Lithium–Ion Battery Data: From Production to Prediction
Abstract
:1. Introduction
1.1. Contributions
- Description of data generation techniques and implications: This article provides a comprehensive description of the major battery electrical experiments. The types of experiments and the equipment needed to perform them are described. The economic and environmental costs of battery experiments are also discussed. To the best of the authors’ knowledge, this is the first article to describe such implications.
- Description of data analysis techniques: This article describes data processing for energy storage systems using the mathematical theory of time series analysis. This article lists and exhaustively describes the possible data analyses of the main battery testing methods: capacity, impedance and low current tests.
- Description of battery data uses and related tools: This work describes the possible uses of battery data. Data modelling and prediction for energy storage systems are introduced. Existing software for data processing and usage are also described and a particular interest is given to open software.
- Discussion of open science practices in the field: This article describes open science as an important practice to be considered in the field of energy storage. This section discusses how open science practices could be made available to every researcher working on battery data, from data generation to analysis and prediction.
1.2. Layout
2. Data Production
2.1. Where Do Battery Data Come From?
2.2. What Experimental Setup Is Required to Perform Battery Electrical Tests?
2.3. What Type of Electrical Tests Are Conducted?
2.4. What Are the Costs of Battery Testing?
3. Data Processing
3.1. What Do Battery Data Look Like?
3.2. Data Preparation
3.2.1. Segmentation
3.2.2. Pattern Discovery
3.3. Data Analysis
3.3.1. Capacity Test
3.3.2. Impedance Test
3.3.3. Low-Current Test
4. Tools for Data Processing, Modelling and Prediction
4.1. Experimental Data Processing
4.2. Battery and System Models
4.3. Simulation and Prediction
5. Promoting Open Science
6. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Cell | Experiment | File | Data | Ref. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Capacity | Chemistry | Form | Number |
Duration
(Cycles/Months) | Usage Cycles | Measures | Sampling | Cycler | Format | Size | Owner | License | Link | |
2.2 | LCO | 18650 | 28 | ?/6 | Random cycle | t, U, I, T | 10 s | Maccor | .mat, .R | 2 Gb | NASA | Public Domain U.S. Government | [190] | [191] |
1.1 | LFP/C | 18650 | 1 | 9000/? | Current square wave | t, U, I, T | 105 s | Arbin | .csv | 2.1 Gb | SNL | GPL v3 | [164] | [192] |
3.4 | LFP/C | 18650 | 124 | 2300/? | Fast charge | t, U, I, T | 10 s | Arbin | .csv, .mat, .py | 7.7 Gb | TRI | CC BY 4.0 | [193] | [155] |
3.4 | LFP/C | 18650 | 192 | 1900/16 | Fast charge | t, U, I, T | 10 s | Arbin | .csv, .mat, .py | 3.7 Gb | TRI | CC BY 4.0 | [194] | [55] |
0.74 | LiPo | Pouch | 8 | 9100/13 | Constant current | t, U, I, T | 1s | Biologic | .mat | 254 Mb | Oxford | ODC-ODbL | [195] | [196] |
2 | NCA/C | 18650 | 34 | ?/2 | Constant current | t, U, I, T | 10 s | In-house built | .mat | 400 Mb | NASA | Public Domain U.S. Government | [197] | |
3 | NCA/C | 18650 | 12 | 450/19 | Constant current | t, U, I, T | 17 ms | Maccor | .mat | 8.6 Gb | Oxford | ODC-ODbL | [198,199,200] | [201] |
3.2 | NCA/C | 18650 | 1 | 1500/? | Current square wave | t, U, I, T | 105 s | Arbin | .csv | 2.1 Gb | SNL | GPL v3 | [164] | [192] |
3.3 | NCA/C | Pouch | 42 | 3100/? | Constant current and abusive | t, U, I, T | 1 s | Arbin | .xls | Unknown | UL-PUR | Upon request | [202] | [203] |
3.4 | NCA/C | 18650 | 75 | 800/5 | Constant current and abusive | t, U, I, T | 1 s | Arbin | .xls | 182.6 Mb | UL-PUR | Upon request | [204] | [205] |
3.4 | NCA/C+Si | 18650 | 28 | 900/7 | Driving | t, U, I, T | 10 s | Digatron | .csv | 8.83 Gb | Aachen | CC BY 4.0 | [206] | [207] |
3.5 | NMC/C+Si | 18650 | 8 | 1500/11 | Driving | t, U, I, T | 1 s | Maccor, Scienlab | .csv | 2.7 Gb | EVERLASTING | CC BY-NC 4.0 | [208] | [209] |
3.5 | NMC/C+Si | 18650 | 24 | 0/11 | Calendar | t, U, I, T | 1 s | Maccor | .csv | 626 Mb | EVERLASTING | CC BY-NC 4.0 | [210] | [209] |
3.5 | NMC/C+Si | 18650 | 70 | 1700/12 | Driving | t, U, I, T | 60 s | Scienlab | .csv | 9.1 Gb | EVERLASTING | CC BY-NC 4.0 | [211] | [209] |
27 | NMC/C | Pouch | 2 | 100/? | Constant current | t, U, I | 1 s | Neware | .xls | 49 Mb | MOE | CC0 1.0 | [212] | [213] |
2.36 | NMC111/C | Pouch | 40 | 600/4 | Constant current | t, U, I, T | 1 s | Maccor | .csv, .mat | 2.4 Gb | MICH | CC BY-NC 4.0 | [214] | [215] |
2.6 | NMC111/C | 18650 | 56 | 350/? | Fast charge and abusive | t,I,U,T | 500 ms | CADEX | .xlsx | 22 Kb | Politechnika Poznanska | CC BY 4.0 | [216] | [217] |
5 | NMC111/C | Pouch | 31 | 700/? | Constant current | t, U, I, T | 10 s | Biologic | .csv, .mat | 584 Mb | MICH | CC BY 4.0 | [218] | [219] |
2.4 | NMC523/C | 18650 | 77 | 100/0.1 | Constant and Arbitrary current | t, U, I | 1 s | LANHE | .xlsx | 2224 Mb | BIT-MIT | CC BY 4.0 | [220] | [221] |
3 | NMC811/C | 18650 | 1 | 2500/? | Current square wave | t, U, I, T | 105 s | Arbin | .csv | 2.1 Gb | SNL | GPL v3 | [164] | [192] |
3.35 | NMC811/C+Si | 18650 | 10 | 1300/16 | Driving cycle | t, U, I | 0.25 ms | BaSyTec | .mat | 924 Mb | TUM | CC BY 4.0 | [222] | [223] |
3.5 | NMC811/C+Si | 18650 | 1 | 400/0.5 | Constant current | t, U, I, T | 13 s | Maccor | .csv | 8.53 Mb | UCL | CC0 | [224] | |
4.85 | NMC811/C+Si | 21700 | 10 | 1150/23 | Driving and Constant Current | t, U, I, T | 0.1 s | Arbin | .xlsx, .mat | 248.9 Gb | Stanford | CC BY 4.0 | [225] | [226] |
5 | NMC811/C+Si | 21700 | 17 | 480/3 | Constant Current | t, U, I, T | 0.1 s | Biologic | .csv | 17 Gb | Imperial College London | CC 4.0 | [227] | [228] |
5 | NMC811/C+Si | 21700 | 25 | 210/1.5 | Constant current | t, U, I, T | 1 s, | Digatron, IVIUM | .csv, .mat | 318 Mb | Univ. of Warwick | CC0 1.0 | [229] | [230] |
2.8 | NMC+LCO/C | 18650 | 15 | 1000/7 | Constant current | t, U, I | 10 s | Arbin | .csv | 650 Mb | HNEI | GPL v3 | [164] | [231] |
Cell | Experiment | File | Data | Ref | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Capacity | Chemistry | Format | Number | Capacity | Low-Current | Impedance [s]/[Hz] | Sampling | Cycler | Format | Size | Owner | License | Link | |
LCO/C | Coin | 12 | ✓ | /✓ | 3 s | Cycler | .txt | 391 Gb | Univ. of Cambridge and Newcastle | CC 4.0 | [232] | [233] | ||
1.1 | LCO/C | Prismatic | 14 | ✓ | 1 s | Arbin | .txt | 990 Mb | CALCE | Unknown | [46] | [234,235,236] | ||
1.35 | LCO/C | Prismatic | 12 | ✓ | 5 s | Arbin | .txt | 1.1 Gb | CALCE | Unknown | [46] | [234,235,236] | ||
1.5 | LCO/C | Pouch | 144 | ✓ | ✓ | ✓/ | 15 s | Arbin | .txt | 825 Mb | CALCE | Unknown | [46] | [234,235,236] |
2.6 | LCO/C | 18650 | ? | ✓ | 100 ms | PEC | .csv | 280 Mb | Berkeley | CC BY 4.0 | [237] | |||
2.6 | LCO/C | 18650 | 4 | /✓ | 500 ms | Keysight | .csv | 66 kb | Univ. of Perugia | CC BY 4.0 | [238] | [239,240] | ||
2.6 | LCO/C | 18650 | 3 | ✓ | /✓ | 1 s | Biologic | .mpt, .mat | 66 Mb | Univ. Gustave Eiffel | Etalab 2.0 | [241] | ||
2.5 | LFP/C | 18650 | 1 | ✓ | ✓ | ✓/ | 60 s | Arbin | .xlsx, .mat | 442 Mb | Univ. of Colorado | CC BY 4.0 | [242] | [243,244,245] |
2.5 | LFP/C | 26650 | 6 | ✓ | 1 s | Arbin | .xlsx, .m | 211 Mb | Stanford | CC BY 4.0 | [246] | [247] | ||
2.6 | LFP/C | 26650 | 2 | ✓/ | 30 s | Arbin | .txt | 113 Mb | CALCE | Unknown | [46] | [234,235,236] | ||
4.4 | LFP/C | 32113 | 1 | ✓ | ✓ | /✓ | 1 s | Bitrode | .csv | 41 Mb | Univ. Gustave Eiffel | Etalab 2.0 | [248] | |
4.4 | LFP/C | 32113 | 4 | ✓ | ✓ | ✓/ | 500 ms | Biologic, Bitrode | .mpt, .csv, .mat | 130 Mb | Univ. Gustave Eiffel | Etalab 2.0 | [249] | [250] |
9.5 | LFP/C | 18650 | 3 | ✓ | 1 s | Chroma | .xlsx | 775 Kb | Univ. of Science and Technology of China | CC BY 4.0 | [251] | [252] | ||
15 * | LFP/C | 40138 | 96 | ✓ | ✓ | ✓/ | 10 s | CTE | .csv | 105 Mb | Masterhold | CC BY 4.0 | [74] | [253] |
5 | LiPO/C | 1 | ✓ | ✓ | ✓/ | 1 s | Digatron | .csv | 349 Mb | McMaster | CC BY 4.0 | [254] | [255] | |
2.5 | NCA/C+Si | 18650 | 1 | ✓ | /✓ | 20 ms | BaSyTec, Gamry | .txt, .mat | 1.3 Gb | TUM | CC BY 4.0 | [256] | [257] | |
2.9 | NCA/C | 18650 | 1 | ✓ | ✓ | ✓/✓ | 10 s | Digatron | .csv, .mat | 182 Mb | McMaster | CC BY 4.0 | [258] | [259,260,261] |
3.35 | NCA/C | 18650 | 6 | ✓ | 1 s | Arbin | .xlsx, .m | 195 Mb | Stanford | CC BY 4.0 | [246] | [247] | ||
3 | NMC/C | 21700 | 1 | ✓ | 17 ms | Arbin | .m | 130 Kb | Univ. of Windsor | CC BY 4.0 | [262] | [263] | ||
4.85 | NMC/C | 21700 | 6 | ✓ | 1 s | Arbin | .xlsx, .m | 201 Mb | Stanford | CC BY 4.0 | [246] | [247] | ||
78 | NMC/C | Pouch | 24 | ✓ | ✓ | ✓/✓ | 20 ms | BaSyTec | .csv, .txt, .mat | 1.2 Gb | TUM | CC BY 4.0 | [264] | [265] |
94 * | NMC111/C | Prismatic | 1 | ✓ | ✓ | ✓/ | 1 s | Bitrode | .csv | 200 Mb | Gustave Eiffel and Lyon 1 Universities | Open license | [57] | [42,45,266] |
NMC622/C | Coin | 46 | ✓ | ✓ | ✓/✓ | 1 s | Biologic | .mat | 973 Mb | TUM | CC BY 4.0 | [267] | [268] | |
3.05 | NMC811/C | 18650 | 250 | ✓ | ✓ | ✓/✓ | 10 ms | Biologic, Basytec | .mat, .txt | 21 Gb | TUM | CC BY 4.0 | [269] | [270] |
3 | NMC811/C+Si | 18650 | 1 | ✓ | ✓ | ✓/ | 60 s | Digatron | .csv, .mat | 249 Mb | McMaster | CC BY 4.0 | [271] | [272,273] |
5 | NMC 811/C+Si | 21700 | 25 | ✓ | /✓ | 1 s | Digatron, IVIUM | .csv, .mat | 318 Mb | Univ. of Warwick | CC0 1.0 | [229] | [230] |
Experiment | File | Data | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|
Battery Scale | Usage | Duration | Sampling | Format | Size | Owner | License | Link | |
Grid | Smart grid | 1 month | 30 s | .csv | 6.2 Mb | NCUE | CC BY 4.0 | [274] | |
Grid | Peak shaving | 1 Year | 5 mn | .xlsx | 23 Mb | Cranfield Univ. | CC BY 4.0 | [275] | [276] |
Pack | EV Driving | 30 h | 1 s | .csv, .mat | 36 Mb | TUM | CC BY 4.0 | [75] | [76] |
Pack | EV Driving | >100 h | 100 ms | .csv, .mat | 2.8 Gb | TUM | CC BY 4.0 | [277] | [265] |
Pack | Frequency Regulation | 53 h | 1 s | .xlsx | 211 Mb | Dalhousie Univ. | CC BY 4.0 | [278] | [279] |
Module | Drone | 30 mn | 90 s | .xlsx | 15.8 Mb | DSO NB | CC BY-NC-ND 4.0 | [78] | |
Cell | Grid trading | 3 mn | 1 year | .csv,.mat | 28.7 Mb | Oxford | ODC-ODbL | [280] | [281] |
Cell | Aircraft | 2 months | 10 s | .csv | 1.4 Gb | Carnegie Mellon Univ. | CC BY 4.0 | [77] | [282] |
Name | Language | Purpose | License | Link | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Data Processing | Physics-Based Modelling | Experiment-Based Modelling | Prediction | Simulation | |||||
BEEP | Python | ✓ | ✓ | ✓ | Apache 2.0 | [120] | [121] | ||
Cellpy | Python | ✓ | MIT | [71] | |||||
DATTES | Matlab/Octave | ✓ | ✓ | GNU | [122] | [73] | |||
DUALFOIL | Python/Fortran | ✓ | Open source tool 0.4 | [125] | |||||
Pybamm | Python | ✓ | BSD-3-Clause | [126] | [127] | ||||
liionpack | Python | ✓ | MIT | [128] | |||||
PETLION | Julia | ✓ | MIT | [129] | [130] | ||||
MPET | Python | ✓ | MIT | [131] | [132] | ||||
impedance.py | Python | ✓ | MIT | [139] | [140] | ||||
LIBEIS | Matlab/Python3 | ✓ | GPL v3 | [283] | [143] | ||||
Slide | C++/Matlab | ✓ | BSD-3-Clause | [153] | [154] | ||||
VEHLIB | Matlab/Simulink | ✓ | LGPL V3 | [145] | [146] |
Software | Company | Purpose | Link | ||||
---|---|---|---|---|---|---|---|
Data Processing | Physics-Based Modelling | Experiment-Based Modelling | Prediction | Simulation | |||
Matlab-Simulink | MathWorks | ✓ | ✓ | ✓ | ✓ | ✓ | [284] |
Twaice | Twaice | ✓ | ✓ | ✓ | ✓ | ✓ | [285] |
Comsol | COMSOL Inc. | ✓ | ✓ | [286] | |||
GT-AutoLion | Gamma Technologies | ✓ | ✓ | ✓ | [287] | ||
Simcenter | Siemens | ✓ | ✓ | [288] | |||
Amplabs | Amplabs | ✓ | ✓ | [289] | |||
Energsoft | Energsoft Inc. | ✓ | ✓ | [290] | |||
Voltaiq | Voltaiq | ✓ | ✓ | ✓ | [291,292] | ||
Aionics | Aionics Inc. | ✓ | ✓ | ✓ | [293] |
References
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Rabab, H.; Damay, N.; Vendrame, F.; Forgez, C.; El Mejdoubi, A. Modeling the non-linearities of charge-transfers and solid electrolyte interphase resistances for a sodium-ion battery with a hard carbon electrode. In Proceedings of the Electrimacs, Nancy, France, 16–19 May 2022. [Google Scholar]
- El Ghossein, N.; Sari, A.; Venet, P. Effects of the Hybrid Composition of Commercial Lithium-Ion Capacitors on Their Floating Aging. IEEE Trans. Power Electron. 2019, 34, 2292–2299. [Google Scholar] [CrossRef]
- Wen, X.; Luo, J.; Xiang, K.; Zhou, W.; Zhang, C.; Chen, H. High-performance monoclinic WO3 nanospheres with the novel NH4+ diffusion behaviors for aqueous ammonium-ion batteries. Chem. Eng. J. 2023, 458, 141381. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; Van Diemen, R.; McCollum, D.; Pathak, M.; Some, S.; Vyas, P.; Fradera, R.; et al. IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; Volume 10, p. 9781009157926. [Google Scholar]
- Lombardo, T.; Duquesnoy, M.; El-Bouysidy, H.; Årén, F.; Gallo-Bueno, A.; Jørgensen, P.B.; Bhowmik, A.; Demortière, A.; Ayerbe, E.; Alcaide, F.; et al. Artificial intelligence applied to battery research: Hype or reality? Chem. Rev. 2021, 122, 10899–10969. [Google Scholar] [CrossRef] [PubMed]
- Mejia, C.; Kajikawa, Y. Emerging topics in energy storage based on a large-scale analysis of academic articles and patents. Appl. Energy 2020, 263, 114625. [Google Scholar] [CrossRef]
- Sendek, A.D.; Ransom, B.; Cubuk, E.D.; Pellouchoud, L.A.; Nanda, J.; Reed, E.J. Machine learning modeling for accelerated battery materials design in the small data regime. Adv. Energy Mater. 2022, 12, 2200553. [Google Scholar] [CrossRef]
- Wu, B.; Widanage, W.D.; Yang, S.; Liu, X. Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence for smart battery management systems. Energy AI 2020, 1, 100016. [Google Scholar] [CrossRef]
- Dubarry, M.; Baure, G. Perspective on commercial Li-ion battery testing, best practices for simple and effective protocols. Electronics 2020, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Arbizzani, C.; Kjelstrup, S.; Xiao, J.; Xia, Y.y.; Yu, Y.; Yang, Y.; Belharouak, I.; Zawodzinski, T.; Myung, S.T.; et al. Good practice guide for papers on batteries for the journal of power sources. J. Power Sources 2020, 452, 1016. [Google Scholar] [CrossRef]
- Ling, C. A review of the recent progress in battery informatics. NPJ Comput. Mater. 2022, 8, 33. [Google Scholar] [CrossRef]
- Sulzer, V.; Mohtat, P.; Aitio, A.; Lee, S.; Yeh, Y.T.; Steinbacher, F.; Khan, M.U.; Lee, J.W.; Siegel, J.B.; Stefanopoulou, A.G.; et al. The challenge and opportunity of battery lifetime prediction from field data. Joule 2021, 5, 1934–1955. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D. Degradation diagnostics for lithium ion cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Höschele, P.; Heindl, S.F.; Erker, S.; Ellersdorfer, C. Influence of reversible swelling and preload force on the failure behavior of a lithium-ion pouch cell tested under realistic boundary conditions. J. Energy Storage 2023, 65, 107228. [Google Scholar] [CrossRef]
- Estevez, M.A.P.; Conte, F.V.; Tremonti, C.; Renzi, M. Aging estimation of lithium ion cells under real-world conditions through mechanical stress measurements. J. Energy Storage 2023, 64, 107186. [Google Scholar] [CrossRef]
- Liu, W.; Delacourt, C.; Forgez, C.; Pelissier, S. Study of graphite/NCA Li-ion cell degradation during accelerated aging tests—Data analysis of the SIMSTOCK project. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Nováková, K.; Pražanová, A.; Stroe, D.I.; Knap, V. Second-Life of Lithium-Ion Batteries from Electric Vehicles: Concept, Aging, Testing, and Applications. Energies 2023, 16, 2345. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Venet, P.; Dubé, Y.; Sari, A. Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation. IEEE Trans. Veh. Technol. 2015, 65, 4328–4343. [Google Scholar] [CrossRef] [Green Version]
- Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Eyring acceleration model for predicting calendar ageing of lithium-ion batteries. J. Energy Storage 2017, 13, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Tabusse, R.; Bouquain, D.; Jemei, S.; Chrenko, D. Battery aging test design during first and second life. In Proceedings of the 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 18 November–16 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Barcellona, S.; Piegari, L. Effect of current on cycle aging of lithium ion batteries. J. Energy Storage 2020, 29, 101310. [Google Scholar] [CrossRef]
- Olmos, J.; Gandiaga, I.; Saez-de Ibarra, A.; Larrea, X.; Nieva, T.; Aizpuru, I. Modelling the cycling degradation of Li-ion batteries: Chemistry influenced stress factors. J. Energy Storage 2021, 40, 102765. [Google Scholar] [CrossRef]
- Hu, D.; Chen, L.; Tian, J.; Su, Y.; Li, N.; Chen, G.; Hu, Y.; Dou, Y.; Chen, S.; Wu, F. Research progress of lithium plating on graphite anode in lithium-ion batteries. Chin. J. Chem. 2021, 39, 165–173. [Google Scholar] [CrossRef]
- Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Global model for self-discharge and capacity fade in lithium-ion batteries based on the generalized eyring relationship. IEEE Trans. Veh. Technol. 2017, 67, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Keil, P.; Schuster, S.F.; Wilhelm, J.; Travi, J.; Hauser, A.; Karl, R.C.; Jossen, A. Calendar aging of lithium-ion batteries. J. Electrochem. Soc. 2016, 163, A1872. [Google Scholar] [CrossRef]
- Montaru, M.; Fiette, S.; Koné, J.L.; Bultel, Y. Calendar ageing model of Li-ion battery combining physics-based and empirical approaches. J. Energy Storage 2022, 51, 104544. [Google Scholar] [CrossRef]
- Mathieu, R.; Baghdadi, I.; Briat, O.; Gyan, P.; Vinassa, J.M. D-optimal design of experiments applied to lithium battery for ageing model calibration. Energy 2017, 141, 2108–2119. [Google Scholar] [CrossRef]
- Baghdadi, I.; Mathieu, R.; Briat, O.; Gyan, P.; Vinassa, J.M. Lithium-ion battery ageing assessment based on a reduced design of experiments. In Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France, 11–14 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Lucu, M.; Martinez-Laserna, E.; Gandiaga, I.; Liu, K.; Camblong, H.; Widanage, W.; Marco, J. Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data–Part A: Storage operation. J. Energy Storage 2020, 30, 101409. [Google Scholar] [CrossRef]
- Román-Ramírez, L.; Marco, J. Design of experiments applied to lithium-ion batteries: A literature review. Appl. Energy 2022, 320, 119305. [Google Scholar] [CrossRef]
- Vichard, L.; Ravey, A.; Morando, S.; Harel, F.; Venet, P.; Pelissier, S.; Hissel, D. Battery aging study using field use data. In Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France, 11–14 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Dubarry, M.; Devie, A. Battery durability and reliability under electric utility grid operations: Representative usage aging and calendar aging. J. Energy Storage 2018, 18, 185–195. [Google Scholar] [CrossRef]
- Tang, X.; Liu, K.; Li, K.; Widanage, W.D.; Kendrick, E.; Gao, F. Recovering large-scale battery aging dataset with machine learning. Patterns 2021, 2, 100302. [Google Scholar] [CrossRef]
- Taheri, P.; Hsieh, S.; Bahrami, M. Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles. J. Power Sources 2011, 196, 6525–6533. [Google Scholar] [CrossRef]
- Michelini, E.; Höschele, P.; Heindl, S.F.; Erker, S.; Ellersdorfer, C. Experimental Investigation on Reversible Swelling Mechanisms of Lithium-Ion Batteries under a Varying Preload Force. Batteries 2023, 9, 218. [Google Scholar] [CrossRef]
- Mathieu, R.; Briat, O.; Gyan, P.; Vinassa, J.M. Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures. Appl. Energy 2021, 283, 116344. [Google Scholar] [CrossRef]
- Brunetaud, R.; Mbeya, K.M.; Legrand, N.; Briat, O.; Capitaine, A.; Vinassa, J.M. Non-destructive state-of-health diagnosis algorithm for blended electrode lithium-ion battery. J. Energy Storage 2023, 62, 106863. [Google Scholar] [CrossRef]
- Braco, E.; San Martín, I.; Sanchis, P.; Ursúa, A. Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles. Appl. Energy 2023, 329, 120235. [Google Scholar] [CrossRef]
- Tabusse, R.; Chrenko, D.; Jemei, S.; Hissel, D.; Bouquain, D.; Lorenzo, C.; Hibon, S. Characterizing aging of lithium-ion batteries during long-term test campaigns for transport applications. In Proceedings of the 2021 Sixteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 5–7 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Hassini, M.; Redondo-Iglesias, E.; Venet, P. Second-Life Batteries Modeling for Performance Tracking in a Mobile Charging Station. World Electr. Veh. J. 2023, 14, 94. [Google Scholar] [CrossRef]
- Abdel-Monem, M.; Trad, K.; Omar, N.; Hegazy, O.; Van den Bossche, P.; Van Mierlo, J. Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries. Energy 2017, 120, 179–191. [Google Scholar] [CrossRef]
- Mathieu, R.; Briat, O.; Gyan, P.; Vinassa, J.M. Fast charging for electric vehicles applications: Numerical optimization of a multi-stage charging protocol for lithium-ion battery and impact on cycle life. J. Energy Storage 2021, 40, 102756. [Google Scholar] [CrossRef]
- Hassini, M.; Redondo-Iglesias, E.; Venet, P.; Gillet, S.; Zitouni, Y. Second Life Batteries in a Mobile Charging Station: Model Based Performance Assessment. In Proceedings of the EVS35, 35th International Electric Vehicle Symposium & Exhibition, Oslo, Norway, 11–15 June 2022; p. 11. [Google Scholar]
- Saurabh, S.; Yinjiao, X.; Daeil, K.; Michael, P. CALCE Battery Data Archive. Available online: https://web.calce.umd.edu/batteries/data/ (accessed on 10 May 2023).
- Piłatowicz, G.; Marongiu, A.; Drillkens, J.; Sinhuber, P.; Sauer, D.U. A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples. J. Power Sources 2015, 296, 365–376. [Google Scholar] [CrossRef]
- Zheng, F.; Xing, Y.; Jiang, J.; Sun, B.; Kim, J.; Pecht, M. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. Appl. Energy 2016, 183, 513–525. [Google Scholar] [CrossRef]
- Juston, M.; Damay, N.; Forgez, C. Extracting the diffusion resistance and dynamic of a battery using pulse tests. J. Energy Storage 2023, 57, 106199. [Google Scholar] [CrossRef]
- Albuquerque, L.; Lacressonnière, F.; Roboam, X.; Forgez, C. Incremental Capacity Analysis as a diagnostic method applied to second life Li-ion batteries. In Proceedings of the ELECTRIMACS 2022, 14th International Conference of the International Association for Mathematics and Computer in Simulation, Nancy, France, 16–19 May 2022. [Google Scholar]
- Ruiz, V.; Di Persio, F. Standards for the Performance and Durability Assessment of Electric Vehicle Batteries: Possible Performance Criteria for an Ecodesign Regulation; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Doughty, D.H.; Crafts, C.C. FreedomCAR: Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications; Technical Report; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. Electrically Propelled Road Vehicles—Test Specification for Lithium-Ion Traction Battery Packs and Systems—Part 4: Performance Testing; Technical Report; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- Gary, H. USABC Electric Vehicle Battery Test Procedures Manual; Revision 2; Technical Report; United States Department of Energy: Washington, DC, USA, 1996. [Google Scholar] [CrossRef] [Green Version]
- Attia, P.M.; Grover, A.; Jin, N.; Severson, K.A.; Markov, T.M.; Liao, Y.H.; Chen, M.H.; Cheong, B.; Perkins, N.; Yang, Z.; et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 2020, 578, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Han, S.; Shin, K.G.; Lu, W. Application of artificial neural networks in design of lithium-ion batteries. J. Power Sources 2018, 395, 128–136. [Google Scholar] [CrossRef]
- Hassini, M.; Redondo-Iglesias, E.; Venet, P.; Gillet, S.; Zitouni, Y. Characterization Test over Second Life High Capacity Lithium-Ion Cells. Available online: https://data.univ-gustave-eiffel.fr/dataverse/second_life_batteries (accessed on 10 May 2023).
- Mariette, J.; Blanchard, O.; Berné, O.; Aumont, O.; Carrey, J.; Ligozat, A.; Lellouch, E.; Roche, P.E.; Guennebaud, G.; Thanwerdas, J.; et al. An open-source tool to assess the carbon footprint of research. Environ. Res. Infrastruct. Sustain. 2022, 2, 035008. [Google Scholar] [CrossRef]
- RTE eCO2mix—All of France’s Electricity Data in Real Time. Available online: https://www.rte-france.com/en/eco2mix/ (accessed on 10 May 2023).
- Ecodiag Ecodiag. Available online: https://ecoinfo.cnrs.fr/ecodiag-calcul/ (accessed on 10 May 2023).
- Damay, N.; Forgez, C.; Bichat, M.P.; Friedrich, G. A method for the fast estimation of a battery entropy-variation high-resolution curve–Application on a commercial LiFePO4/graphite cell. J. Power Sources 2016, 332, 149–153. [Google Scholar] [CrossRef]
- IEA. Electricity Market Report–December 2020; Technical Report; IEA: Paris, French, 2020. [Google Scholar]
- Grolleau, S.; Molina-Concha, B.; Delaille, A.; Revel, R.; Bernard, J.; Pélissier, S.; Peter, J. The French SIMCAL Research Network For Modelling of Calendar Aging for Energy Storage System in EVs And HEVs-EIS Analysis on LFP/C Cells. ECS Trans. 2013, 45, 73. [Google Scholar] [CrossRef]
- Ben-Marzouk, M.; Chaumond, A.; Redondo-Iglesias, E.; Montaru, M.; Pélissier, S. Experimental protocols and first results of calendar and/or cycling aging study of lithium-ion batteries–the MOBICUS project. World Electr. Veh. J. 2016, 8, 388–397. [Google Scholar] [CrossRef] [Green Version]
- COMUTES2. Available online: https://extranet.ifpen.fr/Extranet/jcms/c_3951501/fr/comutes (accessed on 10 May 2023).
- Timmermans, J.M.; Nikolian, A.; De Hoog, J.; Gopalakrishnan, R.; Goutam, S.; Omar, N.; Coosemans, T.; Van Mierlo, J.; Warnecke, A.; Sauer, D.U.; et al. Batteries 2020—Lithium-ion battery first and second life ageing, validated battery models, lifetime modelling and ageing assessment of thermal parameters. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–23. [Google Scholar] [CrossRef]
- Amici, J.; Asinari, P.; Ayerbe, E.; Barboux, P.; Bayle-Guillemaud, P.; Behm, R.J.; Berecibar, M.; Berg, E.; Bhowmik, A.; Bodoardo, S.; et al. A roadmap for transforming research to invent the batteries of the future designed within the european large scale research initiative battery 2030+. Adv. Energy Mater. 2022, 12, 2102785. [Google Scholar] [CrossRef]
- Esling, P.; Agon, C. Time-series data mining. ACM Comput. Surv. 2012, 45, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Bitrode. Available online: https://www.bitrode.com/ (accessed on 10 May 2023).
- Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Calendar and cycling ageing combination of batteries in electric vehicles. Microelectron. Reliab. 2018, 88, 1212–1215. [Google Scholar] [CrossRef] [Green Version]
- Cellpy—A Library for Assisting in Analysing Batteries and Cells. Available online: https://github.com/jepegit/cellpy (accessed on 10 May 2023).
- Clark, S.; Bleken, F.L.; Stier, S.; Flores, E.; Andersen, C.W.; Marcinek, M.; Szczesna-Chrzan, A.; Gaberscek, M.; Palacin, M.R.; Uhrin, M.; et al. Toward a unified description of battery data. Adv. Energy Mater. 2022, 12, 2102702. [Google Scholar] [CrossRef]
- Redondo-Iglesias, E.; Hassini, M.; Venet, P.; Pelissier, S. DATTES: Data Analysis Tools for Tests on Energy Storage. SoftwareX. 2023. under review. Available online: https://zenodo.org/record/8134473 (accessed on 10 May 2023).
- Chung, H.C. Technology Development and Field Verification of Innovative Home Energy Storage System. Available online: osf.io/pfh3g (accessed on 10 May 2023).
- Steinstraeter, M.; Buberger, J.; Trifonov, D. Battery and Heating Data in Real Driving Cycles. Available online: https://ieee-dataport.org/open-access/battery-and-heating-data-real-driving-cycles (accessed on 10 May 2023).
- Steinstraeter, M.; Lewke, M.; Buberger, J.; Hentrich, T.; Lienkamp, M. Range Extension via Electrothermal Recuperation. World Electr. Veh. J. 2020, 11, 41. [Google Scholar] [CrossRef]
- Bills, A.; Viswanathan, V.; Sripad, S.; Frank, E.; Charles, D.; Fredericks, W.L. eVTOL Battery Dataset. Available online: https://kilthub.cmu.edu/articles/dataset/eVTOL_Battery_Dataset/14226830 (accessed on 10 May 2023).
- Paw, Y.C.; Yun Mei, E.A. Battery Cycle Life Assessment Dataset for Transporter Drone. Available online: https://irr.singaporetech.edu.sg/articles/dataset/Battery_Cycle_Life_Assessment_Dataset_for_Transporter_Drone/21301188 (accessed on 10 May 2023).
- Farmann, A.; Waag, W.; Marongiu, A.; Sauer, D.U. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles. J. Power Sources 2015, 281, 114–130. [Google Scholar] [CrossRef]
- Mingant, R.; Petit, M.; Belaïd, S.; Bernard, J. Data-driven model development to predict the aging of a Li-ion battery pack in electric vehicles representative conditions. J. Energy Storage 2021, 39, 102592. [Google Scholar] [CrossRef]
- Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Measuring reversible and irreversible capacity losses on lithium-ion batteries. In Proceedings of the 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 17–20 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.F.; Liu, Y.; Jiang, X.; Liu, J. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries. Measurement 2021, 174, 109057. [Google Scholar] [CrossRef]
- Li, Y.; Stroe, D.I.; Cheng, Y.; Sheng, H.; Sui, X.; Teodorescu, R. On the feature selection for battery state of health estimation based on charging–discharging profiles. J. Energy Storage 2021, 33, 102122. [Google Scholar] [CrossRef]
- Eddahech, A.; Briat, O.; Vinassa, J.M. Determination of lithium-ion battery state-of-health based on constant-voltage charge phase. J. Power Sources 2014, 258, 218–227. [Google Scholar] [CrossRef]
- Pang, S.; Farrell, J.; Du, J.; Barth, M. Battery state-of-charge estimation. In Proceedings of the 2001 American Control Conference, (Cat. No. 01CH37148), Arlington, VA, USA, 25–27 June 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 2, pp. 1644–1649. [Google Scholar] [CrossRef]
- Espedal, I.B.; Jinasena, A.; Burheim, O.S.; Lamb, J.J. Current trends for state-of-charge (SoC) estimation in lithium-ion battery electric vehicles. Energies 2021, 14, 3284. [Google Scholar] [CrossRef]
- Christophersen, J.P. Battery Test Manual for Electric Vehicles; Revision 3; Technical Report; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2015. [Google Scholar] [CrossRef]
- Schweiger, H.G.; Obeidi, O.; Komesker, O.; Raschke, A.; Schiemann, M.; Zehner, C.; Gehnen, M.; Keller, M.; Birke, P. Comparison of several methods for determining the internal resistance of lithium ion cells. Sensors 2010, 10, 5604–5625. [Google Scholar] [CrossRef] [Green Version]
- Tamilselvi, S.; Gunasundari, S.; Karuppiah, N.; Razak RK, A.; Madhusudan, S.; Nagarajan, V.M.; Sathish, T.; Shamim, M.Z.M.; Saleel, C.A.; Afzal, A. A review on battery modelling techniques. Sustainability 2021, 13, 10042. [Google Scholar] [CrossRef]
- Wang, X.; Wei, X.; Zhu, J.; Dai, H.; Zheng, Y.; Xu, X.; Chen, Q. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management. ETransportation 2021, 7, 100093. [Google Scholar] [CrossRef]
- Jossen, A. Fundamentals of battery dynamics. J. Power Sources 2006, 154, 530–538. [Google Scholar] [CrossRef]
- Gantenbein, S.; Weiss, M.; Ivers-Tiffée, E. Impedance based time-domain modeling of lithium-ion batteries: Part I. J. Power Sources 2018, 379, 317–327. [Google Scholar] [CrossRef]
- Zhou, W.; Lu, Q.; Zheng, Y. Review on the Selection of Health Indicator for Lithium Ion Batteries. Machines 2022, 10, 512. [Google Scholar] [CrossRef]
- Mingant, R.; Bernard, J.; Sauvant-Moynot, V. Novel state-of-health diagnostic method for Li-ion battery in service. Appl. Energy 2016, 183, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wei, X.; Dai, H. Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. J. Energy Storage 2019, 21, 618–631. [Google Scholar] [CrossRef]
- Xiong, R.; Pan, Y.; Shen, W.; Li, H.; Sun, F. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110048. [Google Scholar] [CrossRef]
- Riviere, E.; Venet, P.; Sari, A.; Meniere, F.; Bultel, Y. LiFePO4 Battery State of Health Online Estimation Using Electric Vehicle Embedded Incremental Capacity Analysis. In Proceedings of the 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montreal, QC, Canada, 19–22 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Meng, J.; Pedersen, K.; Gurevich, L.; Stroe, D.I. Understanding the mechanism of capacity increase during early cycling of commercial NMC/graphite lithium-ion batteries. J. Energy Chem. 2022, 74, 34–44. [Google Scholar] [CrossRef]
- Barai, A.; Uddin, K.; Dubarry, M.; Somerville, L.; McGordon, A.; Jennings, P.; Bloom, I. A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells. Prog. Energy Combust. Sci. 2019, 72, 1–31. [Google Scholar] [CrossRef]
- Dubarry, M.; Anseán, D. Best practices for incremental capacity analysis. Front. Energy Res. 2022, 10, 1023555. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Y.; She, C.; Wang, Z.; Zhang, Z. Comparative study of incremental capacity curve determination methods for lithium-ion batteries considering the real-world situation. IEEE Trans. Power Electron. 2022, 37, 12563–12576. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Briat, O.; Delétage, J.Y.; Martin, C.; Chadourne, N.; Vinassa, J.M. Efficient state of health estimation of Li-ion battery under several ageing types for aeronautic applications. Microelectron. Reliab. 2018, 88, 1231–1235. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Zhang, L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression. IEEE Access 2017, 5, 21286–21295. [Google Scholar] [CrossRef]
- She, C.; Wang, Z.; Sun, F.; Liu, P.; Zhang, L. Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network. IEEE Trans. Ind. Inform. 2019, 16, 3345–3354. [Google Scholar] [CrossRef]
- Feng, X.; Merla, Y.; Weng, C.; Ouyang, M.; He, X.; Liaw, B.Y.; Santhanagopalan, S.; Li, X.; Liu, P.; Lu, L.; et al. A reliable approach of differentiating discrete sampled-data for battery diagnosis. ETransportation 2020, 3, 100051. [Google Scholar] [CrossRef]
- Weng, C.; Cui, Y.; Sun, J.; Peng, H. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression. J. Power Sources 2013, 235, 36–44. [Google Scholar] [CrossRef]
- Wang, D.; Miao, Q.; Pecht, M. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J. Power Sources 2013, 239, 253–264. [Google Scholar] [CrossRef]
- Samad, N.A.; Kim, Y.; Siegel, J.B.; Stefanopoulou, A.G. Battery capacity fading estimation using a force-based incremental capacity analysis. J. Electrochem. Soc. 2016, 163, A1584. [Google Scholar] [CrossRef] [Green Version]
- Maures, M.; Mathieu, R.; Capitaine, A.; Delétage, J.Y.; Vinassa, J.M.; Briat, O. An Incremental Capacity Parametric Model Based on Logistic Equations for Battery State Estimation and Monitoring. Batteries 2022, 8, 39. [Google Scholar] [CrossRef]
- Weng, C.; Feng, X.; Sun, J.; Peng, H. State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking. Appl. Energy 2016, 180, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Zhu, J.; Lu, D.D.C.; Wang, G.; He, T. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries. Energy 2018, 150, 759–769. [Google Scholar] [CrossRef]
- Alawa. Available online: https://www.soest.hawaii.edu/HNEI/alawa/index.php (accessed on 10 May 2023).
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize battery degradation modes via a diagnostic and prognostic model. J. Power Sources 2012, 219, 204–216. [Google Scholar] [CrossRef]
- DiffCapAnalyze. Available online: https://github.com/nicolet5/DiffCapAnalyzer (accessed on 10 May 2023).
- Thompson, N.L.; Cohen, T.A.; Alamdari, S.; Hsu, C.W.; Williamson, G.A.; Holmberg, V.C. DiffCapAnalyzer: A Python Package for Quantitative Analysis of Total Differential Capacity Data. J. Open Source Softw. 2020, 5, 2624. [Google Scholar] [CrossRef]
- Torchio, M.; Magni, L.; Gopaluni, R.B.; Braatz, R.D.; Raimondo, D.M. Lionsimba: A matlab framework based on a finite volume model suitable for li-ion battery design, simulation, and control. J. Electrochem. Soc. 2016, 163, A1192. [Google Scholar] [CrossRef]
- Lionsimba. Available online: https://github.com/lionsimbatoolbox/LIONSIMBA (accessed on 10 May 2023).
- EISFitting. Available online: https://github.com/Samuel-Buteau/EISFitting (accessed on 10 May 2023).
- Buteau, S.; Dahn, J. Analysis of thousands of electrochemical impedance spectra of lithium-ion cells through a machine learning inverse model. J. Electrochem. Soc. 2019, 166, A1611–A1622. [Google Scholar] [CrossRef]
- BEEP: A Python Library for Battery Evaluation and Early Prediction. Available online: https://github.com/TRI-AMDD/beep (accessed on 10 May 2023).
- Herring, P.; Gopal, C.B.; Aykol, M.; Montoya, J.H.; Anapolsky, A.; Attia, P.M.; Gent, W.; Hummelshøj, J.S.; Hung, L.; Kwon, H.K.; et al. BEEP: A python library for battery evaluation and early prediction. SoftwareX 2020, 11, 100506. [Google Scholar] [CrossRef]
- DATTES : Data Analysis Tools for Tests on Energy Storage. Available online: https://gitlab.com/dattes/dattes/ (accessed on 10 May 2023).
- Plett, G. Battery Management Systems, Volume I: Battery Modeling; Artech House: New York, NY, USA, 2015. [Google Scholar]
- Doyle, M.; Newman, J.; Gozdz, A.S.; Schmutz, C.N.; Tarascon, J.M. Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 1996, 143, 1890. [Google Scholar] [CrossRef]
- Lucas Darby Robinson, R.E.G. Dualfoil.py: Porous Electrochemistry for Rechargeable Batteries. Available online: https://nanohub.org/resources/dualfoil (accessed on 10 May 2023).
- PyBaMM: Python Battery Mathematical Modelling. Available online: https://github.com/pybamm-team/PyBaMM (accessed on 10 May 2023).
- Sulzer, V.; Marquis, S.G.; Timms, R.; Robinson, M.; Chapman, S.J. Python battery mathematical modelling (PyBaMM). J. Open Res. Softw. 2021, 9, 14. [Google Scholar] [CrossRef]
- Liionpack. Available online: https://github.com/pybamm-team/liionpack (accessed on 10 May 2023).
- PETLION—Porous Electrode Theory for Li-Ion Batteries. Available online: https://github.com/MarcBerliner/PETLION.jl (accessed on 10 May 2023).
- Berliner, M.D.; Cogswell, D.A.; Bazant, M.Z.; Braatz, R.D. Methods—PETLION: Open-Source Software for Millisecond-Scale Porous Electrode Theory-Based Lithium-Ion Battery Simulations. J. Electrochem. Soc. 2021, 168, 090504. [Google Scholar] [CrossRef]
- MPET—Multiphase Porous Electrode Theory. Available online: https://github.com/TRI-AMDD/mpet (accessed on 10 May 2023).
- Smith, R.B.; Bazant, M.Z. Multiphase porous electrode theory. J. Electrochem. Soc. 2017, 164, E3291. [Google Scholar] [CrossRef] [Green Version]
- Cugnet, M.; Gallois, F.; Kirchev, A.; Dutykh, D. NEOLAB: A Scilab tool to simulate the Negative Electrode of Lead-Acid Batteries. SoftwareX 2023, 22, 101394. [Google Scholar] [CrossRef]
- Cugnet, M.; Gallois, F.; Kirchev, A.; Dutykh, D. NEOLAB. Available online: https://github.com/FlorianGallois/NEOLAB (accessed on 10 May 2023).
- Bizeray, A.M.; Reniers, J.; Howey, D.A. Spectral_li-Ion_SPM: Initial Release. Available online: https://github.com/davidhowey/Spectral_li-ion_SPM/tree/1.3 (accessed on 10 May 2023).
- Bizeray, A.M.; Zhao, S.; Duncan, S.R.; Howey, D.A. Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter. J. Power Sources 2015, 296, 400–412. [Google Scholar] [CrossRef] [Green Version]
- Drummond, R.; Howey, D.A.; Duncan, S.R. Low-order mathematical modelling of electric double layer supercapacitors using spectral methods. J. Power Sources 2015, 277, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Supercapacitor-Model. Available online: https://github.com/scro2542/Supercapacitor-Model (accessed on 10 May 2023).
- Impedance. Py: A Python Package for Electrochemical Impedance Analysis. Available online: https://github.com/ECSHackWeek/impedance.py (accessed on 10 May 2023).
- Murbach, M.D.; Gerwe, B.; Dawson-Elli, N.; Tsui, L.k. impedance. py: A Python package for electrochemical impedance analysis. J. Open Source Softw. 2020, 5, 2349. [Google Scholar] [CrossRef]
- Schönleber, M.; Klotz, D.; Ivers-Tiffée, E. A method for improving the robustness of linear Kramers-Kronig validity tests. Electrochim. Acta 2014, 131, 20–27. [Google Scholar] [CrossRef]
- Lin-KK Tool. Available online: https://www.iam.kit.edu/et/english/Lin-KK.php (accessed on 10 May 2023).
- Buchicchio, E.; De Angelis, A.; Santoni, F.; Carbone, P.; Bianconi, F.; Smeraldi, F. LiBEIS: A software tool for broadband electrochemical impedance spectroscopy of lithium-ion batteries. Softw. Impacts 2022, 14, 100447. [Google Scholar] [CrossRef]
- Buchicchio, E.; De Angelis, A.; Santoni, F.; Carbone, P. EasyEIS: A software tool to perform electrochemical impedance spectroscopy using a source measure unit. SoftwareX 2022, 18, 101075. [Google Scholar] [CrossRef]
- Vehlib. Available online: https://gitlab.univ-eiffel.fr/eco7/vehlib (accessed on 10 May 2023).
- Vinot, E.; Scordia, J.; Trigui, R.; Jeanneret, B.; Badin, F. Model simulation, validation and case study of the 2004 THS of Toyota Prius. Int. J. Veh. Syst. Model. Test. 2008, 3, 139–167. [Google Scholar] [CrossRef]
- Lucu, M.; Martinez-Laserna, E.; Gandiaga, I.; Camblong, H. A critical review on self-adaptive Li-ion battery ageing models. J. Power Sources 2018, 401, 85–101. [Google Scholar] [CrossRef]
- Lipu, M.H.; Hannan, M.; Hussain, A.; Hoque, M.; Ker, P.J.; Saad, M.M.; Ayob, A. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J. Clean. Prod. 2018, 205, 115–133. [Google Scholar] [CrossRef]
- Berecibar, M.; Gandiaga, I.; Villarreal, I.; Omar, N.; Van Mierlo, J.; Van den Bossche, P. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew. Sustain. Energy Rev. 2016, 56, 572–587. [Google Scholar] [CrossRef]
- Basia, A.; Simeu-Abazi, Z.; Gascard, E.; Zwolinski, P. Review on State of Health estimation methodologies for lithium-ion batteries in the context of circular economy. Cirp. J. Manuf. Sci. Technol. 2021, 32, 517–528. [Google Scholar] [CrossRef]
- Jorge, I.; Mesbahi, T.; Samet, A.; Boné, R. Time Series Feature extraction for Lithium-Ion batteries State-Of-Health prediction. J. Energy Storage 2023, 59, 106436. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Howey, D. Davidhowey/SLIDE: Linux-Compatible Initial Release. Available online: https://github.com/Battery-Intelligence-Lab/SLIDE/tree/v1.0.2 (accessed on 10 May 2023).
- Reniers, J.M.; Mulder, G.; Howey, D.A. Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries. J. Electrochem. Soc. 2019, 166, A3189–A3200. [Google Scholar] [CrossRef] [Green Version]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Shang, Y.; Ouyang, Q.; Widanage, W.D. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery. IEEE Trans. Ind. Electron. 2020, 68, 3170–3180. [Google Scholar] [CrossRef]
- Tran, M.K.; Panchal, S.; Chauhan, V.; Brahmbhatt, N.; Mevawalla, A.; Fraser, R.; Fowler, M. Python-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion battery. Int. J. Energy Res. 2022, 46, 786–794. [Google Scholar] [CrossRef]
- Rohatgi, A. WebPlotDigitizer User Manual Version 3.4. 2014, pp. 1–18. Available online: http://arohatgi.info/WebPlotDigitizer/app (accessed on 10 May 2023).
- Zhu, S.; Sun, X.; Gao, X.; Wang, J.; Zhao, N.; Sha, J. Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning. J. Electroanal. Chem. 2019, 855, 113627. [Google Scholar] [CrossRef] [Green Version]
- Attia, P.M.; Bills, A.; Planella, F.B.; Dechent, P.; Dos Reis, G.; Dubarry, M.; Gasper, P.; Gilchrist, R.; Greenbank, S.; Howey, D.; et al. “Knees” in lithium-ion battery aging trajectories. J. Electrochem. Soc. 2022, 169, 060517. [Google Scholar] [CrossRef]
- Hasib, S.A.; Islam, S.; Chakrabortty, R.K.; Ryan, M.J.; Saha, D.K.; Ahamed, M.H.; Moyeen, S.I.; Das, S.K.; Ali, M.F.; Islam, M.R.; et al. A comprehensive review of available battery datasets, RUL prediction approaches, and advanced battery management. IEEE Access 2021, 9, 86166–86193. [Google Scholar] [CrossRef]
- Dos Reis, G.; Strange, C.; Yadav, M.; Li, S. Lithium-ion battery data and where to find it. Energy AI 2021, 5, 100081. [Google Scholar] [CrossRef]
- 4TU.ResearchData. Available online: https://data.4tu.nl (accessed on 10 May 2023).
- Battery Archive. Available online: https://www.batteryarchive.org/study_summaries.html (accessed on 10 May 2023).
- data.matr.io. Available online: https://data.matr.io/ (accessed on 10 May 2023).
- Dryad. Available online: https://datadryad.org (accessed on 10 May 2023).
- Mendeley Data. Available online: https://data.mendeley.com (accessed on 10 May 2023).
- Oxford University Research Archive. Available online: https://ora.ox.ac.uk/ (accessed on 10 May 2023).
- Recherche Data Gouv. Available online: https://entrepot.recherche.data.gouv.fr (accessed on 10 May 2023).
- TUM. Available online: https://mediatum.ub.tum.de (accessed on 10 May 2023).
- Zenodo. Available online: https://zenodo.org (accessed on 10 May 2023).
- Ward, L.; Babinec, S.; Dufek, E.J.; Howey, D.A.; Viswanathan, V.; Aykol, M.; Beck, D.A.; Blaiszik, B.; Chen, B.R.; Crabtree, G.; et al. Principles of the battery data genome. Joule 2022, 6, 2253–2271. [Google Scholar] [CrossRef]
- De Angelis, V.; Preger, Y. BatteryArchive.org? Insights from a Public Repository for Visualization Analysis and Comparison of Battery Data across Institutions; Technical Report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2021. [Google Scholar] [CrossRef]
- Liiondb. Available online: https://liiondb.com/ (accessed on 10 May 2023).
- Wang, A.; O’Kane, S.; Planella, F.B.; Le Houx, J.; O’Regan, K.; Zyskin, M.; Edge, J.S.; Monroe, C.; Cooper, S.; Howey, D.A.; et al. Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models. Prog. Energy 2022, 4, 032004. [Google Scholar] [CrossRef]
- Materialsproject. Available online: www.materialsproject.org (accessed on 10 May 2023).
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef] [Green Version]
- NREL. Battery Microstructures Library. Available online: https://www.nrel.gov/transportation/microstructure.html (accessed on 10 May 2023).
- Usseglio-Viretta, F.L.; Colclasure, A.; Mistry, A.N.; Claver, K.P.Y.; Pouraghajan, F.; Finegan, D.P.; Heenan, T.M.; Abraham, D.; Mukherjee, P.P.; Wheeler, D.; et al. Resolving the discrepancy in tortuosity factor estimation for Li-ion battery electrodes through micro-macro modeling and experiment. J. Electrochem. Soc. 2018, 165, A3403–A3426. [Google Scholar] [CrossRef]
- NREL. Battery Failure Databank. Available online: https://www.nrel.gov/transportation/battery-failure.html (accessed on 10 May 2023).
- Walker, W.Q.; Darst, J.J.; Finegan, D.P.; Bayles, G.A.; Johnson, K.L.; Darcy, E.C.; Rickman, S.L. Decoupling of heat generated from ejected and non-ejected contents of 18650-format lithium-ion cells using statistical methods. J. Power Sources 2019, 415, 207–218. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Othman, A.M.; Abdussami, M.R. Review of battery management systems (BMS) development and industrial standards. Technologies 2021, 9, 28. [Google Scholar] [CrossRef]
- Lithium Inventory. Available online: https://lithiuminventory.com/ (accessed on 10 May 2023).
- Watt Rank. Available online: https://wattrank.com/ (accessed on 10 May 2023).
- Batemo. Available online: https://www.batemo.de/ (accessed on 10 May 2023).
- Galvanalyser. Available online: https://github.com/Battery-Intelligence-Lab/galvanalyser (accessed on 10 May 2023).
- Lewis-Douglas, A.; Pitt, L.; Howey, D.A. Galvanalyser: A battery test database. arXiv 2020, arXiv:2010.14959. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, L.; Zhang, Z.; Yu, H.; Wang, W.; Ouyang, M.; Zhang, C.; Sun, Q.; Yan, X.; Yang, S.; et al. Battery State of Health Estimate Strategies: From Data Analysis to End-Cloud Collaborative Framework. Batteries 2023, 9, 351. [Google Scholar] [CrossRef]
- Tran, M.K.; DaCosta, A.; Mevawalla, A.; Panchal, S.; Fowler, M. Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO, NCA. Batteries 2021, 7, 51. [Google Scholar] [CrossRef]
- Bole, B.; Kulkarni, C.; Daigle, M. Randomized battery usage data set. NASA Ames Progn. Data Repos. 2014, 70. [Google Scholar]
- Bole, B.; Kulkarni, C.S.; Daigle, M. Adaptation of an electrochemistry-based li-ion battery model to account for deterioration observed under randomized use. In Proceedings of the Annual Conference of the PHM Society, Fort Worth, TX, USA, 29 September–2 October 2014; Volume 6. [Google Scholar]
- Preger, Y.; Barkholtz, H.M.; Fresquez, A.; Campbell, D.L.; Juba, B.W.; Romàn-Kustas, J.; Ferreira, S.R.; Chalamala, B. Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J. Electrochem. Soc. 2020, 167, 120532. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-Driven Prediction of Battery Cycle Life before Capacity Degradation. Available online: https://data.matr.io/1/projects/5c48dd2bc625d700019f3204 (accessed on 10 May 2023).
- Attia, P.M.; Grover, A.; Jin, N.; Severson, K.A.; Markov, T.M.; Liao, Y.H.; Chen, M.H.; Cheong, B.; Perkins, N.; Yang, Z.; et al. Closed-Loop Optimization of Extreme Fast Charging for Batteries Using Machine Learning. Available online: https://data.matr.io/1/projects/5d80e633f405260001c0b60a (accessed on 10 May 2023).
- Birkl, C. Oxford Battery Degradation Dataset 1. Available online: https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac (accessed on 10 May 2023).
- Birkl, C. Diagnosis and Prognosis of Degradation in Lithium-Ion Batteries. Ph.D. Thesis, University of Oxford, Oxford, UK, 2017. [Google Scholar]
- Saha, B.; Goebel, K. Battery data set. In NASA AMES Prognostics Data Repository; NASA Ames Research Center: Mountain View, CA, USA, 2007. [Google Scholar]
- Raj, T. Path Dependent Battery Degradation Dataset Part 1. Available online: https://ora.ox.ac.uk/objects/uuid:de62b5d2-6154-426d-bcbb-30253ddb7d1e (accessed on 10 May 2023).
- Raj, T. Path Dependent Battery Degradation Dataset Part 2. Available online: https://ora.ox.ac.uk/objects/uuid:be3d304e-51fd-4b37-a818-b6fa1ac2ba9d (accessed on 10 May 2023).
- Raj, T. Path Dependent Battery Degradation Dataset Part 3. Available online: https://ora.ox.ac.uk/objects/uuid:78f66fa8-deb9-468a-86f3-63983a7391a9 (accessed on 10 May 2023).
- Raj, T.; Wang, A.A.; Monroe, C.W.; Howey, D.A. Investigation of path-dependent degradation in lithium-ion batteries. Batter. Supercaps 2020, 3, 1377–1385. [Google Scholar] [CrossRef]
- Juarez Robles, D.; Jeevarajan, J.A.; Mukherjee, P.P. Aging and Safety in Pouch Cells. Available online: https://ul.org/research/electrochemical-safety/open-science-data/aging-and-safety-pouch-cells (accessed on 10 May 2023).
- Juarez-Robles, D.; Azam, S.; Jeevarajan, J.A.; Mukherjee, P.P. Degradation-Safety Analytics in Lithium-Ion Cells and Modules: Part III. Aging and Safety of Pouch Format Cells. J. Electrochem. Soc. 2021, 168, 110501. [Google Scholar] [CrossRef]
- Juarez Robles, D.; Jeevarajan, J.A.; Mukherjee, P.P. Aging and Safety in Cylindrical Cells. Available online: https://ul.org/research/electrochemical-safety/open-science-data/aging-and-safety-cylindrical-cells (accessed on 10 May 2023).
- Juarez-Robles, D.; Jeevarajan, J.A.; Mukherjee, P.P. Degradation-safety analytics in lithium-ion cells: Part I. Aging under charge/discharge cycling. J. Electrochem. Soc. 2020, 167, 160510. [Google Scholar] [CrossRef]
- Jöst, D.; Ringbeck, F.; Blömeke, A.; Sauer, D.U. Timeseries Data of a Drive Cycle Aging Test of 28 High Energy NCA/C+Si Round Cells of Type 18650. Available online: https://publications.rwth-aachen.de/record/815749 (accessed on 10 May 2023).
- Blömeke, A.; Quade, K.L.; Jöst, D.; Li, W.; Ringbeck, F.; Sauer, D.U. Properties of a Lithium-Ion Battery as a Partner of Power Electronics. In Proceedings of the 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), Hanover, Germany, 5–9 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–10. [Google Scholar]
- Jaykanth, G. Lifecycle Ageing Tests on Commercial 18650 Li ion Cell @ 10 °C and 0 °C. Available online: https://data.4tu.nl/articles/dataset/Lifecycle_ageing_tests_on_commercial_18650_Li_ion_cell_10_C_and_0_C/14377295 (accessed on 10 May 2023).
- Trad, K.; Jaykanth, G. D2.3—Report Containing Aging Test Profiles and Test Results. Available online: https://everlasting-project.eu/wp-content/uploads/2020/03/EVERLASTING_D2.3_final_20200228.pdf (accessed on 10 May 2023).
- Jaykanth, G. Calendar Ageing Test Results on Commercial 18650 Li Ion Cell @ 10 °C and 0 °C. Available online: https://data.4tu.nl/articles/_/14377184/1 (accessed on 10 May 2023).
- Trad, K. Lifecycle Ageing Tests on Commercial 18650 Li Ion Cell @ 25 °C and 45 °C. Available online: https://data.4tu.nl/articles/dataset/Lifecycle_ageing_tests_on_commercial_18650_Li_ion_cell_25_C_and_45_C/13739296/1 (accessed on 10 May 2023).
- Zhang, S. Data for: A Data-Driven Coulomb Counting Method for State of Charge Calibration and Estimation of Lithium-Ion Battery. Available online: https://data.mendeley.com/datasets/c5dxwn6w92/1 (accessed on 10 May 2023).
- Zhang, S.; Guo, X.; Dou, X.; Zhang, X. A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery. Sustain. Energy Technol. Assess. 2020, 40, 100752. [Google Scholar] [CrossRef]
- Weng, A.; Mohtat, P.; Attia, P.M.; Sulzer, V.; Lee, S.; Less, G.; Stefanopoulou, A. Battery Test Data-Fast Formation Study. Available online: https://deepblue.lib.umich.edu/data/concern/data_sets/b2773w109 (accessed on 10 May 2023).
- Weng, A.; Mohtat, P.; Attia, P.M.; Sulzer, V.; Lee, S.; Less, G.; Stefanopoulou, A. Predicting the impact of formation protocols on battery lifetime immediately after manufacturing. Joule 2021, 5, 2971–2992. [Google Scholar] [CrossRef]
- Burzyński, D.; Kasprzyk, L. NMC Cell 2600 mAh Cyclic Aging Data. Available online: https://data.mendeley.com/datasets/k6v83s2xdm/1 (accessed on 10 May 2023).
- Burzyński, D.; Kasprzyk, L. A novel method for the modeling of the state of health of lithium-ion cells using machine learning for practical applications. Knowl. Based Syst. 2021, 219, 106900. [Google Scholar] [CrossRef]
- Mohtat, P.; Siegel, J.B.; Stefanopoulou, A.G.; Lee, S. UofM Pouch Cell Voltage and Expansion Cyclic Aging Dataset. Available online: https://deepblue.lib.umich.edu/data/concern/data_sets/5d86p0488 (accessed on 10 May 2023).
- Mohtat, P.; Lee, S.; Siegel, J.B.; Stefanopoulou, A. Reversible and irreversible expansion of lithium-ion batteries under a wide range of stress factors. J. Electrochem. Soc. 2021, 168, 100520. [Google Scholar] [CrossRef]
- Lu, J.; Xiong, R.; Tian, J.; Wang, C.; Hsu, C.W.; Tsou, N.T.; Sun, F.; Li, J. Battery Degradation Dataset (Fixed Current Profiles and Arbitrary Uses Profiles). Available online: https://data.mendeley.com/datasets/kw34hhw7xg/3 (accessed on 10 May 2023).
- Lu, J.; Xiong, R.; Tian, J.; Wang, C.; Hsu, C.W.; Tsou, N.T.; Sun, F.; Li, J. Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning. Energy Storage Mater. 2022, 50, 139–151. [Google Scholar] [CrossRef]
- Schmitt, J.; Rehm, M.; Karger, A.; Jossen, A. Aging Data, Charging Curves and Battery Electric Vehicle Application Profiles of a Nickel-Rich NMC/Silicon-Graphite High-Energy Lithium-Ion Cell; TUM: Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Schmitt, J.; Rehm, M.; Karger, A.; Jossen, A. Capacity and degradation mode estimation for lithium-ion batteries based on partial charging curves at different current rates. J. Energy Storage 2023, 59, 106517. [Google Scholar] [CrossRef]
- Thomas, H.; Anmol, J.; Matt, K.; Thomas, T.; Chun, T.; Alexander, D.; Rhodri, J.; Dan, B.; Paul, S. Lithium-Ion Battery INR18650 MJ1 Data: 400 Electrochemical Cycles (EIL-015). Available online: https://rdr.ucl.ac.uk/articles/dataset/Lithium-ion_Battery_INR18650_MJ1_Data_400_Electrochemical_Cycles_EIL-015_/12159462/1 (accessed on 10 May 2023).
- Pozzato, G.; Allam, A.; Onori, S. Lithium-ion Battery Aging Dataset Based on Electric Vehicle Real-Driving Profiles. Available online: https://osf.io/qsabn/?view_only=2a03b6c78ef14922a3e244f3d549de78 (accessed on 10 May 2023).
- Pozzato, G.; Allam, A.; Onori, S. Lithium-ion battery aging dataset based on electric vehicle real-driving profiles. Data Brief 2022, 41, 107995. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, Y.; Huang, Y.; Gopaluni, R.B.; Cao, Y.; Heere, M.; Mühlbauer, M.J.; Mereacre, L.; Dai, H.; Liu, X.; et al. Data-Driven Capacity Estimation of Commercial Lithium-Ion Batteries from Voltage Relaxation. Available online: https://zenodo.org/record/6405084 (accessed on 10 May 2023). [CrossRef]
- Kirkaldy, N.; Samieian, M.A.; Offer, G.J.; Marinescu, M.; Patel, Y. Lithium-Ion Battery Degradation: Measuring Rapid Loss of Active Silicon in Silicon–Graphite Composite Electrodes. ACS Appl. Energy Mater. 2022, 5, 13367–13376. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Faraji-Niri, M.; Sansom, J.; Sheikh, M.; Widanage, D.; Marco, J. Dataset for rapid state of health estimation of lithium batteries using EIS and machine learning: Training and validation. Data Brief 2023, 48, 109157. [Google Scholar] [CrossRef]
- Faraji-Niri, M.; Rashid, M.; Sansom, J.; Sheikh, M.; Widanage, D.; Marco, J. Accelerated state of health estimation of second life lithium-ion batteries via electrochemical impedance spectroscopy tests and machine learning techniques. J. Energy Storage 2023, 58, 106295. [Google Scholar] [CrossRef]
- Devie, A.; Baure, G.; Dubarry, M. Intrinsic variability in the degradation of a batch of commercial 18,650 lithium-ion cells. Energies 2018, 11, 1031. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying Degradation Patterns of Lithium Ion Batteries from Impedance Spectroscopy Using Machine Learning. Available online: https://zenodo.org/record/3633835 (accessed on 10 May 2023).
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706. [Google Scholar] [CrossRef] [Green Version]
- Saxena, S.; Xing, Y.; Kwon, D.; Pecht, M. Accelerated degradation model for C-rate loading of lithium-ion batteries. Int. J. Electr. Power Energy Syst. 2019, 107, 438–445. [Google Scholar] [CrossRef]
- Yao, X.Y.; Pecht, M. Tab Design and Failures in Cylindrical Li-ion Batteries. IEEE Access 2019, 7, 24082–24095. [Google Scholar] [CrossRef]
- Diao, W.; Xing, Y.; Saxena, S.; Pecht, M. Evaluation of Present Accelerated Temperature Testing and Modeling of Batteries. Appl. Sci. 2018, 8, 1786. [Google Scholar] [CrossRef] [Green Version]
- Gun, D.; Perez, H.; Moura, S. Fast Charging Tests. Available online: https://datadryad.org/stash/dataset/ (accessed on 10 May 2023).
- Buchicchio, E.; De Angelis, A.; Santoni, F.; Carbone, P. Dataset on Broadband Electrochemical Impedance Spectroscopy of Lithium-Ion Batteries for Different Values of the State of Charge. Available online: https://data.mendeley.com/datasets/mbv3bx847g (accessed on 10 May 2023).
- Buchicchio, E.; De Angelis, A.; Santoni, F.; Carbone, P.; Bianconi, F.; Smeraldi, F. Dataset on broadband electrochemical impedance spectroscopy of Lithium-Ion batteries for different values of the state-of-charge. Data Brief 2022, 45, 108589. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, A.; Buchicchio, E.; Santoni, F.; Moschitta, A.; Carbone, P. Uncertainty Characterization of a Practical System for Broadband Measurement of Battery EIS. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Redondo-Iglesias, E.; Sottile, S.; Hassini, M. Characterisation Tests on Samsung 18650 26J Cells. Available online: https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId= (accessed on 10 May 2023).
- Kawakita de Souza, A. Lithium-ion Battery OCV and Dynamic Test Data of a LiFePO4 Cylindrical Cell. Available online: https://data.mendeley.com/datasets/p8kf893yv3 (accessed on 21 June 2023).
- Xavier, M.A.; de Souza, A.K.; Trimboli, M.S. An LPV-MPC inspired battery SOP estimation algorithm using a coupled electro-thermal model. In Proceedings of the 2021 American Control Conference (ACC), New Orleans, LA, USA, 25–28 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4421–4426. [Google Scholar] [CrossRef]
- de Souza, A.H.K. Advanced Predictive Control Strategies for Lithium-Ion Battery Management Using a Coupled Electro-Thermal Model. Ph.D. Thesis, University of Colorado, Colorado Springs, CO, USA, 2020. [Google Scholar]
- de Souza, A.K.; Plett, G.; Trimboli, M.S. Lithium-ion battery charging control using a coupled electro-thermal model and model predictive control. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3534–3539. [Google Scholar] [CrossRef]
- Catenaro, E.; Onori, S. Experimental data of lithium-ion batteries under galvanostatic discharge tests at different rates and temperatures of operation. Data Brief 2021, 35, 106894. [Google Scholar] [CrossRef] [PubMed]
- Catenaro, E.; Rizzo, D.M.; Onori, S. Experimental analysis and analytical modeling of enhanced-Ragone plot. Appl. Energy 2021, 291, 116473. [Google Scholar] [CrossRef]
- Redondo-Iglesias, E.; Tian, B. Characterisation Tests of A123 4.4Ah Cell. Available online: https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId= (accessed on 10 May 2023).
- Redondo-Iglesias, E.; Dufour, C.; Tian, B. Efficiency Tests on A123 4.4Ah Cells. Available online: https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId= (accessed on 10 May 2023).
- Redondo-Iglesias, E.; Pelissier, S. On the Efficiency of LFP Lithium-ion Batteries. In Proceedings of the 2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), Cassino, Italy, 23–25 November; 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yang, D.; Chen, Z. Behavior data of battery and battery pack SOC estimation under different working conditions. Data Brief 2016, 9, 737–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wang, Y.; Yang, D.; Chen, Z. An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model. Energy 2016, 115, 219–229. [Google Scholar] [CrossRef]
- Chung, H.C. Charge and discharge profiles of repurposed LiFePO4 batteries based on the UL 1974 standard. Sci. Data 2021, 8, 165. [Google Scholar] [CrossRef]
- Kollmeyer, P.; Skells, M. Turnigy graphene 5000 mAh 65C li-ion battery data. Mendeley Data 2020, 1, 10–17632. [Google Scholar] [CrossRef]
- Vidal, C.; Malysz, P.; Naguib, M.; Emadi, A.; Kollmeyer, P. Estimating battery state of charge using recurrent and non-recurrent neural networks. J. Energy Storage 2022, 47, 103660. [Google Scholar] [CrossRef]
- Wildfeuer, L.; Wassiliadis, N.; Karger, A.; Bauer, F.; Lienkamp, M. Teardown Analysis and Characterization of a Commercial Lithium-Ion Battery for Advanced Algorithms in Battery Electric Vehicles. Available online: https://doi.org/10.14459/2022mp1639153 (accessed on 10 May 2023).
- Wildfeuer, L.; Wassiliadis, N.; Karger, A.; Bauer, F.; Lienkamp, M. Teardown analysis and characterization of a commercial lithium-ion battery for advanced algorithms in battery electric vehicles. J. Energy Storage 2022, 48, 103909. [Google Scholar] [CrossRef]
- Kollmeyer, P. Panasonic 18650PF Li-ion Battery Data. Available online: https://data.mendeley.com/datasets/wykht8y7tg/ (accessed on 10 May 2023).
- Zhao, R.; Kollmeyer, P.J.; Lorenz, R.D.; Jahns, T.M. A compact unified methodology via a recurrent neural network for accurate modeling of lithium-ion battery voltage and state-of-charge. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5234–5241. [Google Scholar] [CrossRef]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Ahmed, R.; Emadi, A. Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries. IEEE Trans. Ind. Electron. 2017, 65, 6730–6739. [Google Scholar] [CrossRef]
- Kollmeyer, P.; Hackl, A.; Emadi, A. Li-ion battery model performance for automotive drive cycles with current pulse and EIS parameterization. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 22–24 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 486–492. [Google Scholar] [CrossRef]
- Sneha, S.; Devabattini, B.C.; Pradeep, K.; Krishna, P.; Balakumar, B. Dataset for Tabular OCV Modeling. Available online: https://data.mendeley.com/datasets/m9w7grpjc7/1 (accessed on 10 May 2023).
- Sundaresan, S.; Devabattini, B.; Kumar, P.; Pattipati, K.; Balasingam, B. Tabular Open Circuit Voltage Modelling of Li-Ion Batteries for Robust SOC Estimation. Energies 2022, 15, 9142. [Google Scholar] [CrossRef]
- Wassiliadis, N.; Steinsträter, M.; Schreiber, M.; Rosner, P.; Nicoletti, L.; Schmid, F.; Ank, M.; Teichert, O.; Wildfeuer, L.; Schneider, J.; et al. Quantifying the State of the Art of Electric Powertrains in Battery Electric Vehicles: Range, Efficiency, and Lifetime from Component to System Level of the Volkswagen ID.3; TUM: Heidelberg, Germany, 2022; Available online: https://mediatum.ub.tum.de/1656314 (accessed on 10 May 2023).
- Wassiliadis, N.; Steinsträter, M.; Schreiber, M.; Rosner, P.; Nicoletti, L.; Schmid, F.; Ank, M.; Teichert, O.; Wildfeuer, L.; Schneider, J.; et al. Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID.3. eTransportation 2022, 12, 100167. [Google Scholar] [CrossRef]
- Hassini, M.; Redondo-Iglesias, E.; Venet, P.; Gillet, S.; Zitouni, Y. Second Life Batteries in a Mobile Charging Station: Experimental Performance Assessment. In Proceedings of the 35nd International Electric Vehicle Symposium & Exhibition, Oslo, Norway, 11–15 June 2022. working paper or preprint. [Google Scholar]
- Ank, M.; Stock, S.; Wassiliadis, N.; Burger, T.; Daub, R.; Lienkamp, M. Single-Cell and Multi-Cell Characterization Data of a Production Defect Influence Analysis; TUM: Heidelberg, Germany, 2023. [Google Scholar]
- Ank, M.; Stock, S.; Wassiliadis, N.; Burger, T.; Daub, R.; Lienkamp, M. Influence analysis of production defects of lithium-ion cells using single-cell and multi-cell characterization. J. Energy Storage 2023, 62, 106938. [Google Scholar] [CrossRef]
- Ank, M.; Kröger, T.; Schreiber, M.; Lienkamp, M. Characterization data of 250 cylindrical lithium-ion cells. J. Energy Storage 2023, 66, 107430. [Google Scholar] [CrossRef]
- Ank, M.; Kröger, T.; Schreiber, M.; Lienkamp, M. Experimental analysis of lithium-ion cell procurement: Quality differences, correlations, and importance of cell characterization. J. Energy Storage 2023, 66, 107430. [Google Scholar] [CrossRef]
- Kollmeyer, P.; Vidal, C.; Naguib, M.; Skells, M. LG 18650HG2 Li-Ion Battery Data and Example Deep Neural Network xEV SOC Estimator Script. Available online: https://data.mendeley.com/datasets/cp3473x7xv/3 (accessed on 10 May 2023).
- Vidal, C.; Kollmeyer, P.; Chemali, E.; Emadi, A. Li-ion battery state of charge estimation using long short-term memory recurrent neural network with transfer learning. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Vidal, C.; Kollmeyer, P.; Naguib, M.; Malysz, P.; Gross, O.; Emadi, A. Robust xev battery state-of-charge estimator design using a feedforward deep neural network. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 2, 2872–2880. [Google Scholar] [CrossRef]
- Patil, P. Time Series Data of Battery Energy Storage System. Available online: https://ieee-dataport.org/documents/time-series-data-battery-energy-storage-system (accessed on 10 May 2023).
- Chowdhury, J.; Ozkan, N.; Goglio, P.; Hu, Y.; Varga, L.; McCabe, L. Data Underpinning Research Article “Techno-Environmental Analysis of Battery Storage for Grid Level Energy Services”. Available online: https://cord.cranfield.ac.uk/articles/dataset/Data_file_grid_storage_xlsx/12662681 (accessed on 10 May 2023).
- Chowdhury, J.I.; Balta-Ozkan, N.; Goglio, P.; Hu, Y.; Varga, L.; McCabe, L. Techno-environmental analysis of battery storage for grid level energy services. Renew. Sustain. Energy Rev. 2020, 131, 110018. [Google Scholar] [CrossRef]
- Wassiliadis, N.; Matthias Steinsträter, M.S.; Rosner, P.; Lorenzo Nicoletti, F.S.; Ank, M.; Teichert, O.; Wildfeuer, L.; Schneider, J.; Koch, A.; König, A.; et al. Electric Powertrain Data of a Volkswagen ID.3 during Real-World Driving Situations; TUM: Straubing, Germany, 2022. [Google Scholar] [CrossRef]
- White, C.; Thomspon, B.; Swan, L. Data for: Repurposed Electric Vehicle Battery Performance in Second-Life Electricity Grid Frequency Regulation Service. Available online: https://data.mendeley.com/datasets/sbh8pnpnmn/1 (accessed on 10 May 2023).
- White, C.; Thompson, B.; Swan, L. Repurposed electric vehicle battery performance in second-life electricity grid frequency regulation service. J. Energy Storage 2020, 28, 101278. [Google Scholar] [CrossRef]
- Reniers, J.M.; Mulder, G.; Howey, D.A. Oxford Energy Trading Battery Degradation Dataset. Available online: https://ora.ox.ac.uk/objects/uuid:9aae61af-2949-49f1-8ad5-6aea448979e5 (accessed on 10 May 2023).
- Reniers, J.M.; Mulder, G.; Howey, D.A. Unlocking extra value from grid batteries using advanced models. J. Power Sources 2021, 487, 229355. [Google Scholar] [CrossRef]
- Bills, A.; Sripad, S.; Fredericks, L.; Guttenberg, M.; Charles, D.; Frank, E.; Viswanathan, V. A battery dataset for electric vertical takeoff and landing aircraft. Sci. Data 2023, 10, 344. [Google Scholar] [CrossRef] [PubMed]
- LiBEIS. Available online: https://github.com/electrical-and-electronic-measurement/LiBEIS (accessed on 10 May 2023).
- Matlab-Simulink. Available online: https://www.mathworks.com/ (accessed on 10 May 2023).
- Twaice. Available online: https://www.twaice.com/ (accessed on 10 May 2023).
- Comsol. Available online: https://www.comsol.com/ (accessed on 10 May 2023).
- GT-Autolion. Available online: https://www.gtisoft.com/gt-autolion/ (accessed on 10 May 2023).
- Simcenter. Available online: https://plm.sw.siemens.com/en-US/simcenter/ (accessed on 10 May 2023).
- Amplabs. Available online: https://www.amplabs.ai/ (accessed on 10 May 2023).
- Energsoft. Available online: https://energsoft.com/ (accessed on 10 May 2023).
- Lininger, C.N.; Thai, T.; Juran, T.R.; Leland, E.S.; Sholklapper, T.Z. Voltaiq Data Format—A standard data format for collection of battery data to enable big data comparisons and analyses across the battery lifecycle. Front. Energy Res. 2022, 10, 1059154. [Google Scholar] [CrossRef]
- Voltaiq. Available online: https://www.voltaiq.com/ (accessed on 10 May 2023).
- Aionics. Available online: https://aionics.io/ (accessed on 10 May 2023).
Duration Considered (Days) | Energy Consumed (kWh) | Environmental Cost in France (kg eq) | Economic Cost (EUR) | |
---|---|---|---|---|
Equipment production | - 1 | - 1 | 19,000 2 | 60,000 |
Experiment | 11.5 | 231 | 14.7 3 | 48 |
Battery storage | 365 | 57.2 | 3.6 3 | 13 |
Data storage | 365 | 6.7 | 56 4 | 137 |
Repository Name | Number of Battery Datasets * | Link |
---|---|---|
4TU.ResearchData | 31 | [163] |
Battery Archive | 6 | [164] |
Data Matrio | 2 | [165] |
Dryad | 12 | [166] |
Mendeley Data | 909 | [167] |
Oxford | 37 | [168] |
Recherche Data Gouv | 2 | [169] |
TUM | 11 | [170] |
Zenodo | 580 | [171] |
Category | Information |
---|---|
Cell | Number, format, nominal capacity, chemistry (anode/cathode), charge cut-off/discharge cut-off, manufacturer, model, datasheet link |
Equipment | Cycler model, climatic chamber model, cell fixing, applied pressure, other equipment information |
Data | License, format, measured quantities, data sampling, files names and size |
Ageing specific | Temperature, depth of discharge, maximal/minimal SoC, maximal number of cycles, usage cycle types, current rate discharge/charge, cells initial/final spread, minimal SoH reached, calendar ageing share |
Characterisation specific | Capacity test (Y/N), temperature, current rate and profile discharge/charge, impedance test (Y/N), frequential (Y/N), frequency range, temporal (Y/N), current rate discharge/charge, measurement instant, low current test (Y/N), current rate discharge/charge, filter used |
Contact | Data owner, experimenters’ names, laboratory name and address, email |
Reference | Links to all relevant references |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassini, M.; Redondo-Iglesias, E.; Venet, P. Lithium–Ion Battery Data: From Production to Prediction. Batteries 2023, 9, 385. https://doi.org/10.3390/batteries9070385
Hassini M, Redondo-Iglesias E, Venet P. Lithium–Ion Battery Data: From Production to Prediction. Batteries. 2023; 9(7):385. https://doi.org/10.3390/batteries9070385
Chicago/Turabian StyleHassini, Marwan, Eduardo Redondo-Iglesias, and Pascal Venet. 2023. "Lithium–Ion Battery Data: From Production to Prediction" Batteries 9, no. 7: 385. https://doi.org/10.3390/batteries9070385
APA StyleHassini, M., Redondo-Iglesias, E., & Venet, P. (2023). Lithium–Ion Battery Data: From Production to Prediction. Batteries, 9(7), 385. https://doi.org/10.3390/batteries9070385