Interfacial Tuning of Polymeric Composite Materials for High-Performance Energy Devices
Abstract
:1. Introduction
2. Interfaces of Energy Harvesting Materials
2.1. Solar Cells
2.1.1. Semiconducting Polymers and Metal/Metal Oxides-Based Composites
2.1.2. Semiconducting Polymers and Inorganic Nanocrystals-Based Composites
2.2. Photocatalytic Hydrogen Production
Inorganic Nanocrystals/Metal/Metal Compounds and Conducting Polymers/Polymer Blends-Based Composites
2.3. Energy Nanogenerators
2.3.1. Polymer Composites for Thermoelectric Devices
2.3.2. Polymer Composites for Piezoelectric Devices
2.3.3. Polymer Composites for Triboelectric Devices
3. Interfaces of Energy Storage Materials
3.1. Supercapacitors
3.1.1. Polymer Composites of Carbon-Based Materials
3.1.2. Polymer Composites of Metal Oxides/Hydroxides/Sulphides-Based Materials
3.1.3. Polymer Composites of Two-Dimensional Layered Materials
3.2. Metal-Ion Batteries
3.2.1. Polymer Composites for Lithium-Ion Batteries (LIBs)
3.2.2. Polymer Composites of Sodium-Ion Batteries (SIBs)
3.2.3. Polymer Composites for Zinc-Ion Batteries (ZIBs)
3.3. Polymer Composite Electrolytes for Energy Storage Devices
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Hoffert, M.I.; Caldeira, K.; Benford, G.; Criswell, D.R.; Green, C.; Herzog, H.; Jain, A.K.; Kheshgi, H.S.; Lackner, K.S.; Lewis, J.S.; et al. Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet. Science 2002, 298, 981–987. [Google Scholar] [CrossRef]
- Seferlis, P.; Varbanov, P.S.; Papadopoulos, A.I.; Chin, H.H.; Klemeš, J.J. Sustainable design, integration, and operation for energy high-performance process systems. Energy 2021, 224, 120158. [Google Scholar] [CrossRef]
- Luo, H.; Barrio, J.; Sunny, N.; Li, A.; Steier, L.; Shah, N.; Stephens, I.E.L.; Titirici, M.-M. Progress and Perspectives in Photo- and Electrochemical-Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production. Adv. Energy Mater. 2021, 11, 2101180. [Google Scholar] [CrossRef]
- Bairagi, S.; Shahid ul, I.; Shahadat, M.; Mulvihill, D.M.; Ali, W. Mechanical energy harvesting and self-powered electronic applications of textile-based piezoelectric nanogenerators: A systematic review. Nano Energy 2023, 111, 108414. [Google Scholar] [CrossRef]
- Obaideen, K.; Olabi, A.G.; Al Swailmeen, Y.; Shehata, N.; Abdelkareem, M.A.; Alami, A.H.; Rodriguez, C.; Sayed, E.T. Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs). Sustainability 2023, 15, 1418. [Google Scholar] [CrossRef]
- Ashraf, M.; Ayaz, M.; Khan, M.; Adil, S.F.; Farooq, W.; Ullah, N.; Nawaz Tahir, M. Recent Trends in Sustainable Solar Energy Conversion Technologies: Mechanisms, Prospects, and Challenges. Energy Fuels 2023, 37, 6283–6301. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, H.; Huang, J.; Xie, H. Natural Materials for Sustainable Organic Solar Cells: Status and Challenge. Adv. Funct. Mater. 2023, 33, 2213910. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, X.; Liang, J.; Han, H.; Xiang, P.; Yan, W. Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects. Adv. Funct. Mater. 2023, 33, 2214271. [Google Scholar] [CrossRef]
- Brabec, C.J.; Gowrisanker, S.; Halls, J.J.M.; Laird, D.; Jia, S.; Williams, S.P. Polymer–Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 2010, 22, 3839–3856. [Google Scholar] [CrossRef]
- Lee, J.-W.; Cho, K.-H.; Yoon, J.-S.; Kim, Y.-M.; Sung, Y.-M. Photoelectrochemical water splitting using one-dimensional nanostructures. J. Mater. Chem. A 2021, 9, 21576–21606. [Google Scholar] [CrossRef]
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Luo, S.; Huang, H.; Deng, B.; Ye, J. Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives. ACS Energy Lett. 2022, 7, 1043–1065. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Yang, Y. Design, Performance, and Application of Thermoelectric Nanogenerators. Small 2019, 15, 1805241. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Zhou, Y.; Libanori, A.; Chen, G.; Yang, W.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435. [Google Scholar] [CrossRef]
- Khandelwal, G.; Maria Joseph Raj, N.P.; Kim, S.-J. Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators. Adv. Energy Mater. 2021, 11, 2101170. [Google Scholar] [CrossRef]
- Lakshmi, K.C.S.; Vedhanarayanan, B. High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries 2023, 9, 202. [Google Scholar] [CrossRef]
- Palacín, M.R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575. [Google Scholar] [CrossRef]
- Swain, N.; Tripathy, A.; Thirumurugan, A.; Saravanakumar, B.; Schmidt-Mende, L.; Ramadoss, A. A brief review on stretchable, compressible, and deformable supercapacitor for smart devices. Chem. Eng. J. 2022, 446, 136876. [Google Scholar] [CrossRef]
- Faber, M.S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Dourandish, Z.; Mohammadzadeh Jahani, P.; Sheikhshoaie, I.; Askari, M.B.; Salarizadeh, P.; Nejad, F.G.; Kim, D.; Kim, S.Y.; et al. Applications of Non-precious Transition Metal Oxide Nanoparticles in Electrochemistry. Electroanalysis 2022, 34, 1065–1091. [Google Scholar] [CrossRef]
- Wu, H.; Zhuo, F.; Qiao, H.; Kodumudi Venkataraman, L.; Zheng, M.; Wang, S.; Huang, H.; Li, B.; Mao, X.; Zhang, Q. Polymer-/Ceramic-based Dielectric Composites for Energy Storage and Conversion. Energy Environ. Mater. 2022, 5, 486–514. [Google Scholar] [CrossRef]
- Lakshmi, K.C.S.; Vedhanarayanan, B.; Lin, T.-W. Electrocatalytic hydrogen and oxygen evolution reactions: Role of two-dimensional layered materials and their composites. Electrochim. Acta 2023, 447, 142119. [Google Scholar] [CrossRef]
- Nikoloudakis, E.; López-Duarte, I.; Charalambidis, G.; Ladomenou, K.; Ince, M.; Coutsolelos, A.G. Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H2 production and CO2 reduction. Chem. Soc. Rev. 2022, 51, 6965–7045. [Google Scholar] [CrossRef]
- Wang, D.-G.; Qiu, T.; Guo, W.; Liang, Z.; Tabassum, H.; Xia, D.; Zou, R. Covalent organic framework-based materials for energy applications. Energy Environ. Sci. 2021, 14, 688–728. [Google Scholar] [CrossRef]
- Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B.W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Adv. Energy Mater. 2014, 4, 1300882. [Google Scholar] [CrossRef]
- Zhang, G.; Finefrock, S.; Liang, D.; Yadav, G.G.; Yang, H.; Fang, H.; Wu, Y. Semiconductor nanostructure-based photovoltaic solar cells. Nanoscale 2011, 3, 2430–2443. [Google Scholar] [CrossRef]
- Li, B.; Yang, X.; Li, S.; Yuan, J. Stable block copolymer single-material organic solar cells: Progress and perspective. Energy Environ. Sci. 2023, 16, 723–744. [Google Scholar] [CrossRef]
- Keru, G.; Ndungu, P.G.; Nyamori, V.O. A review on carbon nanotube/polymer composites for organic solar cells. Int. J. Energy Res. 2014, 38, 1635–1653. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Q.; Ma, K.; Shen, W.; Belfiore, L.A.; Bao, X.; Tang, J. Recent Developments of Polymer Solar Cells with Photovoltaic Performance over 17%. Adv. Funct. Mater. 2023, 33, 2213324. [Google Scholar] [CrossRef]
- Xie, C.; Liu, Y.; Wei, W.; Zhou, Y. Large-Area Flexible Organic Solar Cells with a Robust Silver Nanowire-Polymer Composite as Transparent Top Electrode. Adv. Funct. Mater. 2023, 33, 2210675. [Google Scholar] [CrossRef]
- Bouclé, J.; Ackermann, J. Solid-state dye-sensitized and bulk heterojunction solar cells using TiO2 and ZnO nanostructures: Recent progress and new concepts at the borderline. Polym. Int. 2012, 61, 355–373. [Google Scholar] [CrossRef]
- Jao, M.-H.; Liao, H.-C.; Su, W.-F. Achieving a high fill factor for organic solar cells. J. Mater. Chem. A 2016, 4, 5784–5801. [Google Scholar] [CrossRef]
- Niederhausen, J.; Mazzio, K.A.; MacQueen, R.W. Inorganic–organic interfaces in hybrid solar cells. Electron. Struct. 2021, 3, 033002. [Google Scholar] [CrossRef]
- Sun, Z.; He, Y.; Xiong, B.; Chen, S.; Li, M.; Zhou, Y.; Zheng, Y.; Sun, K.; Yang, C. Performance-Enhancing Approaches for PEDOT:PSS-Si Hybrid Solar Cells. Angew. Chem.-Int. Ed. 2021, 60, 5036–5055. [Google Scholar] [CrossRef]
- Oh, H.; Kang, G.; Park, M. Polymer-Mediated In Situ Growth of Perovskite Nanocrystals in Electrospinning: Design of Composite Nanofiber-Based Highly Efficient Luminescent Solar Concentrators. ACS Appl. Energy Mater. 2022, 5, 15844–15855. [Google Scholar] [CrossRef]
- Beek, W.J.E.; Slooff, L.H.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A.J. Hybrid Solar Cells Using a Zinc Oxide Precursor and a Conjugated Polymer. Adv. Funct. Mater. 2005, 15, 1703–1707. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Z.-Y.; Zhao, H.; Yu, W.; Wu, S.; Liu, J.; Chen, L.; Li, Y.; Su, B.-L. Probing conducting polymers@cadmium sulfide core-shell nanorods for highly improved photocatalytic hydrogen production. J. Colloid Interface Sci. 2018, 521, 1–10. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Dong, W.; Zhang, X.; Rao, L.; Chen, H.; Huang, D.; Xiang, Y. Enhanced Light-Driven Hydrogen-Production Activity Induced by Accelerated Interfacial Charge Transfer in Donor–Acceptor Conjugated Polymers/TiO2 Hybrid. Chem.-Asian J. 2019, 25, 3362–3368. [Google Scholar] [CrossRef]
- Ryu, S.H.; Kim, G.H.; Ahn, T.K.; Ko, K.C.; Son, S.U. Enhanced photocatalytic hydrogen production of microporous organic polymers by incorporation of afterglow phosphorescent materials. J. Mater. Chem. A 2023, 11, 12719–12725. [Google Scholar] [CrossRef]
- Chi, C.; An, M.; Qi, X.; Li, Y.; Zhang, R.; Liu, G.; Lin, C.; Huang, H.; Dang, H.; Demir, B.; et al. Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing. Nat. Commun. 2022, 13, 221. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Wang, B.; Long, Z.; Zhang, Z.; Pan, Q.; Liu, S.; Luo, X.; Yang, Z. Hierarchically Interconnected Piezoceramic Textile with a Balanced Performance in Piezoelectricity, Flexibility, Toughness, and Air Permeability. Adv. Funct. Mater. 2021, 31, 2104737. [Google Scholar] [CrossRef]
- Paranjape, M.V.; Graham, S.A.; Manchi, P.; Kurakula, A.; Yu, J.S. Multistage SrBaTiO3/PDMS Composite Film-Based Hybrid Nanogenerator for Efficient Floor Energy Harvesting Applications. Small 2023, 19, 2300535. [Google Scholar] [CrossRef]
- Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B.J. From Fullerene–Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control. Acc. Chem. Res. 2016, 49, 2424–2434. [Google Scholar] [CrossRef]
- Nogueira, A.F.; Durrant, J.R.; De Paoli, M.A. Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte. Adv. Mater. 2001, 13, 826–830. [Google Scholar] [CrossRef]
- Ravirajan, P.; Peiró, A.M.; Nazeeruddin, M.K.; Graetzel, M.; Bradley, D.D.C.; Durrant, J.R.; Nelson, J. Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer. J. Phys. Chem. B 2006, 110, 7635–7639. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Scully, S.R.; McGehee, M.D.; Liu, J.; Luscombe, C.K.; Fréchet, J.M.J.; Shaheen, S.E.; Ginley, D.S. Dependence of Band Offset and Open-Circuit Voltage on the Interfacial Interaction between TiO2 and Carboxylated Polythiophenes. J. Phys. Chem. B 2006, 110, 3257–3261. [Google Scholar] [CrossRef]
- Chen, Z.; Du, X.; Zeng, Q.; Yang, B. Recent development and understanding of polymer–nanocrystal hybrid solar cells. Mater. Chem. Front. 2017, 1, 1502–1513. [Google Scholar] [CrossRef]
- Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P. Hybrid Nanorod-Polymer Solar Cells. Science 2002, 295, 2425–2427. [Google Scholar] [CrossRef]
- Sun, B.; Snaith, H.J.; Dhoot, A.S.; Westenhoff, S.; Greenham, N.C. Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J. Appl. Phys. 2005, 97, 014914. [Google Scholar] [CrossRef]
- Cui, D.; Xu, J.; Zhu, T.; Paradee, G.; Ashok, S.; Gerhold, M. Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys. Lett. 2006, 88, 183111. [Google Scholar] [CrossRef]
- Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J. Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer. Adv. Mater. 2004, 16, 1009–1013. [Google Scholar] [CrossRef]
- Kwong, C.Y.; Djurišić, A.B.; Chui, P.C.; Cheng, K.W.; Chan, W.K. Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells. Chem. Phys. Lett. 2004, 384, 372–375. [Google Scholar] [CrossRef]
- Zeng, T.-W.; Lin, Y.-Y.; Lo, H.-H.; Chen, C.-W.; Chen, C.-H.; Liou, S.-C.; Huang, H.-Y.; Su, W.-F. A large interconnecting network within hybrid MEH-PPV/TiO2nanorod photovoltaic devices. Nanotechnology 2006, 17, 5387–5392. [Google Scholar] [CrossRef]
- Querner, C.; Reiss, P.; Bleuse, J.; Pron, A. Chelating Ligands for Nanocrystals’ Surface Functionalization. J. Am. Chem. Soc. 2004, 126, 11574–11582. [Google Scholar] [CrossRef]
- Huynh, W.U.; Dittmer, J.J.; Libby, W.C.; Whiting, G.L.; Alivisatos, A.P. Controlling the Morphology of Nanocrystal–Polymer Composites for Solar Cells. Adv. Funct. Mater. 2003, 13, 73–79. [Google Scholar] [CrossRef]
- Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J. Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles. Adv. Funct. Mater. 2006, 16, 1112–1116. [Google Scholar] [CrossRef]
- Li, Z.; Fang, S.; Sun, H.; Chung, R.-J.; Fang, X.; He, J.-H. Solar Hydrogen. Adv. Energy Mater. 2023, 13, 2203019. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007. [Google Scholar] [CrossRef]
- Kranz, C.; Wächtler, M. Characterizing photocatalysts for water splitting: From atoms to bulk and from slow to ultrafast processes. Chem. Soc. Rev. 2021, 50, 1407–1437. [Google Scholar] [CrossRef] [PubMed]
- Mansha, M.; Ahmad, T.; Ullah, N.; Akram Khan, S.; Ashraf, M.; Ali, S.; Tan, B.; Khan, I. Photocatalytic Water-Splitting by Organic Conjugated Polymers: Opportunities and Challenges. Chem. Rec. 2022, 22, e202100336. [Google Scholar] [CrossRef] [PubMed]
- Moniz, S.J.A.; Shevlin, S.A.; Martin, D.J.; Guo, Z.-X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759. [Google Scholar] [CrossRef]
- Bon, C.Y.; Mohammed, L.; Kim, S.; Manasi, M.; Isheunesu, P.; Lee, K.S.; Ko, J.M. Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications. J. Ind. Eng. Chem. 2018, 68, 173–179. [Google Scholar] [CrossRef]
- Xu, S.; Han, Y.; Xu, Y.; Meng, H.; Xu, J.; Wu, J.; Xu, Y.; Zhang, X. Fabrication of polyaniline sensitized grey-TiO2 nanocomposites and enhanced photocatalytic activity. Sep. Purif. Technol. 2017, 184, 248–256. [Google Scholar] [CrossRef]
- Zielińska, B.; Schmidt, B.; Mijowska, E.; Kaleńczuk, R. PANI/NaTaO composite photocatalyst for enhanced hydrogen generation under UV light irradiation. Pol. J. Chem. Technol. 2017, 19, 115–119. [Google Scholar] [CrossRef]
- Chang, C.-J.; Chu, K.-W. ZnS/polyaniline composites with improved dispersing stability and high photocatalytic hydrogen production activity. Int. J. Hydrogen Energy 2016, 41, 21764–21773. [Google Scholar] [CrossRef]
- Nsib, M.F.; Naffati, N.; Rayes, A.; Moussa, N.; Houas, A. Effect of some operational parameters on the hydrogen generation efficiency of Ni-ZnO/PANI composite under visible-light irradiation. Mater. Res. Bull. 2015, 70, 530–538. [Google Scholar] [CrossRef]
- Sasikala, R.; Gaikwad, A.P.; Jayakumar, O.D.; Girija, K.G.; Rao, R.; Tyagi, A.K.; Bharadwaj, S.R. Nanohybrid MoS2-PANI-CdS photocatalyst for hydrogen evolution from water. Colloid Surf. A-Physicochem. Eng. Asp. 2015, 481, 485–492. [Google Scholar] [CrossRef]
- Zhou, W.; Lu, S.; Chen, X. Anionic donor–acceptor conjugated polymer dots/g-C3N4 nanosheets heterojunction: High efficiency and excellent stability for co-catalyst-free photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 608, 912–921. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.; Huang, B.; Qin, X.; Zhang, X.; Zhang, Q.; Zhu, X.; Dai, Y. Precisely locate Pd-Polypyrrole on TiO2 for enhanced hydrogen production. Int. J. Hydrogen Energy 2017, 42, 25195–25202. [Google Scholar] [CrossRef]
- Wang, X.; Feng, S.; Zhao, W.; Zhao, D.; Chen, S. Ag/polyaniline heterostructured nanosheets loaded with g-C3N4 nanoparticles for highly efficient photocatalytic hydrogen generation under visible light. New J. Chem. 2017, 41, 9354–9360. [Google Scholar] [CrossRef]
- Fan, F.R.; Tang, W.; Wang, Z.L. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Adv. Mater. 2016, 28, 4283–4305. [Google Scholar] [CrossRef]
- Tainoff, D.; Proudhom, A.; Tur, C.; Crozes, T.; Dufresnes, S.; Dumont, S.; Bourgault, D.; Bourgeois, O. Network of thermoelectric nanogenerators for low power energy harvesting. Nano Energy 2019, 57, 804–810. [Google Scholar] [CrossRef]
- Briscoe, J.; Dunn, S. Piezoelectric nanogenerators—A review of nanostructured piezoelectric energy harvesters. Nano Energy 2015, 14, 15–29. [Google Scholar] [CrossRef]
- Du, T.; Dong, F.; Xi, Z.; Zhu, M.; Zou, Y.; Sun, P.; Xu, M. Recent Advances in Mechanical Vibration Energy Harvesters Based on Triboelectric Nanogenerators. Small 2023, 19, 2300401. [Google Scholar] [CrossRef]
- Yoon, H.-J.; Kim, S.-W. Nanogenerators to Power Implantable Medical Systems. Joule 2020, 4, 1398–1407. [Google Scholar] [CrossRef]
- Fiedler, C.; Kleinhanns, T.; Garcia, M.; Lee, S.; Calcabrini, M.; Ibáñez, M. Solution-Processed Inorganic Thermoelectric Materials: Opportunities and Challenges. Chem. Mater. 2022, 34, 8471–8489. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Zhao, X.B.; Zhu, T.J.; Zhang, X.B.; Tu, J.P. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl. Phys. Lett. 2008, 92, 143106. [Google Scholar] [CrossRef]
- Wang, A.C.; Wu, C.; Pisignano, D.; Wang, Z.L.; Persano, L. Polymer nanogenerators: Opportunities and challenges for large-scale applications. J. Appl. Polym. Sci. 2018, 135, 45674. [Google Scholar] [CrossRef]
- Gao, X.; Uehara, K.; Klug, D.D.; Patchkovskii, S.; Tse, J.S.; Tritt, T.M. Theoretical studies on the thermopower of semiconductors and low-band-gap crystalline polymers. Phys. Rev. B 2005, 72, 125202. [Google Scholar] [CrossRef]
- Schlitz, R.A.; Brunetti, F.G.; Glaudell, A.M.; Miller, P.L.; Brady, M.A.; Takacs, C.J.; Hawker, C.J.; Chabinyc, M.L. Solubility-Limited Extrinsic n-Type Doping of a High Electron Mobility Polymer for Thermoelectric Applications. Adv. Mater. 2014, 26, 2825–2830. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cai, K.; Yao, X. Facile Fabrication and Thermoelectric Properties of PbTe-Modified Poly(3,4-ethylenedioxythiophene) Nanotubes. ACS Appl. Mater. Interfaces 2011, 3, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, L.; Lv, H.; Liang, L.; Deng, W.; Zhang, Y.; Chen, G. Mechanically Robust and Flexible Films of Ionic Liquid-Modulated Polymer Thermoelectric Composites. Adv. Funct. Mater. 2021, 31, 2104836. [Google Scholar] [CrossRef]
- Liu, C.; Yin, X.; Chen, Z.; Gao, C.; Wang, L. Improving the thermoelectric performance of solution-processed polymer nanocomposites by introducing platinum acetylides with tailored intermolecular interactions. Chem. Eng. J. 2021, 419, 129624. [Google Scholar] [CrossRef]
- McGrail, B.T.; Sehirlioglu, A.; Pentzer, E. Polymer Composites for Thermoelectric Applications. Angew. Chem.-Int. Ed. 2015, 54, 1710–1723. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, Q.; Lv, Y.A.; Chen, Y.; Fan, Q.; Zhou, X.; Li, H.; Yu, Q.; Liu, H. Piezoelectric energy harvesting and dissipating behaviors of polymer-based piezoelectric composites for nanogenerators and dampers. Chem. Eng. J. 2023, 465, 142755. [Google Scholar] [CrossRef]
- Greeshma, T.; Balaji, R.; Jayakumar, S. PVDF Phase Formation and Its Influence on Electrical and Structural Properties of PZT-PVDF Composites. Ferroelectr. Lett. Sect. 2013, 40, 41–55. [Google Scholar] [CrossRef]
- Hou, Y.; Deng, Y.; Wang, Y.; Gao, H. Uniform distribution of low content BaTiO3 nanoparticles in poly(vinylidene fluoride) nanocomposite: Toward high dielectric breakdown strength and energy storage density. RSC Adv. 2015, 5, 72090–72098. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Yuan, L.; Chen, C.; Pan, H.; Xie, G.; Conta, G.; Ferrier, S.; Zhao, X.; Chen, G.; et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021, 89, 106321. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Z.; Chen, Z.; Pei, J. Novel BaTiO3/PVDF composites with enhanced electrical properties modified by calcined BaTiO3 ceramic powders. Mater. Express 2017, 7, 536–540. [Google Scholar] [CrossRef]
- Dodds, J.S.; Meyers, F.N.; Loh, K.J. Piezoelectric Characterization of PVDF-TrFE Thin Films Enhanced with ZnO Nanoparticles. IEEE Sens. J. 2012, 12, 1889–1890. [Google Scholar] [CrossRef]
- Yang, L.; Ji, H.; Zhu, K.; Wang, J.; Qiu, J. Dramatically improved piezoelectric properties of poly(vinylidene fluoride) composites by incorporating aligned TiO2@MWCNTs. Compos. Sci. Technol. 2016, 123, 259–267. [Google Scholar] [CrossRef]
- Liu, Y.; Ping, J.; Ying, Y. Recent Progress in 2D-Nanomaterial-Based Triboelectric Nanogenerators. Adv. Funct. Mater. 2021, 31, 2009994. [Google Scholar] [CrossRef]
- Dassanayaka, D.G.; Alves, T.M.; Wanasekara, N.D.; Dharmasena, I.G.; Ventura, J. Recent Progresses in Wearable Triboelectric Nanogenerators. Adv. Funct. Mater. 2022, 32, 2205438. [Google Scholar] [CrossRef]
- He, H.; Guo, J.; Illés, B.; Géczy, A.; Istók, B.; Hliva, V.; Török, D.; Kovács, J.G.; Harmati, I.; Molnár, K. Monitoring multi-respiratory indices via a smart nanofibrous mask filter based on a triboelectric nanogenerator. Nano Energy 2021, 89, 106418. [Google Scholar] [CrossRef]
- Kim, M.P.; Ahn, C.W.; Lee, Y.; Kim, K.; Park, J.; Ko, H. Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices. Nano Energy 2021, 82, 105697. [Google Scholar] [CrossRef]
- Shin, S.-H.; Kwon, Y.H.; Kim, Y.-H.; Jung, J.-Y.; Lee, M.H.; Nah, J. Triboelectric Charging Sequence Induced by Surface Functionalization as a Method To Fabricate High Performance Triboelectric Generators. ACS Nano 2015, 9, 4621–4627. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Z.; Wang, Y.; Gong, S.; Wang, X. Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development. Adv. Mater. 2015, 27, 4938–4944. [Google Scholar] [CrossRef]
- Appamato, I.; Bunriw, W.; Harnchana, V.; Siriwong, C.; Mongkolthanaruk, W.; Thongbai, P.; Chanthad, C.; Chompoosor, A.; Ruangchai, S.; Prada, T.; et al. Engineering Triboelectric Charge in Natural Rubber–Ag Nanocomposite for Enhancing Electrical Output of a Triboelectric Nanogenerator. ACS Appl. Mater. Interfaces 2023, 15, 973–983. [Google Scholar] [CrossRef]
- Fu, K.; Zhou, J.; Wu, H.; Su, Z. Fibrous self-powered sensor with high stretchability for physiological information monitoring. Nano Energy 2021, 88, 106258. [Google Scholar] [CrossRef]
- Yang, H.J.; Lee, J.-W.; Seo, S.H.; Jeong, B.; Lee, B.; Do, W.J.; Kim, J.H.; Cho, J.Y.; Jo, A.; Jeong, H.J.; et al. Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy 2021, 86, 106083. [Google Scholar] [CrossRef]
- Wu, C.; Kim, T.W.; Choi, H.Y. Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement. Nano Energy 2017, 32, 542–550. [Google Scholar] [CrossRef]
- Wu, C.; Kim, T.W.; Park, J.H.; An, H.; Shao, J.; Chen, X.; Wang, Z.L. Enhanced Triboelectric Nanogenerators Based on MoS2 Monolayer Nanocomposites Acting as Electron-Acceptor Layers. ACS Nano 2017, 11, 8356–8363. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Sun, K.; Qiu, Y.; Jiao, X. Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review. Crystals 2021, 11, 947. [Google Scholar] [CrossRef]
- Kim, J.-H.; Sharma, A.K.; Lee, Y.-S. Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater. Lett. 2006, 60, 1697–1701. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, Y.-S.; Sharma, A.K.; Liu, C.G. Polypyrrole/carbon composite electrode for high-power electrochemical capacitors. Electrochim. Acta 2006, 52, 1727–1732. [Google Scholar] [CrossRef]
- Gupta, V.; Miura, N. Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites. J. Power Sources 2006, 157, 616–620. [Google Scholar] [CrossRef]
- Ingram, M.D.; Pappin, A.J.; Delalande, F.; Poupard, D.; Terzulli, G. Development of electrochemical capacitors incorporating processable polymer gel electrolytes. Electrochim. Acta 1998, 43, 1601–1605. [Google Scholar] [CrossRef]
- Lota, K.; Khomenko, V.; Frackowiak, E. Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids 2004, 65, 295–301. [Google Scholar] [CrossRef]
- Frackowiak, E.; Jurewicz, K.; Delpeux, S.; Béguin, F. Nanotubular materials for supercapacitors. J. Power Sources 2001, 97–98, 822–825. [Google Scholar] [CrossRef]
- Frackowiak, E.; Khomenko, V.; Jurewicz, K.; Lota, K.; Béguin, F. Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 2006, 153, 413–418. [Google Scholar] [CrossRef]
- Choi, J.H.; Noh, J.H.; Choi, C. Highly Elastically Deformable Coiled CNT/Polymer Fibers for Wearable Strain Sensors and Stretchable Supercapacitors. Sensors 2023, 23, 2359. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Ma, M.; Zhang, X.; Zhao, X.; Fan, J.; Zhu, P.; Shi, K.; Zhou, J. Covalent Cross-Links Enable the Formation of Ambient-Dried Biomass Aerogels through the Activation of a Triazine Derivative for Energy Storage and Generation. Adv. Funct. Mater. 2022, 32, 2205417. [Google Scholar] [CrossRef]
- Wen, M.; Yu, X.; Yang, C.; Qiu, J.; Zang, L. Compressible zinc-ion hybrid supercapacitor and piezoresistive sensor based on reduced graphene oxide/polypyrrole modified melamine sponge. Polym. Compos. 2023, 44, 3843–3855. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Lao, Z.; Yang, K.; Li, F.; Chen, L.; Mai, K.; Zhang, Z. Developing a three-dimensional co-continuous phase network structure via enhanced inter-component affinity for high-performance flexible organic radical electrodes. J. Mater. Chem. A 2022, 10, 13286–13297. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Li, P.; Zhan, X.; Liu, Z.; Wang, L.; Mao, B.; Li, Q.; Wen, Z.; Peng, Z.; et al. A Highly Stable All-Solid-State Na–O2/H2O Battery with Low Overpotential Based on Sodium Hydroxide. Adv. Funct. Mater. 2022, 32, 2202518. [Google Scholar] [CrossRef]
- Li, S.; Wei, X.; Wu, C.; Zhang, B.; Wu, S.; Lin, Z. Constructing Three-Dimensional Structured V2O5/Conductive Polymer Composite with Fast Ion/Electron Transfer Kinetics for Aqueous Zinc-Ion Battery. ACS Appl. Energy Mater. 2021, 4, 4208–4216. [Google Scholar] [CrossRef]
- Nandakumar, D.K.; Vaghasiya, J.V.; Suresh, L.; Duong, T.N.; Tan, S.C. Organic ionic conductors infused aqueous inverse-melting electrolyte aiding crack recovery in flexible supercapacitors functional down to −30 °C. Mater. Today Energy 2020, 17, 100428. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, Y.; Chen, K.; Yang, S.; Bagherzadeh, R.; Miao, Y.-E.; Liu, T. In situ construction of polyether-based composite electrolyte with bi-phase ion conductivity and stable electrolyte/electrode interphase for solid-state lithium metal batteries. J. Mater. Chem. A 2022, 10, 19641–19648. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, K.; Zhang, X.; Ma, Y.; Peng, Q.; Gong, Y.; Yi, S.; Guo, H.; Zhang, X.; Sun, X.; et al. Improved Li-Ion Conduction and (Electro)Chemical Stability at Garnet-Polymer Interface through Metal-Nitrogen Bonding. Adv. Energy Mater. 2023, 13, 2204377. [Google Scholar] [CrossRef]
- Marchioni, F.; Yang, J.; Walker, W.; Wudl, F. A Low Band Gap Conjugated Polymer for Supercapacitor Devices. J. Phys. Chem. B 2006, 110, 22202–22206. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Li, C.; Bai, H.; Shi, G. Electrochemical Deposition of Polypyrrole/Sulfonated Graphene Composite Films. J. Phys. Chem. C 2010, 114, 22783–22789. [Google Scholar] [CrossRef]
- Feng, X.; Li, R.; Yan, Z.; Liu, X.; Chen, R.; Ma, Y.; Li, X.; Fan, Q.; Huang, W. Preparation of Graphene/Polypyrrole Composite Film via Electrodeposition for Supercapacitors. IEEE Trans. Nanotechnol. 2012, 11, 1080–1086. [Google Scholar] [CrossRef]
- Bose, S.; Kim, N.H.; Kuila, T.; Lau, K.-t.; Lee, J.H. Electrochemical performance of a graphene–polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology 2011, 22, 295202. [Google Scholar] [CrossRef]
- Mini, P.A.; Balakrishnan, A.; Nair, S.V.; Subramanian, K.R.V. Highly super capacitive electrodes made of graphene/poly(pyrrole). Chem. Commun. 2011, 47, 5753–5755. [Google Scholar] [CrossRef]
- Vedhanarayanan, B.; Huang, T.-H.; Lin, T.-W. Fabrication of 3D hierarchically structured carbon electrode for supercapacitors by carbonization of polyaniline/carbon nanotube/graphene composites. Inorganica Chim. Acta 2019, 489, 217–223. [Google Scholar] [CrossRef]
- Cao, H.; Zhou, X.; Zhang, Y.; Chen, L.; Liu, Z. Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors. J. Power Sources 2013, 243, 715–720. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, L.; Yang, C.; Zhao, J.; Yang, Z.; Wei, H.; Liao, H.; Feng, Z.; Fisher, A.; Zhang, Y.; et al. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: An excellent structure for high-performance flexible solid-state supercapacitors. Sci. Rep. 2016, 6, 19777. [Google Scholar] [CrossRef]
- Xu, T.; Yang, D.; Zhang, S.; Zhao, T.; Zhang, M.; Yu, Z.-Z. Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon 2021, 171, 201–210. [Google Scholar] [CrossRef]
- Jellett, C.; Ghosh, K.; Browne, M.P.; Urbanová, V.; Pumera, M. Flexible Graphite–Poly(Lactic Acid) Composite Films as Large-Area Conductive Electrodes for Energy Applications. ACS Appl. Energy Mater. 2021, 4, 6975–6981. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Liu, S.; Li, L.; Zhang, C.; Liu, T. Conducting polymer composites: Material synthesis and applications in electrochemical capacitive energy storage. Mater. Chem. Front. 2017, 1, 251–268. [Google Scholar] [CrossRef]
- Zang, J.; Bao, S.-J.; Li, C.M.; Bian, H.; Cui, X.; Bao, Q.; Sun, C.Q.; Guo, J.; Lian, K. Well-Aligned Cone-Shaped Nanostructure of Polypyrrole/RuO2 and Its Electrochemical Supercapacitor. J. Phys. Chem. C 2008, 112, 14843–14847. [Google Scholar] [CrossRef]
- Sharma, R.K.; Rastogi, A.C.; Desu, S.B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim. Acta 2008, 53, 7690–7695. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, L.; Zhang, S.; Yang, W. Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J. Power Sources 2007, 173, 1017–1023. [Google Scholar] [CrossRef]
- Liu, R.; Lee, S.B. MnO2/Poly(3,4-ethylenedioxythiophene) Coaxial Nanowires by One-Step Coelectrodeposition for Electrochemical Energy Storage. J. Am. Chem. Soc. 2008, 130, 2942–2943. [Google Scholar] [CrossRef]
- Sun, B.; He, X.; Leng, X.; Jiang, Y.; Zhao, Y.; Suo, H.; Zhao, C. Flower-like polyaniline–NiO structures: A high specific capacity supercapacitor electrode material with remarkable cycling stability. RSC Adv. 2016, 6, 43959–43963. [Google Scholar] [CrossRef]
- Yang, H.; Xu, H.; Li, M.; Zhang, L.; Huang, Y.; Hu, X. Assembly of NiO/Ni(OH)2/PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 1774–1779. [Google Scholar] [CrossRef]
- Bai, M.-H.; Bian, L.-J.; Song, Y.; Liu, X.-X. Electrochemical Codeposition of Vanadium Oxide and Polypyrrole for High-Performance Supercapacitor with High Working Voltage. ACS Appl. Mater. Interfaces 2014, 6, 12656–12664. [Google Scholar] [CrossRef]
- Lu, X.-F.; Chen, X.-Y.; Zhou, W.; Tong, Y.-X.; Li, G.-R. α-Fe2O3@PANI Core–Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 14843–14850. [Google Scholar] [CrossRef]
- Kong, D.; Ren, W.; Cheng, C.; Wang, Y.; Huang, Z.; Yang, H.Y. Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor. ACS Appl. Mater. Interfaces 2015, 7, 21334–21346. [Google Scholar] [CrossRef]
- Peng, H.; Ma, G.; Sun, K.; Mu, J.; Wang, H.; Lei, Z. High-performance supercapacitor based on multi-structural CuS@polypyrrole composites prepared by in situ oxidative polymerization. J. Mater. Chem. A 2014, 2, 3303–3307. [Google Scholar] [CrossRef]
- Peng, S.; Fan, L.; Wei, C.; Bao, H.; Zhang, H.; Xu, W.; Xu, J. Polypyrrole/nickel sulfide/bacterial cellulose nanofibrous composite membranes for flexible supercapacitor electrodes. Cellulose 2016, 23, 2639–2651. [Google Scholar] [CrossRef]
- Sajedi-Moghaddam, A.; Saievar-Iranizad, E.; Pumera, M. Two-dimensional transition metal dichalcogenide/conducting polymer composites: Synthesis and applications. Nanoscale 2017, 9, 8052–8065. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Sun, W.; Yang, D.; Zhang, Y.; Hoon, H.H.; Zhang, H.; Yan, Q. Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS2 Thin Nanosheets for High-Energy Supercapacitors. Small 2015, 11, 4123–4129. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wang, J.; Yin, H.; Zhao, H.; Wang, D.; Tang, Z. Growth of Polypyrrole Ultrathin Films on MoS2 Monolayers as High-Performance Supercapacitor Electrodes. Adv. Mater. 2015, 27, 1117–1123. [Google Scholar] [CrossRef]
- Thiyagarajan, K.; Song, W.-J.; Park, H.; Selvaraj, V.; Moon, S.; Oh, J.; Kwak, M.-J.; Park, G.; Kong, M.; Pal, M.; et al. Electroactive 1T-MoS2 Fluoroelastomer Ink for Intrinsically Stretchable Solid-State In-Plane Supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 26870–26878. [Google Scholar] [CrossRef]
- Luo, W.; Ma, Y.; Li, T.; Thabet, H.K.; Hou, C.; Ibrahim, M.M.; El-Bahy, S.M.; Xu, B.B.; Guo, Z. Overview of MXene/conducting polymer composites for supercapacitors. J. Energy Storage 2022, 52, 105008. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, S.; Cai, D.; Cao, J.; Wang, L.; Han, W. Planar supercapacitor with high areal capacitance based on Ti3C2/Polypyrrole composite film. Electrochim. Acta 2020, 330, 135277. [Google Scholar] [CrossRef]
- Cao, S.; Zhao, T.; Li, Y.; Yang, L.; Ahmad, A.; Jiang, T.; Shu, Y.; Jing, Z.; Luo, H.; Lu, X.; et al. Fabrication of PANI@Ti3C2Tx/PVA hydrogel composite as flexible supercapacitor electrode with good electrochemical performance. Ceram. Int. 2022, 48, 15721–15728. [Google Scholar] [CrossRef]
- Fu, J.; Yun, J.; Wu, S.; Li, L.; Yu, L.; Kim, K.H. Architecturally Robust Graphene-Encapsulated MXene Ti2CTx@Polyaniline Composite for High-Performance Pouch-Type Asymmetric Supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 34212–34221. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Zhang, Y.; Wen, Z.; Huang, S.; Ye, M.; Tang, Y.; Liu, X.; Li, C.C. Designing strategies of advanced electrode materials for high-rate rechargeable batteries. J. Mater. Chem. A 2023, 11, 4428–4457. [Google Scholar] [CrossRef]
- Kappler, J.; Klostermann, S.V.; Lange, P.L.; Dyballa, M.; Veith, L.; Schleid, T.; Weil, T.; Kästner, J.; Buchmeiser, M.R. Sulfur-Composites Derived from Poly(acrylonitrile) and Poly(vinylacetylene)—A Comparative Study on the Role of Pyridinic and Thioamidic Nitrogen. Batter. Supercaps 2023, 6, e202200522. [Google Scholar] [CrossRef]
- Gupta, A.; Badam, R.; Matsumi, N. Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Secondary Batteries. ACS Appl. Energy Mater. 2022, 5, 7977–7987. [Google Scholar] [CrossRef]
- Karuppiah, C.; Beshahwured, S.L.; Wu, Y.-S.; Babulal, L.M.; Walle, K.Z.; Tran, H.K.; Wu, S.-H.; Jose, R.; Yang, C.-C. Patterning and a Composite Protective Layer Provide Modified Li Metal Anodes for Dendrite-Free High-Voltage Solid-State Lithium Batteries. ACS Appl. Energy Mater. 2021, 4, 11248–11257. [Google Scholar] [CrossRef]
- Liang, B.; Liu, X.; Guo, X.; Zhao, J. Preparation and electrochemical properties of benzothiadiazole-benzotriazole donor-acceptor conductive polymer lithium-ion anode materials. Synth. Met. 2022, 289, 117112. [Google Scholar] [CrossRef]
- Hu, J.; Jia, F.; Song, Y.-F. Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries. Chem. Eng. J. 2017, 326, 273–280. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, W.; Xin, L.; Luedtke, A.; Qu, H.; Qiu, D.; Liu, M.; Zheng, D.; Qu, D. Effect of Carbon Additives on the Rate Performance of Redox Polymer Materials for Lithium Metal Batteries. Ind. Eng. Chem. Res. 2022, 61, 15989–15996. [Google Scholar] [CrossRef]
- Wu, J.; Liu, S.; Huang, J.; Cui, Y.; Ma, P.; Wu, D.; Matyjaszewski, K. Fabrication of Advanced Hierarchical Porous Polymer Nanosheets and Their Application in Lithium–Sulfur Batteries. Macromolecules 2021, 54, 2992–2999. [Google Scholar] [CrossRef]
- Chan, Y.-J.; Vedhanarayanan, B.; Ji, X.; Lin, T.-W. Doubling the cyclic stability of 3D hierarchically structured composites of 1T-MoS2/polyaniline/graphene through the formation of LiF-rich solid electrolyte interphase. Appl. Surf. Sci. 2021, 565, 150582. [Google Scholar] [CrossRef]
- Liu, T.; Kim, K.C.; Lee, B.; Chen, Z.; Noda, S.; Jang, S.S.; Lee, S.W. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy Environ. Sci. 2017, 10, 205–215. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kim, Y.; Park, S.; Ko, H.; Kim, Y. Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. Energy Environ. Sci. 2016, 9, 1264–1269. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, L.; Cao, Y.; Zhao, R.; Qian, J.; Ai, X.; Yang, H. Fe(CN)6−4-doped polypyrrole: A high-capacity and high-rate cathode material for sodium-ion batteries. RSC Adv. 2012, 2, 5495–5498. [Google Scholar] [CrossRef]
- Zhou, M.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries. J. Polym. Sci. Part B-Polym. Phys. 2013, 51, 114–118. [Google Scholar] [CrossRef]
- Liu, S.; Lei, T.; Song, Q.; Zhu, J.; Zhu, C. High Energy, Long Cycle, and Superior Low Temperature Performance Aqueous Na–Zn Hybrid Batteries Enabled by a Low-Cost and Protective Interphase Film-Forming Electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 11425–11434. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wang, X.; Zhou, S.; Sun, H.; Wang, B.; Liu, D.; Zhu, G. Porous rigid-flexible polymer membrane interface towards high-rate and stable zinc-ion battery. J. Power Sources 2023, 560, 232685. [Google Scholar] [CrossRef]
- Xu, L.; Meng, T.; Zheng, X.; Li, T.; Brozena, A.H.; Mao, Y.; Zhang, Q.; Clifford, B.C.; Rao, J.; Hu, L. Nanocellulose-Carboxymethylcellulose Electrolyte for Stable, High-Rate Zinc-Ion Batteries. Adv. Funct. Mater. 2023, 33, 2302098. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Xu, L.; Yang, C.; Hong, M.; Cui, M.; Clifford, B.C.; He, S.; Jing, S.; Yao, Y.; et al. A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 2022, 5, 3402–3416. [Google Scholar] [CrossRef]
- Dong, Q.; Zhang, X.; Qian, J.; He, S.; Mao, Y.; Brozena, A.H.; Zhang, Y.; Pollard, T.P.; Borodin, O.A.; Wang, Y.; et al. A cellulose-derived supramolecule for fast ion transport. Sci. Adv. 2022, 8, eadd2031. [Google Scholar] [CrossRef]
- Qiu, M.; Sun, P.; Cui, G.; Mai, W. Chaotropic Polymer Additive with Ion Transport Tunnel Enable Dendrite-Free Zinc Battery. ACS Appl. Mater. Interfaces 2022, 14, 40951–40958. [Google Scholar] [CrossRef]
- Xie, X.; Fang, Z.; Yang, M.; Zhu, F.; Yu, D. Harvesting Air and Light Energy via “All-in-One” Polymer Cathodes for High-Capacity, Self-Chargeable, and Multimode-Switching Zinc Batteries. Adv. Funct. Mater. 2021, 31, 2007942. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, L.; Zhang, W.; Dai, Z.; Wei, W.; Luo, S.; Chen, X.; Chen, W.; Rao, F.; Wang, L.; et al. Conjugated System of PEDOT:PSS-Induced Self-Doped PANI for Flexible Zinc-Ion Batteries with Enhanced Capacity and Cyclability. ACS Appl. Mater. Interfaces 2019, 11, 30943–30952. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wang, L.; Chen, Z.; Kan, Y.; Hu, Y.; Zhang, H.; He, X. Incombustible Polymer Electrolyte Boosting Safety of Solid-State Lithium Batteries: A Review. Adv. Funct. Mater. 2023, 33, 2300892. [Google Scholar] [CrossRef]
- Fan, L.-Z.; He, H.; Nan, C.-W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019. [Google Scholar] [CrossRef]
- Ma, C.; Cui, W.; Liu, X.; Ding, Y.; Wang, Y. In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InfoMat 2022, 4, e12232. [Google Scholar] [CrossRef]
- Costa, C.M.; Lee, Y.-H.; Kim, J.-H.; Lee, S.-Y.; Lanceros-Méndez, S. Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Mater. 2019, 22, 346–375. [Google Scholar] [CrossRef]
- Ward, I.M.; Hubbard, H.V.S.A.; Wellings, S.C.; Thompson, G.P.; Kaschmitter, J.; Wang, H. Separator-free rechargeable lithium ion cells produced by the extrusion lamination of polymer gel electrolytes. J. Power Sources 2006, 162, 818–822. [Google Scholar] [CrossRef]
- Choi, J.; Zabihi, O.; Varley, R.J.; Fox, B.; Naebe, M. High Performance Carbon Fiber Structural Batteries Using Cellulose Nanocrystal Reinforced Polymer Electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 45320–45332. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, M.; Tang, C.; Quan, K.; Tong, Q.; Cao, H.; Jiang, J.; Yang, H.; Zhang, J. ZIF-8@MXene-reinforced flame-retardant and highly conductive polymer composite electrolyte for dendrite-free lithium metal batteries. J. Colloid Interface Sci. 2022, 620, 478–485. [Google Scholar] [CrossRef]
- Chen, L.; Xue, P.; Liang, Q.; Liu, X.; Tang, J.; Li, J.; Liu, J.; Tang, M.; Wang, Z. A Single-Ion Polymer Composite Electrolyte via In Situ Polymerization of Electrolyte Monomers into a Porous MOF-Based Fibrous Membrane for Lithium Metal Batteries. ACS Appl. Energy Mater. 2022, 5, 3800–3809. [Google Scholar] [CrossRef]
- Guan, J.; Feng, X.; Zeng, Q.; Li, Z.; Liu, Y.; Chen, A.; Wang, H.; Cui, W.; Liu, W.; Zhang, L. A New In Situ Prepared MOF-Natural Polymer Composite Electrolyte for Solid Lithium Metal Batteries with Superior High- Rate Capability and Long-Term Cycling Stability at Ultrahigh Current Density. Adv. Sci. 2023, 10, 2203916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Pan, P.; Cheng, Z.; Mao, J.; Jiang, L.; Ni, C.; Park, S.; Deng, K.; Hu, Y.; Fu, K.K. Flexible, Mechanically Robust, Solid-State Electrolyte Membrane with Conducting Oxide-Enhanced 3D Nanofiber Networks for Lithium Batteries. Nano Lett. 2021, 21, 7070–7078. [Google Scholar] [CrossRef] [PubMed]
- Fergus, J.W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195, 4554–4569. [Google Scholar] [CrossRef]
- He, K.; Chen, C.; Fan, R.; Liu, C.; Liao, C.; Xu, Y.; Tang, J.; Li, R.K.Y. Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries. Compos. Sci. Technol. 2019, 175, 28–34. [Google Scholar] [CrossRef]
- Sahore, R.; Armstrong, B.L.; Tang, X.; Liu, C.; Owensby, K.; Kalnaus, S.; Chen, X.C. Role of Scaffold Architecture and Excess Surface Polymer Layers in a 3D-Interconnected Ceramic/Polymer Composite Electrolyte. Adv. Energy Mater. 2023, 13, 2203663. [Google Scholar] [CrossRef]
- Khomein, P.; Byeon, Y.-W.; Liu, D.; Yu, J.; Minor, A.M.; Kim, H.; Liu, G. Lithium Phosphorus Sulfide Chloride–Polymer Composite via the Solution–Precipitation Process for Improving Stability toward Dendrite Formation of Li-Ion Solid Electrolyte. ACS Appl. Mater. Interfaces 2023, 15, 11723–11730. [Google Scholar] [CrossRef]
- Ren, Y.; Cui, Z.; Bhargav, A.; He, J.; Manthiram, A. A Self-Healable Sulfide/Polymer Composite Electrolyte for Long-Life, Low-Lithium-Excess Lithium-Metal Batteries. Adv. Funct. Mater. 2022, 32, 2106680. [Google Scholar] [CrossRef]
- Ma, Q.; Zeng, X.-X.; Yue, J.; Yin, Y.-X.; Zuo, T.-T.; Liang, J.-Y.; Deng, Q.; Wu, X.-W.; Guo, Y.-G. Viscoelastic and Nonflammable Interface Design–Enabled Dendrite-Free and Safe Solid Lithium Metal Batteries. Adv. Energy Mater. 2019, 9, 1803854. [Google Scholar] [CrossRef]
- Fan, X.; Ji, X.; Han, F.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J.; Wang, C. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 2018, 4, eaau9245. [Google Scholar] [CrossRef]
S.No. | Polymer Composites of Energy Conversion Devices | |||||
---|---|---|---|---|---|---|
Solar cells | ||||||
Material | Cell classification | Open Circuit voltage (V) | Fill Factor | PCE | Ref. | |
1. | PEDOT:PSS/Ag NW (Module of 10 sub cells) | Multi-layer | 8.35 | 0.703 | 12.3% | [32] |
2. | MetAm/PBr3/PVPy | Perovskite | 5.1 | 0.7 | 5.3% (indoor) | [37] |
3. | PPV/ZnO | Hybrid cell | 1.14 | 0.18 | 1.1% | [38] |
Photocatalytic Hydrogen generation | ||||||
Material | Electrolyte | Stability | H2 production Rate | AQY | Ref. | |
4. | PANI/CdSe | 0.5 mmol L−1 Na2SO4 | 30 h | >9 mmol h−1 g−1cat | -- | [39] |
5. | PPE/TiO2 | 0.1 M Na2SO4 | 25 h | 228 µmol h−1 | 2.46% | [40] |
6. | SAO/Pd-TD | Water (Triethanolamine as sacrificial donor) | 30 h | 1.3 × 104 µmol h−1 g−1 | 1.02% | [41] |
Nanogenerators | ||||||
Material | Device type | Output | Power/Energy density | Stability | Ref. | |
7. | PVDF-HP/NaTFSI with PPB | Thermoelectric | +20 to −6 mV K−1 | 2.08 µW cm−2 and 833.1 µJ cm−2 | 50 cycles | [42] |
8. | PVDF-co-TFE/PZT | Piezoelectric | 15 V (Output voltage) | 0.75 mW cm−2 | 63 foot steps in 2 min | [43] |
9. | PDMS/SrBaTiO3 | Triboelectric | 280 V (Output voltage) | 90 µC m−2 (Charge density) | 11,000 cycles in ~36 min | [44] |
S.No. | Polymer Composites of Energy Storage Devices | |||||
---|---|---|---|---|---|---|
Supercapacitors | ||||||
Material | Electrolyte | Operating voltage | Specific capacitance | Cyclic stability | Ref. | |
1. | Nylon/CNT | 0.1 M Na2SO4 | ~1 V | 11.89 mF cm−2 10 mV s−1 (Areal capacitance) | 94.2% after 100 times of the full stretch-release cycle | [113] |
2. | Cellulose-Chitosan derived CNF/PEDOT | Sat. Na2SO4 | 0.6 V | 77 F g−1 at 1 mV s−1 | -- | [114] |
3. | PPy/rGO-melamine (Hybrid supercapacitor) | 2 M ZnSO4 | 1.6 V | 130 mAh g−1 at 0.2 A g−1 | ~91% after 3000 compression/release cycles | [115] |
Metal-ion Batteries | ||||||
Material | Electrolyte | Operating voltage | Specific capacity | Cyclic stability | Ref. | |
4. | Poly-TEMPO/SWNT | LiPF6 in EC/DMC (1:1) | ~2 V | 98 mA h g−1 at 10 C | >95% capacity retention (2000 GCD cycles) | [116] |
5. | Acrylic resin/silver nanopowder | Hydrated solid NaOH | ~1 V | 100 mAh g−1 at 20 mA g−1 | >97% at 100th cycle | [117] |
6. | PEDOT/Vanadium oxide | 3 M Zn(CF3SO3)2 aqueous solution | ~1.2 V | 370 mA h g−1 at 500 mA g−1 | >80% capacity retention after 1000 cycles of GCD | [118] |
Composite Polymer Electrolyte for LIBs | ||||||
Electrolyte Material | Electrolyte type | Specific capacitance/capacity | Energy density | Cyclic Stability | Ref. | |
7. | Pluronic polymer and piperidinium bromide | Polymer-gel | 441 F g−1 | 16.8 Wh kg−1 | 92% after 10,000 cycles at −30 °C | [119] |
8. | LLTO/PDOL | Polymer-membrane | 155 mA g−1 at 0.1 C | -- | 70% after the 350 GCD cycles | [120] |
9. | LLZrNb/polydopamine | Polymer-inorganic | >150 mA h g−1 at 0.1 C | 362 Wh kg−1 | >80% after 100 cycles of GCD | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vedhanarayanan, B.; Lakshmi, K.C.S.; Lin, T.-W. Interfacial Tuning of Polymeric Composite Materials for High-Performance Energy Devices. Batteries 2023, 9, 487. https://doi.org/10.3390/batteries9100487
Vedhanarayanan B, Lakshmi KCS, Lin T-W. Interfacial Tuning of Polymeric Composite Materials for High-Performance Energy Devices. Batteries. 2023; 9(10):487. https://doi.org/10.3390/batteries9100487
Chicago/Turabian StyleVedhanarayanan, Balaraman, K. C. Seetha Lakshmi, and Tsung-Wu Lin. 2023. "Interfacial Tuning of Polymeric Composite Materials for High-Performance Energy Devices" Batteries 9, no. 10: 487. https://doi.org/10.3390/batteries9100487
APA StyleVedhanarayanan, B., Lakshmi, K. C. S., & Lin, T.-W. (2023). Interfacial Tuning of Polymeric Composite Materials for High-Performance Energy Devices. Batteries, 9(10), 487. https://doi.org/10.3390/batteries9100487