages, 12775 KiB  
Article
Data-Driven Diagnosis of PV-Connected Batteries: Analysis of Two Years of Observed Irradiance
by Matthieu Dubarry, Fahim Yasir, Nahuel Costa and Dax Matthews
Batteries 2023, 9(8), 395; https://doi.org/10.3390/batteries9080395 - 29 Jul 2023
Cited by 2 | Viewed by 1097
Abstract
The diagnosis and prognosis of PV-connected batteries are complicated because cells might never experience controlled conditions during operation as both the charge and discharge duty cycles are sporadic. This work presents the application of a new methodology that enables diagnosis without the need [...] Read more.
The diagnosis and prognosis of PV-connected batteries are complicated because cells might never experience controlled conditions during operation as both the charge and discharge duty cycles are sporadic. This work presents the application of a new methodology that enables diagnosis without the need for any maintenance cycle. It uses a 1-dimensional convolutional neural network trained on the output from a clear sky irradiance model and validated on the observed irradiances for 720 days of synthetic battery data generated from pyranometer irradiance observations. The analysis was performed from three angles: the impact of sky conditions, degradation composition, and degradation extent. Our results indicate that for days with over 50% clear sky or with an average irradiance over 650 W/m2, diagnosis with an average RMSE of 1.75% is obtainable independent of the composition of the degradation and of its extent. Full article
(This article belongs to the Special Issue The Precise Battery—towards Digital Twins for Advanced Batteries)
Show Figures

Graphical abstract

18 pages, 4833 KiB  
Article
Impact of Silicon Content and Particle Size in Lithium-Ion Battery Anodes on Particulate Properties and Electrochemical Performance
by Jannes Müller, Peter Michalowski and Arno Kwade
Batteries 2023, 9(7), 377; https://doi.org/10.3390/batteries9070377 - 13 Jul 2023
Cited by 3 | Viewed by 3195
Abstract
Silicon (Si) is considered a promising anode active material to enhance energy density of lithium-ion batteries. Many studies have focused on new structures and the electrochemical performance, but only a few investigated the particulate properties in detail. Therefore, a comprehensive study on the [...] Read more.
Silicon (Si) is considered a promising anode active material to enhance energy density of lithium-ion batteries. Many studies have focused on new structures and the electrochemical performance, but only a few investigated the particulate properties in detail. Therefore, a comprehensive study on the impact of Si content (5, 10, 15 wt.%) and particle size (120, 160, 250 nm) of core–shell structured Si@Gr composites on particulate and electrode properties was conducted. It was shown that both parameters had significant impact on the specific surface area (SSA) of particles, which was later correlated to the initial capacities and coulombic efficiencies (ICEs). Furthermore, changes in pore size distribution and electrical conductivity were found. The built full cells showed high initial capacities (>150 mAh g−1), good rate capability (75% at 1 C, 50% at 2 C) and ICEs (>80%). The energy density was found to increase by 32% at 15 wt.% Si compared to graphite (Gr), indicating the future potential of Si. In addition, the impact of a carbon coating was investigated (Si@Gr/C), which led to a reduction in SSA, improved particle stability and higher capacity retention. Consequently, this study emphasizes the importance of also investigating the particulate properties of Si anodes. Full article
Show Figures

Graphical abstract

16 pages, 3156 KiB  
Review
Toward Scalable Liquid-Phase Synthesis of Sulfide Solid Electrolytes for All-Solid-State Batteries
by Hirotada Gamo, Atsushi Nagai and Atsunori Matsuda
Batteries 2023, 9(7), 355; https://doi.org/10.3390/batteries9070355 - 04 Jul 2023
Cited by 1 | Viewed by 1670
Abstract
All-solid-state batteries (ASSBs) are promising to be next-generation battery that provides high energy density and intrinsic safety. Research in the field of ASSBs has so far focused on the development of highly conductive solid electrolytes (SEs). The commercialization of ASSBs requires well-established large-scale [...] Read more.
All-solid-state batteries (ASSBs) are promising to be next-generation battery that provides high energy density and intrinsic safety. Research in the field of ASSBs has so far focused on the development of highly conductive solid electrolytes (SEs). The commercialization of ASSBs requires well-established large-scale manufacturing for sulfide SEs with high ionic conductivity. However, the synthesis for sulfide SEs remains at the laboratory scale with limited scalability owing to their air sensitivity. The liquid-phase synthesis would be an economically viable manufacturing technology for sulfide SEs. Herein, we review a chemical perspective in liquid-phase synthesis that offers high scalability, low cost, and high reaction kinetics. This review provides a guideline for desirable solvent selection based on the solubility and polarity characterized by the donor number and dielectric permittivity of solvents. Additionally, we offer a deeper understanding of the recent works on scalable liquid-phase synthesis using solubilizers and reactant agents. We present an outlook on a universal liquid-phase synthesis of sulfide SEs toward the commercialization of sulfide-based ASSBs. Full article
(This article belongs to the Special Issue Next Generation Batteries with Advanced Electrolytes and Interlayers)
Show Figures

Graphical abstract

23 pages, 13930 KiB  
Review
Solid Polymer Electrolytes for Zinc-Ion Batteries
by Ivan Miguel De Cachinho Cordeiro, Ao Li, Bo Lin, Daphne Xiuyun Ma, Lulu Xu, Alice Lee-Sie Eh and Wei Wang
Batteries 2023, 9(7), 343; https://doi.org/10.3390/batteries9070343 - 27 Jun 2023
Cited by 2 | Viewed by 2463
Abstract
To date, zinc-ion batteries (ZIBs) have been attracting extensive attention due to their outstanding properties and the potential to be the solution for next-generation energy storage systems. However, the uncontrollable growth of zinc dendrites and water-splitting issues seriously restrict their further scalable application. [...] Read more.
To date, zinc-ion batteries (ZIBs) have been attracting extensive attention due to their outstanding properties and the potential to be the solution for next-generation energy storage systems. However, the uncontrollable growth of zinc dendrites and water-splitting issues seriously restrict their further scalable application. Over the past few years, solid polymer electrolytes (SPEs) have been regarded as a promising alternative to address these challenges and facilitate the practical advancement of zinc batteries. In this review, we revisit the research progress of SPEs applied in zinc batteries in the past few years and focus on introducing cutting-edge polymer science and technologies that can be utilised to prepare advanced SPEs for high-performance zinc batteries. The operating mechanism of SPEs and the functions of polymers are summarised. To highlight the polymer’s functions, SPEs are categorised into three types, homogenous polymer SPEs, hybrids polymer SPEs, and nanocomposites SPEs, which are expected to reveal the roles and principles of various polymers in zinc batteries. This review presents the current research progress and fundamental mechanisms of polymer-based SPEs in zinc batteries, outlines the challenging issues encountered, and proposes potential solutions for future endeavours. Full article
Show Figures

Figure 1

19 pages, 7765 KiB  
Article
High-Precision and Robust SOC Estimation of LiFePO4 Blade Batteries Based on the BPNN-EKF Algorithm
by Zhihang Zhang, Siliang Chen, Languang Lu, Xuebing Han, Yalun Li, Siqi Chen, Hewu Wang, Yubo Lian and Minggao Ouyang
Batteries 2023, 9(6), 333; https://doi.org/10.3390/batteries9060333 - 20 Jun 2023
Cited by 2 | Viewed by 1961
Abstract
The lithium iron phosphate (LiFePO4) blade battery is a long, rectangular-shaped cell that can be directly integrated into battery pack systems. It enhances volumetric power density, significantly reduces costs, and is widely utilized in electric vehicles. However, the flat open circuit [...] Read more.
The lithium iron phosphate (LiFePO4) blade battery is a long, rectangular-shaped cell that can be directly integrated into battery pack systems. It enhances volumetric power density, significantly reduces costs, and is widely utilized in electric vehicles. However, the flat open circuit voltage and significant polarization differences under wide operational temperatures are challenging for accurate voltage modeling of battery management systems (BMSs). In particular, inaccurate state of charge (SOC) estimation may cause overcharging and over-discharging risks. To accurately perceive the SOC of LiFePO4 blade batteries, a SOC estimation method based on the backpropagation neural network-extended Kalman filter (BPNN-EKF) algorithm is proposed. BPNN is a neural network model that utilizes the backpropagation algorithm to update model parameters, while EKF is an optimal estimation algorithm. Firstly, dynamic working condition tests, including the New European Driving Cycle (NEDC) and high-speed working (HSW) condition tests, are conducted under a wide temperature range (−25–43 °C). HSW conditions refer to a simulated operating condition that mimics the driving of an electric vehicle on a highway. The minimum voltage of the battery system is used as the output for training the BPNN model. We derive the Kalman gain by combining the BPNN output voltage. Additionally, the EKF algorithm is employed to correct the SOC value using voltage error information. Concerning long SOC calculation intervals, capacity errors, initial SOC errors, and current and voltage sampling errors, the maximum SOC estimation RMSE is 3.98% at −20 °C NEDC, 3.62% at 10 °C NEDC, and 1.68% at 35 °C HSW. The proposed algorithm can be applied to different temperatures and operations, demonstrating high robustness. This BPNN-EKF algorithm has the potential to be embedded in electric vehicle BMS systems for practical applications. Full article
(This article belongs to the Special Issue Battery Energy Storage in Advanced Power Systems)
Show Figures

Figure 1

13 pages, 4406 KiB  
Article
Modeling Anisotropic Transport in Polycrystalline Battery Materials
by Simon Daubner, Marcel Weichel, Paul W. Hoffrogge, Daniel Schneider and Britta Nestler
Batteries 2023, 9(6), 310; https://doi.org/10.3390/batteries9060310 - 05 Jun 2023
Cited by 2 | Viewed by 1905
Abstract
Hierarchical structures of many agglomerated primary crystals are often employed as cathode materials, especially for layered-oxide compounds. The anisotropic nature of these materials results in a strong correlation between particle morphology and ion transport. In this work, we present a multiphase-field framework that [...] Read more.
Hierarchical structures of many agglomerated primary crystals are often employed as cathode materials, especially for layered-oxide compounds. The anisotropic nature of these materials results in a strong correlation between particle morphology and ion transport. In this work, we present a multiphase-field framework that is able to account for strongly anisotropic diffusion in polycrystalline materials. Various secondary particle structures with random grain orientation as well as strongly textured samples are investigated. The observed ion distributions match well with the experimental observations. Furthermore, we show how these simulations can be used to mimic potentiostatic intermittent titration technique (PITT) measurements and compute effective diffusion coefficients for secondary particles. The results unravel the intrinsic relation between particle microstructure and the apparent diffusivity. Consequently, the modeling framework can be employed to guide the microstructure design of secondary battery particles. Furthermore, the phase-field method closes the gap between computation of diffusivities on the atomistic scale and the effective properties of secondary particles, which are a necessary input for Newman-type cell models. Full article
(This article belongs to the Special Issue Materials Design for Electrochemical Energy Storage)
Show Figures

Figure 1

20 pages, 1400 KiB  
Article
Maximizing Efficiency in Smart Adjustable DC Link Powertrains with IGBTs and SiC MOSFETs via Optimized DC-Link Voltage Control
by Yu Xu, Anton Kersten, Simon Klacar and David Sedarsky
Batteries 2023, 9(6), 302; https://doi.org/10.3390/batteries9060302 - 31 May 2023
Cited by 4 | Viewed by 1782
Abstract
In recent years, the push towards electrifying transportation has gained significant traction, with battery-electric vehicles (BEVs) emerging as a viable alternative. However, the widespread adoption of BEVs faces multiple challenges, such as limited driving range, making powertrain efficiency improvements crucial. One approach to [...] Read more.
In recent years, the push towards electrifying transportation has gained significant traction, with battery-electric vehicles (BEVs) emerging as a viable alternative. However, the widespread adoption of BEVs faces multiple challenges, such as limited driving range, making powertrain efficiency improvements crucial. One approach to improve powertrain energy efficiency is to adjust the DC-link voltage using a DC-DC converter between the battery and inverter. Here, it is necessary to address the losses introduced by the DC-DC converter. This paper presents a dynamic programming approach to optimize the DC-link voltage, taking into account the battery terminal voltage variation and its impact on the overall powertrain losses. We also examine the energy efficiency gains of IGBT-based and silicon carbide (SiC) MOSFET-based adjustable DC-link voltage powertrains during WLTC driving cycles through PLECS and Matlab/Simulink simulations. The findings indicate that both IGBT and MOSFET-based adjustable DC-link voltage powertrains can enhance the WLTC drive-cycle efficiency up to 2.51% and 3.25% compared to conventional IGBT and MOSFET-based powertrains, respectively. Full article
(This article belongs to the Special Issue Future Smart Battery Management Systems)
Show Figures

Figure 1

19 pages, 5478 KiB  
Article
Hybrid Modeling of Lithium-Ion Battery: Physics-Informed Neural Network for Battery State Estimation
by Soumya Singh, Yvonne Eboumbou Ebongue, Shahed Rezaei and Kai Peter Birke
Batteries 2023, 9(6), 301; https://doi.org/10.3390/batteries9060301 - 30 May 2023
Cited by 8 | Viewed by 5406
Abstract
Accurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. [...] Read more.
Accurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. Physics-based models need a tradeoff between accuracy and complexity due to vast parameter requirements, while machine-learning models require large training datasets and may fail when generalized to unseen scenarios. To address this issue, this paper aims to integrate the physics-based battery model and the machine learning model to leverage their respective strengths. This is achieved by applying the deep learning framework called physics-informed neural networks (PINN) to electrochemical battery modeling. The state of charge and state of health of lithium-ion cells are predicted by integrating the partial differential equation of Fick’s law of diffusion from a single particle model into the neural network training process. The results indicate that PINN can estimate the state of charge with a root mean square error in the range of 0.014% to 0.2%, while the state of health has a range of 1.1% to 2.3%, even with limited training data. Compared to conventional approaches, PINN is less complex while still incorporating the laws of physics into the training process, resulting in adequate predictions, even for unseen situations. Full article
(This article belongs to the Special Issue The Precise Battery—towards Digital Twins for Advanced Batteries)
Show Figures

Figure 1

20 pages, 5215 KiB  
Article
A Plating-Free Charging Scheme for Battery Module Based on Anode Potential Estimation to Prevent Lithium Plating
by Yaxing Ren, Dhammika Widanage and James Marco
Batteries 2023, 9(6), 294; https://doi.org/10.3390/batteries9060294 - 27 May 2023
Cited by 1 | Viewed by 1487
Abstract
Since fast charging schemes for lithium-ion batteries are known to lead to a reduction in battery capacity, there is a need to avoid lithium plating during the charging process. This paper designed an anode potential observer and a plating-free charging scheme for a [...] Read more.
Since fast charging schemes for lithium-ion batteries are known to lead to a reduction in battery capacity, there is a need to avoid lithium plating during the charging process. This paper designed an anode potential observer and a plating-free charging scheme for a battery module to avoid the risk of lithium plating for all cells in the module. The observer was designed using an electrochemical cell model and an electrical busbar model to estimate the anode potential of all cells within a parallel connected battery module. Due to its simplicity and low computational loads, the observer was easy to implement in a charge management system. The results demonstrated that the designed observer and charging scheme can accurately estimate the anode potential of all cells in the module. The estimation results of the observer were used in the plating-free charging scheme. Compared to conventional charging methods, the proposed scheme added an additional stage to estimate and control the anode potential, therefore reducing the risk of lithium plating during charging. It also reduced the peak temperature of the battery by approximately 9.8% and reduced the overall charging time by 18%. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

20 pages, 6699 KiB  
Article
Dynamic Charge Acceptance Compared to Electrochemical Impedance Spectroscopy Parameters: Dependencies on Additives, State of Charge, and Prior Usage
by Sophia Bauknecht, Julia Kowal, Jochen Settelein, Markus Föhlisch and Eckhard Karden
Batteries 2023, 9(5), 263; https://doi.org/10.3390/batteries9050263 - 08 May 2023
Cited by 1 | Viewed by 1702
Abstract
The goal of this work was to predict the dynamic charge acceptance (DCA) for cells using different additives on the negative electrode from the evaluation of small-signal measurements by electrochemical impedance spectroscopy (EIS). Thereby, various operating points were evaluated, such as state of [...] Read more.
The goal of this work was to predict the dynamic charge acceptance (DCA) for cells using different additives on the negative electrode from the evaluation of small-signal measurements by electrochemical impedance spectroscopy (EIS). Thereby, various operating points were evaluated, such as state of charge (SoC) and prior usage (charge or discharge). The 2V test cells under investigation utilized plates of enhanced flooded 3P2N battery cells (EFB). They contained three positive and two negative electrodes. The latter varied in their additive composition. In total, eight different negative electrodes were investigated, five including specially synthesized amorphous carbon as an additive, two with unknown additive mixes, and one including a commercially available carbon black. The best parameters for predicting the DCA were found within the first semicircle of the negative half-cell spectra measured during a superimposed charging current. Full article
(This article belongs to the Section Battery Mechanisms and Fundamental Electrochemistry Aspects)
Show Figures

Figure 1

17 pages, 3781 KiB  
Article
Sustainable Approach for the Development of TiO2-Based 3D Electrodes for Microsupercapacitors
by Nathalie Poirot, Marie Gabard, Mohamed Boufnichel, Rachelle Omnée and Encarnacion Raymundo-Piñero
Batteries 2023, 9(5), 258; https://doi.org/10.3390/batteries9050258 - 29 Apr 2023
Viewed by 1521
Abstract
This study reports a sustainable approach for developing electrodes for microsupercapacitors. This approach includes the synthesis of TiO2 nanoparticles via a green sol–gel method and the deposition of thin films of that electrochemically active material on three-dimensional (3D) Si substrates with a [...] Read more.
This study reports a sustainable approach for developing electrodes for microsupercapacitors. This approach includes the synthesis of TiO2 nanoparticles via a green sol–gel method and the deposition of thin films of that electrochemically active material on three-dimensional (3D) Si substrates with a high area enlargement factor (AEF) via a simple, fast, and inexpensive spin-coating pathway. The thickness of the film was first optimized via its deposition over two-dimensional (2D) substrates to achieve high capacitances to provide high energy density but also to deliver a good rate capability to ensure the power density required for a supercapacitor device. A film thickness of ~120 nm realizes the best compromise between the electronic/ionic conductivity and capacitance in a supercapacitor device. Such layers of TiO2 were successfully coated onto 3D microstructured substrates with different architectures, such as trenches and pillars, and different aspect ratios. The spin-coating-based route developed here has been established to be superior as, on the one hand, a conformal deposition can be achieved over high AEF subtracts, and on the other hand, the 3D electrodes present higher surface capacitances than those obtained using other deposition techniques. The rate capability and appreciable cyclability ensure a reliable supercapacitor behavior. Full article
Show Figures

Figure 1

36 pages, 5081 KiB  
Review
Lithium Niobate for Fast Cycling in Li-ion Batteries: Review and New Experimental Results
by Erwin Hüger, Lukas Riedel, Jing Zhu, Jochen Stahn, Paul Heitjans and Harald Schmidt
Batteries 2023, 9(5), 244; https://doi.org/10.3390/batteries9050244 - 25 Apr 2023
Cited by 8 | Viewed by 3678
Abstract
Li-Nb-O-based insertion layers between electrodes and electrolytes of Li-ion batteries (LIBs) are known to protect the electrodes and electrolytes from unwanted reactions and to enhance Li transport across interfaces. An improved operation of LIBs, including all-solid-state LIBs, is reached with Li-Nb-O-based insertion layers. [...] Read more.
Li-Nb-O-based insertion layers between electrodes and electrolytes of Li-ion batteries (LIBs) are known to protect the electrodes and electrolytes from unwanted reactions and to enhance Li transport across interfaces. An improved operation of LIBs, including all-solid-state LIBs, is reached with Li-Nb-O-based insertion layers. This work reviews the suitability of polymorphic Li-Nb-O-based compounds (e.g., crystalline, amorphous, and mesoporous bulk materials and films produced by various methodologies) for LIB operation. The literature survey on the benefits of niobium-oxide-based materials for LIBs, and additional experimental results obtained from neutron scattering and electrochemical experiments on amorphous LiNbO3 films are the focus of the present work. Neutron reflectometry reveals a higher porosity in ion-beam sputtered amorphous LiNbO3 films (22% free volume) than in other metal oxide films such as amorphous LiAlO2 (8% free volume). The higher porosity explains the higher Li diffusivity reported in the literature for amorphous LiNbO3 films compared to other similar Li-metal oxides. The higher porosity is interpreted to be the reason for the better suitability of LiNbO3 compared to other metal oxides for improved LIB operation. New results are presented on gravimetric and volumetric capacity, potential-resolved Li+ uptake and release, pseudo-capacitive fractions, and Li diffusivities determined electrochemically during long-term cycling of LiNbO3 film electrodes with thicknesses between 14 and 150 nm. The films allow long-term cycling even for fast cycling with rates of 240C possessing reversible capacities as high as 600 mAhg−1. Electrochemical impedance spectroscopy (EIS) shows that the film atomic network is stable during cycling. The Li diffusivity estimated from the rate capability experiments is considerably lower than that obtained by EIS but coincides with that from secondary ion mass spectrometry. The mostly pseudo-capacitive behavior of the LiNbO3 films explains their ability of fast cycling. The results anticipate that amorphous LiNbO3 layers also contribute to the capacity of positive (LiNixMnyCozO2, NMC) and negative LIB electrode materials such as carbon and silicon. As an outlook, in addition to surface-engineering, the bulk-engineering of LIB electrodes may be possible with amorphous and porous LiNbO3 for fast cycling with high reversible capacity. Full article
Show Figures

Figure 1

31 pages, 7355 KiB  
Article
Thermal and Mechanical Safety Assessment of Type 21700 Lithium-Ion Batteries with NMC, NCA and LFP Cathodes–Investigation of Cell Abuse by Means of Accelerating Rate Calorimetry (ARC)
by Sebastian Ohneseit, Philipp Finster, Claire Floras, Niklas Lubenau, Nils Uhlmann, Hans Jürgen Seifert and Carlos Ziebert
Batteries 2023, 9(5), 237; https://doi.org/10.3390/batteries9050237 - 22 Apr 2023
Cited by 11 | Viewed by 5121
Abstract
In this experimental investigation, we studied the safety and thermal runaway behavior of commercial lithium-ion batteries of type 21700. The different cathode materials NMC, NCA and LFP were compared, as well as high power and high energy cells. After characterization of all relevant [...] Read more.
In this experimental investigation, we studied the safety and thermal runaway behavior of commercial lithium-ion batteries of type 21700. The different cathode materials NMC, NCA and LFP were compared, as well as high power and high energy cells. After characterization of all relevant components of the batteries to assure comparability, two abuse methods were applied: thermal abuse by the heat-wait-seek test and mechanical abuse by nail penetration, both in an accelerating rate calorimeter. Several critical temperatures and temperature rates, as well as exothermal data, were determined. Furthermore, the grade of destruction, mass loss and, for the thermal abuse scenario, activation energy and enthalpy, were calculated for critical points. It was found that NMC cells reacted first, but NCA cells went into thermal runaway a little earlier than NMC cells. LFP cells reacted, as expected, more slowly and at significantly higher temperatures, making the cell chemistry considerably safer. For mechanical abuse, no thermal runaway was observed for LFP cells, as well as at state of charge (SOC) zero for the other chemistries tested. For thermal abuse, at SOC 0 and SOC 30 for LFP cells and at SOC 0 for the other cell chemistries, no thermal runaway occurred until 350 °C. In this study, the experimental data are provided for further simulation approaches and system safety design. Full article
(This article belongs to the Special Issue Materials Design for Electrochemical Energy Storage)
Show Figures

Graphical abstract

13 pages, 1218 KiB  
Article
How Cell Design Affects the Aging Behavior: Comparing Electrode-Individual Aging Processes of High-Energy and High-Power Lithium-Ion Batteries Using High Precision Coulometry
by Sebastian Michael Peter Jagfeld, Kai Peter Birke, Alexander Fill and Peter Keil
Batteries 2023, 9(4), 232; https://doi.org/10.3390/batteries9040232 - 18 Apr 2023
Cited by 2 | Viewed by 1786
Abstract
The aging behavior of lithium-ion batteries is crucial for the development of electric vehicles and many other battery-powered devices. The cells can be generally classified into two types: high-energy (HE) and high-power (HP) cells. The cell type used depends on the field of [...] Read more.
The aging behavior of lithium-ion batteries is crucial for the development of electric vehicles and many other battery-powered devices. The cells can be generally classified into two types: high-energy (HE) and high-power (HP) cells. The cell type used depends on the field of application. As these cells differ in their electrical behavior, this work investigates whether both cell types also show different aging behavior. More precisely, the occurring capacity loss and internal side reactions are analyzed via the charge throughput. For comparison, aging tests are carried out with a high-precision battery tester, allowing the application of High Precision Coulometry (HPC). This enables early detection of aging effects and also allows us to break down the capacity loss into electrode-individual processes. A total of two sub-studies are performed: (1) a cyclic study focusing on lithium plating; and (2) an accelerated calendar aging study. It is found that HE cells exhibit stronger cyclic aging effects (lithium plating) and HP cells exhibit stronger calendar aging effects. The higher lithium plating can be explained by the higher diffusion resistance of the lithium ions within the electrodes of HE Cell. The higher calendar aging fits to the larger electrode surfaces of the HP cell. These results give deep insights into the proceeding aging in a novel way and are interesting for the selection of the appropriate cell type in the context of battery development. In a next step, the measured capacity losses could also be used for a simple parameterization of battery aging models. Full article
(This article belongs to the Special Issue The Precise Battery—towards Digital Twins for Advanced Batteries)
Show Figures

Graphical abstract

18 pages, 4124 KiB  
Article
Experimental Investigation on Reversible Swelling Mechanisms of Lithium-Ion Batteries under a Varying Preload Force
by Emanuele Michelini, Patrick Höschele, Simon Franz Heindl, Simon Erker and Christian Ellersdorfer
Batteries 2023, 9(4), 218; https://doi.org/10.3390/batteries9040218 - 04 Apr 2023
Cited by 9 | Viewed by 4196
Abstract
The safety of lithium-ion batteries has to be guaranteed over the complete lifetime considering geometry changes caused by reversible and irreversible swellings and degradation mechanisms. An understanding of the pressure distribution and gradients is necessary to optimize battery modules and avoid local degradation [...] Read more.
The safety of lithium-ion batteries has to be guaranteed over the complete lifetime considering geometry changes caused by reversible and irreversible swellings and degradation mechanisms. An understanding of the pressure distribution and gradients is necessary to optimize battery modules and avoid local degradation bearing the risk of safety-relevant battery changes. In this study, the pressure distribution of two fresh lithium-ion pouch cells was measured with an initial preload force of 300 or 4000 N. Four identical cells were electrochemically aged with a 300 or 4000 N preload force. The irreversible thickness change was measured during aging. After aging, the reversible swelling behavior was investigated to draw conclusions on how the pressure distribution affected the aging behavior. A novel test setup was developed to measure the local cell thickness without contact and with high precision. The results suggested that the applied preload force affected the pressure distribution and pressure gradients on the cell surface. The pressure gradients were found to affect the locality of the irreversible swelling. Positions suffering from large pressure variations and gradients increased strongly in thickness and were affected in terms of their reversible swelling behavior. In particular, the edges of the investigated cells showed a strong thickness increase caused by pressure peaks. Full article
(This article belongs to the Special Issue Battery Safety: Recent Advances and Perspective)
Show Figures

Figure 1

20 pages, 3464 KiB  
Article
Tragacanth, an Exudate Gum as Suitable Aqueous Binder for High Voltage Cathode Material
by Daniele Versaci, Oana D. Apostu, Davide Dessantis, Julia Amici, Carlotta Francia, Marco Minella and Silvia Bodoardo
Batteries 2023, 9(4), 199; https://doi.org/10.3390/batteries9040199 - 28 Mar 2023
Cited by 4 | Viewed by 1797
Abstract
The improvements in future-generation lithium-ion batteries cannot be exclusively focused on the performance. Other aspects, such as costs, processes, and environmental sustainability, must be considered. Research and development of new active materials allow some fundamental aspects of the batteries to be increased, such [...] Read more.
The improvements in future-generation lithium-ion batteries cannot be exclusively focused on the performance. Other aspects, such as costs, processes, and environmental sustainability, must be considered. Research and development of new active materials allow some fundamental aspects of the batteries to be increased, such as power and energy density. However, one of the main future challenges is the improvement of the batteries’ electrochemical performance by using “non-active” materials (binder, current collector, separators) with a lower cost, lower environmental impact, and easier recycling procedure. Focusing on the binder, the main goal is to replace the current fluorinated compounds with water-soluble materials. Starting from these considerations, in this study we evaluate, for the first time, tragacanth gum (TG) as a suitable aqueous binder for the manufacturing process of a cobalt-free, high-voltage lithium nickel manganese oxide (LNMO) cathode. TG-based LNMO cathodes with a low binder content (3 wt%) exhibited good thermal and mechanical properties, showing remarkably high cycling stability with 60% capacity retention after more than 500 cycles at 1 C and an outstanding rate capability of 72 mAh g−1 at 15 C. In addition to the excellent electrochemical features, tragacanth gum also showed excellent recycling and recovery properties, making this polysaccharide a suitable and sustainable binder for next-generation lithium-ion batteries. Full article
(This article belongs to the Special Issue Green and Sustainable Materials for Li-Ion Batteries)
Show Figures

Graphical abstract

19 pages, 6987 KiB  
Article
Thermal Modelling and Simulation Studies of Containerised Vanadium Flow Battery Systems
by Bing Shu, Logan S. Weber, Maria Skyllas-Kazacos, Jie Bao and Ke Meng
Batteries 2023, 9(4), 196; https://doi.org/10.3390/batteries9040196 - 24 Mar 2023
Cited by 1 | Viewed by 1670
Abstract
With increasing commercial applications of vanadium flow batteries (VFB), containerised VFB systems are gaining attention as they can be mass produced and easily transported and configured for different energy storage applications. However, there are limited studies on the thermodynamic modelling of containerised vanadium [...] Read more.
With increasing commercial applications of vanadium flow batteries (VFB), containerised VFB systems are gaining attention as they can be mass produced and easily transported and configured for different energy storage applications. However, there are limited studies on the thermodynamic modelling of containerised vanadium redox flow battery systems, and thermal control designs. In this paper, a dynamic thermal model is developed for containerised VFB systems, based on which thermal design options are evaluated using simulation studies. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Batteries)
Show Figures

Figure 1

14 pages, 3783 KiB  
Article
Optimisation of Industrially Relevant Electrode Formulations for LFP Cathodes in Lithium Ion Cells
by Geanina Apachitei, Marc Hidalgo, Daniela Dogaru, Michael Lain, Robert Heymer, James Marco and Mark Copley
Batteries 2023, 9(4), 192; https://doi.org/10.3390/batteries9040192 - 23 Mar 2023
Cited by 5 | Viewed by 3744
Abstract
The electrode formulation has a significant effect on the performance of lithium ion cells. The active material, binder, and conductive carbon all have different roles, and finding the optimum composition can be difficult using an iterative approach. In this study, a design of [...] Read more.
The electrode formulation has a significant effect on the performance of lithium ion cells. The active material, binder, and conductive carbon all have different roles, and finding the optimum composition can be difficult using an iterative approach. In this study, a design of experiment (DoE) methodology is applied to the optimisation of a cathode based on lithium iron phosphate (LFP). The minimum LFP content in the electrodes is 94 wt%. Seventeen mixes are used to evaluate adhesion, resistivity, and electrochemical performance. The coating adhesion increases with binder content, and the coating conductivity increases with carbon nano-tube content. The best coatings achieve 5C:0.2C capacity ratios above 50%, despite the relatively high coat weight. Models based on just the component mixture do not replicate the discharge capacities at high rates. However, a combined mixture + process model can fit the data, and is used to predict an optimum formulation. Full article
Show Figures

Figure 1

49 pages, 15657 KiB  
Review
All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs
by Baolin Wu, Chunguang Chen, Dmitri L. Danilov, Rüdiger-A. Eichel and Peter H. L. Notten
Batteries 2023, 9(3), 186; https://doi.org/10.3390/batteries9030186 - 21 Mar 2023
Cited by 9 | Viewed by 7331
Abstract
All-solid-state batteries (ASSBs) are among the remarkable next-generation energy storage technologies for a broad range of applications, including (implantable) medical devices, portable electronic devices, (hybrid) electric vehicles, and even large-scale grid storage. All-solid-state thin film Li-ion batteries (TFLIBs) with an extended cycle life, [...] Read more.
All-solid-state batteries (ASSBs) are among the remarkable next-generation energy storage technologies for a broad range of applications, including (implantable) medical devices, portable electronic devices, (hybrid) electric vehicles, and even large-scale grid storage. All-solid-state thin film Li-ion batteries (TFLIBs) with an extended cycle life, broad temperature operation range, and minimal self-discharge rate are superior to bulk-type ASSBs and have attracted considerable attention. Compared with conventional batteries, stacking dense thin films reduces the Li-ion diffusion length, thereby improving the rate capability. It is vital to develop TFLIBs with higher energy density and stability. However, multiple challenges, such as interfacial instability, low volumetric energy density, and high manufacturing cost, still hinder the widespread application of TFLIBs. At present, many approaches, such as materials optimization and novel architecture design, have been explored to enhance the stability and energy density of TFLIBs. An overview of these discoveries and developments in TFLIBs is presented in this review, together with new insights into the intrinsic mechanisms of operation; this is of great value to the batteries research community and facilitates further improvements in batteries in the near future. Full article
(This article belongs to the Special Issue Advancements towards Practical All-Solid-State Batteries)
Show Figures

Graphical abstract

25 pages, 5437 KiB  
Review
Development of All-Solid-State Li-Ion Batteries: From Key Technical Areas to Commercial Use
by Constantin Bubulinca, Natalia E. Kazantseva, Viera Pechancova, Nikhitha Joseph, Haojie Fei, Mariana Venher, Anna Ivanichenko and Petr Saha
Batteries 2023, 9(3), 157; https://doi.org/10.3390/batteries9030157 - 01 Mar 2023
Cited by 9 | Viewed by 6212
Abstract
Innovation in the design of Li-ion rechargeable batteries is necessary to overcome safety concerns and meet energy demands. In this regard, a new generation of Li-ion batteries (LIBs) in the form of all-solid-state batteries (ASSBs) has been developed, attracting a great deal of [...] Read more.
Innovation in the design of Li-ion rechargeable batteries is necessary to overcome safety concerns and meet energy demands. In this regard, a new generation of Li-ion batteries (LIBs) in the form of all-solid-state batteries (ASSBs) has been developed, attracting a great deal of attention for their high-energy density and excellent mechanical-electrochemical stability. This review describes the current state of research and development on ASSB technology. To this end, study of the literature and patents as well as market analysis over the last two decades were carried out, highlighting how scientific achievements have informed the application of commercially profitable ASSBs. Analyzing the patents registered over the past 20 years revealed that the number of them had increased exponentially-from only few per year in early 2000 to more than 342 in 2020. Published literature and patents on the topic declare a solid-state electrolyte (SSE) to be the main component of ASSBs, and most patented examples are referred to as solid inorganic electrolytes (SIEs), followed by solid polymer electrolytes (SPEs) and solid hybrid electrolytes (SHEs) in popularity. Investigation of company websites, social media profiles, reports, and academic publications identified 93 companies associated with ASSBs. A list of leading businesses in the solid-state battery sector was compiled, out of which 36 provided information on the ASSB units in their product portfolio for detailed analysis. Full article
Show Figures

Graphical abstract

21 pages, 6660 KiB  
Review
Strategies and Challenge of Thick Electrodes for Energy Storage: A Review
by Junsheng Zheng, Guangguang Xing, Liming Jin, Yanyan Lu, Nan Qin, Shansong Gao and Jim P. Zheng
Batteries 2023, 9(3), 151; https://doi.org/10.3390/batteries9030151 - 27 Feb 2023
Cited by 11 | Viewed by 5899
Abstract
In past years, lithium-ion batteries (LIBs) can be found in every aspect of life, and batteries, as energy storage systems (ESSs), need to offer electric vehicles (EVs) more competition to be accepted in markets for automobiles. Thick electrode design can reduce the use [...] Read more.
In past years, lithium-ion batteries (LIBs) can be found in every aspect of life, and batteries, as energy storage systems (ESSs), need to offer electric vehicles (EVs) more competition to be accepted in markets for automobiles. Thick electrode design can reduce the use of non-active materials in batteries to improve the energy density of the batteries and reduce the cost of the batteries. However, thick electrodes are limited by their weak mechanical stability and poor electrochemical performance; these limitations could be classified as the critical cracking thickness (CCT) and the limited penetration depth (LPD). The understanding of the CCT and the LPD have been proposed and the recent works on breaking the CCT and improving the LPD are listed in this article. By comprising these attempts, some thick electrodes could not offer higher mass loading or higher accessible areal capacity that would defeat the purpose. Full article
Show Figures

Figure 1

17 pages, 6870 KiB  
Article
High-Entropy Metal Oxide (NiMnCrCoFe)3O4 Anode Materials with Controlled Morphology for High-Performance Lithium-Ion Batteries
by Xuan Liang Wang, En Mei Jin, Gopinath Sahoo and Sang Mun Jeong
Batteries 2023, 9(3), 147; https://doi.org/10.3390/batteries9030147 - 24 Feb 2023
Cited by 10 | Viewed by 2678
Abstract
High-entropy metal oxides (HEMOs) with several functional properties, including high structural stability and superior conductivity, have been recently utilized in energy-storage devices. Morphology control is the key factor to optimizing HEMO performance for successful use in lithium-ion anode materials. Hence, in this study, [...] Read more.
High-entropy metal oxides (HEMOs) with several functional properties, including high structural stability and superior conductivity, have been recently utilized in energy-storage devices. Morphology control is the key factor to optimizing HEMO performance for successful use in lithium-ion anode materials. Hence, in this study, HEMO ((NiMnCrCoFe)3O4) was synthesized via a hydrothermal reaction and subsequent post-annealing process, where cetyltrimethylammonium bromide (CTAB) and urea were used to optimize the morphological structure of HEMO particles to ensure a bimodal distribution. A bimodal particle distribution of HEMO was observed and the electrochemical performance was also investigated for an anode in lithium-ion batteries (LIBs). The proposed bimodal HEMO manifests a superior electrochemical performance compared to existing HEMO, which is controlled by uniform nanoscale or micro-sized secondary particles. The present study shows that collective metal cations with different ionic radii, valence states, and reaction potentials, and a diversification of structures, enable a synergistic effect for the excellent performance of HEMOs in LIBs. The proposed HEMO shows an improved initial discharge capacity of 527 mAh g−1 at a high current density of 5 A g−1 compared to the other referred HEMO systems, and 99.8% cycle retention after 300 cycles. Further, this work allows a new approach for designing multi-element transition metal oxide anode materials using a high-entropy strategy, which can be employed in the development of advanced LIBs. Full article
(This article belongs to the Special Issue Advanced Cathode and Anode Materials for Lithium/Sodium-Ion Batteries)
Show Figures

Graphical abstract

21 pages, 5681 KiB  
Article
Ammonium and Tetraalkylammonium Salts as Additives for Li Metal Electrodes
by Dario Di Cillo, Luca Bargnesi, Giampaolo Lacarbonara and Catia Arbizzani
Batteries 2023, 9(2), 142; https://doi.org/10.3390/batteries9020142 - 20 Feb 2023
Cited by 1 | Viewed by 1946
Abstract
Lithium metal batteries are considered a promising technology to implement high energy density rechargeable systems beyond lithium-ion batteries. However, the development of dendritic morphology is the basis of safety and performance issues and represents the main limiting factor for using lithium anodes in [...] Read more.
Lithium metal batteries are considered a promising technology to implement high energy density rechargeable systems beyond lithium-ion batteries. However, the development of dendritic morphology is the basis of safety and performance issues and represents the main limiting factor for using lithium anodes in commercial rechargeable batteries. In this study, the electrochemical behaviour of Li metal has been investigated in organic carbonate-based electrolytes by electrochemical impedance spectroscopy measurements and deposition/stripping galvanostatic cycling. Low amounts of tetraalkylammonium hexafluorophosphate salts have been added to the electrolytes with the aim of regulating the lithium deposition/stripping process through the electrostatic shielding effect that improves the lithium deposition. The use of NH4PF6 also determined good lithium deposition/stripping performance due to the chemical modification of the native solid electrolyte interphase via direct reaction with lithium. Full article
Show Figures

Graphical abstract

25 pages, 3249 KiB  
Review
Renewable Electricity for Decarbonisation of Road Transport: Batteries or E-Fuels?
by Gianluca Pasini, Giovanni Lutzemberger and Lorenzo Ferrari
Batteries 2023, 9(2), 135; https://doi.org/10.3390/batteries9020135 - 14 Feb 2023
Cited by 11 | Viewed by 4545
Abstract
Road transport is one of the most energy-consuming and greenhouse gas (GHG) emitting sectors. Progressive decarbonisation of electricity generation could support the ambitious target of road vehicle climate neutrality in two different ways: direct electrification with onboard electrochemical storage or a change of [...] Read more.
Road transport is one of the most energy-consuming and greenhouse gas (GHG) emitting sectors. Progressive decarbonisation of electricity generation could support the ambitious target of road vehicle climate neutrality in two different ways: direct electrification with onboard electrochemical storage or a change of energy vector with e-fuels. The most promising, state-of-the-art electrochemical storages for road transport have been analysed considering current and future technologies (the most promising ones) whose use is assumed to occur within the next 10–15 years. Different e-fuels (e-hydrogen, e-methanol, e-diesel, e-ammonia, E-DME, and e-methane) and their production pathways have been reviewed and compared in terms of energy density, synthesis efficiency, and technology readiness level. A final energetic comparison between electrochemical storages and e-fuels has been carried out considering different powertrain architectures, highlighting the huge difference in efficiency for these competing solutions. E-fuels require 3–5 times more input energy and cause 3–5 times higher equivalent vehicle CO2 emissions if the electricity is not entirely decarbonised. Full article
Show Figures

Figure 1

27 pages, 25177 KiB  
Article
Data-Driven Battery Aging Mechanism Analysis and Degradation Pathway Prediction
by Ruilong Xu, Yujie Wang and Zonghai Chen
Batteries 2023, 9(2), 129; https://doi.org/10.3390/batteries9020129 - 12 Feb 2023
Cited by 8 | Viewed by 2603
Abstract
Capacity decline is the focus of traditional battery health estimation as it is a significant external manifestation of battery aging. However, it is difficult to depict the internal aging information in depth. To achieve the goal of deeper online diagnosis and accurate prediction [...] Read more.
Capacity decline is the focus of traditional battery health estimation as it is a significant external manifestation of battery aging. However, it is difficult to depict the internal aging information in depth. To achieve the goal of deeper online diagnosis and accurate prediction of battery aging, this paper proposes a data-driven battery aging mechanism analysis and degradation pathway prediction approach. Firstly, a non-destructive aging mechanism analysis method based on the open-circuit voltage model is proposed, where the internal aging modes are quantified through the marine predator algorithm. Secondly, through the design of multi-factor and multi-level orthogonal aging experiments, the dominant aging modes and critical aging factors affecting the battery capacity decay at different life phases are determined using statistical analysis methods. Thirdly, a data-driven multi-factor coupled battery aging mechanism prediction model is developed. Specifically, the Transformer network is designed to establish nonlinear relationships between factors and aging modes, and the regression-based data enhancement is performed to enhance the model generalization capability. To enhance the adaptability to variations in aging conditions, the model outputs are set to the increments of the aging modes. Finally, the experimental results verify that the proposed approach can achieve satisfactory performances under different aging conditions. Full article
Show Figures

Figure 1

13 pages, 5445 KiB  
Article
Genetic Algorithm and Taguchi Method: An Approach for Better Li-Ion Cell Model Parameter Identification
by Taha Al Rafei, Nadia Yousfi Steiner and Daniela Chrenko
Batteries 2023, 9(2), 72; https://doi.org/10.3390/batteries9020072 - 20 Jan 2023
Cited by 4 | Viewed by 2497
Abstract
The genetic algorithm (GA) is one of the most used methods to identify the parameters of Li-ion battery models. However, the parametrization of the GA method is not straightforward and can lead to poor accuracy and/or long calculation times. The Taguchi design method [...] Read more.
The genetic algorithm (GA) is one of the most used methods to identify the parameters of Li-ion battery models. However, the parametrization of the GA method is not straightforward and can lead to poor accuracy and/or long calculation times. The Taguchi design method provides an approach to optimize GA parameters, achieving a good balance between accuracy and calculation time. The Taguchi design method is thus used to define the most adapted GA parameters to identify the parameters of model of Li-ion batteries for household applications based on static and dynamic tests in the time domain. The results show a good compromise between calculation time and accuracy (RMSE less than 0.6). This promising approach could be applied to other Li-ion battery applications, resulting from measurements in the frequency domain or different kinds of energy storage. Full article
(This article belongs to the Special Issue High Energy Rechargeable Batteries: Li-Ion and Beyond)
Show Figures

Figure 1

14 pages, 27428 KiB  
Article
Changes in the Mechanical Behavior of Electrically Aged Lithium-Ion Pouch Cells: In-Plane and Out-of-Plane Indentation Loads with Varying Testing Velocity and State of Charge
by Marvin Sprenger, Georgi Kovachev, Norbert Dölle, Florian Schauwecker, Wolfgang Sinz and Christian Ellersdorfer
Batteries 2023, 9(2), 67; https://doi.org/10.3390/batteries9020067 - 17 Jan 2023
Cited by 1 | Viewed by 2356
Abstract
The knowledge about the influence of electrical aging on the behavior of lithium-ion cells under mechanical loads is of high importance to ensure a safe use of batteries over the lifetime in electric vehicles. In order to describe the mechanical behavior in relation [...] Read more.
The knowledge about the influence of electrical aging on the behavior of lithium-ion cells under mechanical loads is of high importance to ensure a safe use of batteries over the lifetime in electric vehicles. In order to describe the mechanical behavior in relation to electrical aging, fresh and electrically aged NCM pouch cells were investigated under different mechanical crash loads. For the first time, the aged cells’ behavior under quasistatic lateral loading was taken into account. Aged cells showed lower maximum forces compared to the fresh cells. The reason of the changed mechanical cell behavior was explained with the different buckling behavior of fresh and aged cells by experimental images. Furthermore, quasistatic and dynamic crash tests in cell’s thickness direction were performed at varying state of charge (SOC) and compared to the results of a previously published study. Independently of the testing velocity, the electrically aged cells failed at increased deformation values. This observation was justified by an increased cell thickness due to an additional softer layer, formed on the aged graphite particle surface, which was observed by the means of scanning electron microscopy. Furthermore, the aged cells showed lower failure forces of up to −11% under quasistatic and dynamic loads at 0% SOC. It was also illustrated that electrical aging causes a deeper voltage drop after cell failure, which suggests a higher energy release after the internal short circuit. The investigations show that electrical aging has a significant influence on the mechanical properties of lithium-ion cells and must be taken into account in the safety assessment. Full article
Show Figures

Figure 1

18 pages, 7783 KiB  
Article
Fast Identification of Micro-Health Parameters for Retired Batteries Based on a Simplified P2D Model by Using Padé Approximation
by Jianing Xu, Chuanyu Sun, Yulong Ni, Chao Lyu, Chao Wu, He Zhang, Qingjun Yang and Fei Feng
Batteries 2023, 9(1), 64; https://doi.org/10.3390/batteries9010064 - 16 Jan 2023
Cited by 19 | Viewed by 3028
Abstract
Better performance consistency of regrouped batteries retired from electric vehicles can guarantee the residual value maximized, which greatly improves the second-use application economy of retired batteries. This paper develops a fast identification approach for micro-health parameters characterizing negative electrode material and electrolyte in [...] Read more.
Better performance consistency of regrouped batteries retired from electric vehicles can guarantee the residual value maximized, which greatly improves the second-use application economy of retired batteries. This paper develops a fast identification approach for micro-health parameters characterizing negative electrode material and electrolyte in LiFePO4 batteries on the basis of a simplified pseudo two-dimensional model by using Padé approximation is developed. First, as the basis for accurately identifying micro-health parameters, the liquid-phase and solid-phase diffusion processes of pseudo two-dimensional model are simplified based on Padé approximation, especially according to enhanced boundary conditions of liquid-phase diffusion. Second, the reduced pseudo two-dimensional model with the lumped parameter is proposed, the target parameters characterizing negative electrode material (εn, Ds,n) and electrolyte (De, Ce) are grouped with other unknown but fixed parameters, which ensures that no matter whether the target parameters can be achieved, the corresponding varying traces is able to be effectively and independently monitored by lumped parameters. Third, the fast identification method for target micro-health parameters is developed based on the sensitivity of target parameters to constant-current charging voltage, which shortens the parameter identification time in comparison to that obtained by other approaches. Finally, the identification accuracy of the lumped micro-health parameters is verified under 1 C constant-current charging condition. Full article
(This article belongs to the Special Issue Battery Energy Storage in Advanced Power Systems)
Show Figures

Figure 1

Back to TopTop