Detection of Brominated Plastics from E-Waste by Short-Wave Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. X-ray Fluorescence Analysis
2.2.2. SWIR Spectral Analysis
2.2.3. Experimental Procedure
3. Results and Discussion
3.1. X-ray Fluorescence Analysis
3.2. SWIR Spectral Analysis
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, X.; Mathews, J.A.; Li, J. Urban Mining of E-Waste is Becoming More Cost-Effective than Virgin Mining. Environ. Sci. Technol. 2018, 52, 4835–4841. [Google Scholar] [CrossRef]
- Robinson, B.H. E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 2009, 408, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-De-Los-Mozos, E.; Rentería-Bilbao, A.; Díaz-Martín, F. WEEE Recycling and Circular Economy Assisted by Collaborative Robots. Appl. Sci. 2020, 10, 4800. [Google Scholar] [CrossRef]
- Grigore, M.E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2017, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- PlasticsEurope. Plastics—The Facts 2020. Available online: https://www.plasticseurope.org/it/resources/publications/4312-plastics-facts-2020 (accessed on 26 July 2021).
- Haarman, A.; Magalini, F.; Courtois, J. Study on the Impacts of Brominated Flame Retardants on the Recycling of WEEE Plastics in Europe. Report by Sofies Group. 2020. Available online: https://www.bsef.com/news/sofiesreport/ (accessed on 16 August 2021).
- Grigorescu, R.M.; Grigore, M.D.; Iancu, L.; Ghioca, P.; Ion, R.-M. Waste Electrical and Electronic Equipment: A Review on the Identification Methods for Polymeric Materials. Recycling 2019, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Tostar, S.; Stenvall, E.; Foreman, M.R.S.J.; Boldizar, A. The Influence of Compatibilizer Addition and Gamma Irradiation on Mechanical and Rheological Properties of a Recycled WEEE Plastics Blend. Recycling 2016, 1, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Esposito, L.; Cafiero, L.; De Angelis, D.; Tuffi, R.; Ciprioti, S.V. Valorization of the plastic residue from a WEEE treatment plant by pyrolysis. Waste Manag. 2020, 112, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Makenji, K.; Savage, M. Mechanical methods of recycling plastics from WEEE. In Waste Electrical and Electronic Equipment (WEEE) Handbook; Goodship, V., Stevels, A., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 212–238. [Google Scholar] [CrossRef]
- Gill, R.; Hurley, S.; Brown, R.; Tarrant, D.; Dhaliwal, J.; Sarala, R.; Park, J.-S.; Patton, S.; Petreas, M. Polybrominated Diphenyl Ether and Organophosphate Flame Retardants in Canadian Fire Station Dust. Chemosphere 2020, 253, 126669. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Magalini, F.; Kuehr, R.; Maurer, C.; Ogilvie, S.; Poll, J. Review of Directive 2002/96 on Waste Electrical and Electronic Equipment (WEEE); United Nations University: Bonn, Germany, 2008. [Google Scholar]
- Hennebert, P.; Filella, M. WEEE plastic sorting for bromine essential to enforce EU regulation. Waste Manag. 2018, 71, 390–399. [Google Scholar] [CrossRef]
- Tohka, A.; Zevenhove, R. Brominated flame retardants—Brominated flame retardants A nuisance in thermal waste processing? In TMS 2002 Extraction and Processing Division Meeting on Recycling and Waste Treatment in Mineral and Metal Processing; Luleå University of Technology: Luleå, Sweden, 2002; Volume 2, pp. 753–763. [Google Scholar]
- Gómez, M.; Peisino, L.E.; Kreiker, J.; Gaggino, R.; Cappelletti, A.L.; Martín, S.E.; Uberman, P.M.; Positieri, M.; Raggiotti, B.B. Stabilization of hazardous compounds from WEEE plastic: Development of a novel core-shell recycled plastic aggregate for use in building materials. Constr. Build. Mater. 2019, 230, 116977. [Google Scholar] [CrossRef]
- Malliari, E.; Kalantzi, O.-I. Children’s exposure to brominated flame retardants in indoor environments—A review. Environ. Int. 2017, 108, 146–169. [Google Scholar] [CrossRef] [PubMed]
- Official Journal of the European Union. EC 2002. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003. The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment 2002. Available online: https://eur–lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:037:0019:0023:EN:PDF (accessed on 29 April 2020).
- Publications Office of the European Union. Directive 2011/65/Eu of the European Parliament and of the Council of 8 June 2011 on the Restriction of the Use of Certain Hazardous Substances in ELECTRICAL and electronic Equipment; Publications Office of the European Union: Luxembourg, 2012; Volume 54, pp. 88–110. [Google Scholar] [CrossRef]
- Puype, F.; Samsonek, J.; Knoop, J.; Egelkraut-Holtus, M.; Ortlieb, M. Evidence of waste electrical and electronic equipment (WEEE) relevant substances in polymeric food-contact articles sold on the European market. Food Addit. Contam. Part A 2015, 32, 410–426. [Google Scholar] [CrossRef]
- Samsonek, J.; Puype, F. Occurrence of brominated flame retardants in black thermo cups and selected kitchen utensils purchased on the European market. Food Addit. Contam. Part A 2013, 30, 1976–1986. [Google Scholar] [CrossRef]
- Schecter, A.; Szabo, D.T.; Miller, J.; Gent, T.L.; Malik-Bass, N.; Petersen, M.; Paepke, O.; Colacino, J.A.; Hynan, L.S.; Harris, T.R.; et al. Hexabromocyclododecane (HBCD) Stereoisomers in U.S. Food from Dallas, Texas. Environ. Health Perspect. 2012, 120, 1260–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Committee for Electrotechnical Standardization. CLC/TS 50625–3–1. Requirements for Collection, Logistics and Processing for Waste Electrical and Electronic Equipment (WEEE)—Part 3–1: Specifications for Depollution; CENELEC: Brussels, Belgium, 2015. [Google Scholar]
- Adam, A.M.; Altalhi, T.A.; El-Megharbel, S.M.; Saad, H.A.; Refat, M.S. Using a Modified Polyamidoamine Fluorescent Dendrimer for Capturing Environment Polluting Metal Ions Zn2+, Cd2+, and Hg2+: Synthesis and Characterizations. Crystals 2021, 11, 92. [Google Scholar] [CrossRef]
- Fh–ICT. High Quality Plastic Materials from Electronic Wastes by use of Combined Identification Methods and New Handling Technologies. In COMBIDENT Final Technical Report, EU Contract No BRPR–CT98–0778, UNDERTAKEN by the Fraunhofer; Institut für Chemische Technologie: Pfinztal, Germany, 2001. [Google Scholar]
- Bonifazi, G.; Capobianco, G.; Palmieri, R.; Serranti, S. Hyperspectral imaging applied to the waste recycling sector. Spectrosc. Eur. 2019, 31, 8–11. [Google Scholar]
- Bonifazi, G.; Gasbarrone, R.; Serranti, S. Near InfraRed–based hyperspectral imaging approach for secondary raw materials processing in solid waste sector. In Proceedings of the UBT International Conference, Pristina, Kosovo, 25–27 October 2019; ISBN 978-9951-550-19-2. [Google Scholar] [CrossRef]
- Geladi, P.; Grahn, H.; Burger, J. Multivariate Images, Hyperspectral Imaging: Background and equipment. In Techniques and Applications of Hyperspectral Image Analysis; Grahn, H., Geladi, P., Eds.; John Wiley & Sons: West Sussex, UK, 2007; pp. 1–15. [Google Scholar]
- Bonifazi, G.; Gasbarrone, R.; Serranti, S. Characterization of printed circuit boards from e–waste by products for copper beneficiation. In Proceedings of the ECOMONDO 2018, Rimini, Italy, 6–9 November 2018; pp. 65–69. [Google Scholar]
- Bonifazi, G.; Gasbarrone, R.; Palmieri, R.; Serranti, S. Plastic identification from end of life flat monitors by hyperspectral imaging methods. In Proceedings of the Sardinia 2019: 17th International Waste Management and Landfill Symposium, Forte Village, Cagliari, Italy, 30 September–4 October 2019. [Google Scholar]
- Bonifazi, G.; Gasbarrone, R.; Palmieri, R.; Serranti, S. Near infrared hyperspectral imaging-based approach for end-of-life flat monitors recycling. Automatisierungstechnik 2020, 68, 265–276. [Google Scholar] [CrossRef]
- Bonifazi, G.; Fiore, L.; Hennebert, P.; Serranti, S. An Efficient Strategy Based on Hyperspectral Imaging for Brominated Plastic Waste Sorting in a Circular Economy Perspective. In Advances in Polymer Processing; Hopmann, C., Dahlmann, R., Eds.; Springer Nature: Basingstoke, UK, 2020; pp. 14–27. [Google Scholar] [CrossRef]
- Palmieri, R.; Bonifazi, G.; Serranti, S. Recycling–oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging. Waste Manag. 2014, 34, 2120–2130. [Google Scholar] [CrossRef]
- Amigo, J.M.; Babamoradi, H.; Elcoroaristizabal, S. Hyperspectral image analysis. A tutorial. Anal. Chim. Acta 2015, 896, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Bonifazi, G.; Capobianco, G.; Serranti, S. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 115–122. [Google Scholar] [CrossRef]
- Caballero, D.; Bevilacqua, M.; Amigo, J.M. Application of hyperspectral imaging and chemometrics for classifying plastics with brominated flame retardants. J. Spectr. Imaging 2019, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Leitner, R.; Mcgunnigle, G.; Kraft, M.; De Biasio, M.; Rehrmann, V.; Balthasar, D. Real-time detection of flame-retardant additives in polymers and polymer blends with NIR imaging spectroscopy.Advanced Environmental, Chemical, and Biological Sensing Technologies VI. Proc. SPIE 2009, 7312, 73120. [Google Scholar] [CrossRef]
- Schlummer, M. Recycling of Postindustrial and Postconsumer Plastics Containing Flame Retardants. In Polymer Green Flame Retardants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 869–889. [Google Scholar] [CrossRef]
- Serranti, S.; Luciani, V.; Bonifazi, G.; Hu, B.; Rem, P.C. An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag. 2015, 35, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Serranti, S.; Fiore, L.; Bonifazi, G.; Takeshima, A.; Takeuchi, H.; Kashiwada, S. Microplastics characterization by hyperspectral imaging in the SWIR range. Proc. SPIE 2019, 11197, 1119710. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Yao, L.; Xu, Z. Auto-sorting commonly recovered plastics from waste household appliances and electronics using near-infrared spectroscopy. J. Clean. Prod. 2020, 246, 118732. [Google Scholar] [CrossRef]
- ASD Inc. FieldSpec® 4 User Manual, ASD Document 600979, Rev. D; ASD Inc.: Falls Church, VA, USA, 2015. [Google Scholar]
- ASD Inc. RS3™ User Manual, ASD Document 600545, Rev. E; ASD Inc.: Falls Church, VA, USA, 2008. [Google Scholar]
- Gasbarrone, R. Gasby90/FieldSpec4_Import3 (v.3.1); Zenodo: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Rinnan, A.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Beebe, K.R.; Pell, R.J.; Seasholtz, M.B. Chemometrics: A Practical Guide; Wiley–Interscience: Hoboken, NJ, USA, 1998. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemometr. Intell. Lab. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Wise, B.; Gallagher, N.; Bro, R.; Shaver, J.; Windig, W.; Koch, R. Chemometrics Tutorial for PLS_Toolbox and Solo; Eigenvector Research Inc.: Wenatchee, WA, USA, 2006. [Google Scholar]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2005, 27, 861–874. [Google Scholar] [CrossRef]
- Ballabio, D.; Todeschini, R. Multivariate Classification for Qualitative Analysis. In Infrared Spectroscopy for Food Quality Analysis and Control; Elsevier: Amsterdam, The Netherlands, 2009; pp. 83–104. [Google Scholar]
- Silva, E.J.; Britto, A.S.; Oliveira, L.S.; Enembreck, F.; Sabourin, R.; Koerich, A.L. A two–step cascade classification method. In Proceedings of the International Conference on Neural Networks (IJCNN’2017), Anchorage, AK, USA, 14–19 May 2017; pp. 573–580. [Google Scholar]
- Workman, J., Jr.; Weyer, L. Practical Guide and Spectral Atlas for Interpretive Near–Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Stuart, B. Infrared Spectroscopy: Fundamentals and Applications. In Analytical Techniques in the Sciences (AnTS); John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
Sample ID | Color | Thickness (mm) | Weight (g) | Sample ID | Color | Thickness (mm) | Weight (g) |
---|---|---|---|---|---|---|---|
E2 | White | 3 | 26.26 | E36 | White | 3 | 7.18 |
E4 | Grey | 2.5 | 4.2 | E38 | White | 3 | 11.45 |
E7 | Grey | 4 | 5.41 | E39 | Grey | 3 | 5.19 |
E8 | White | 3 | 5.32 | E40 | White | 3 | 8.75 |
E11 | White | 4 | 3.33 | E41 | White | 2 | 2.79 |
E12 | White | 3.5 | 4.18 | E42 | Grey | 3 | 4.7 |
E14 | Grey | 3 | 10.22 | E46 | White | 2 | 3.18 |
E17 | White | 3 | 6.66 | E47 | White | 3 | 4.93 |
E18 | Grey | 3 | 4.63 | E49 | White | 4 | 5.39 |
E19 | White | 3 | 12.9 | E51 | White | 3 | 8.53 |
E20 | Grey | 3 | 20.46 | E52 | White | 3 | 4.18 |
E23 | White | 4 | 35.13 | E54 | Grey | 3 | 7.13 |
E24 | White | 2 | 8.12 | E55 | Grey | 3 | 2.61 |
E25 | White | 3 | 6.84 | E56 | Grey | 3 | 6.43 |
E26 | White | 3 | 13.59 | E57 | Blue | 3 | 5.27 |
E29 | Grey | 2 | 4.01 | E58 | White | 3 | 14.61 |
E31 | White | 3 | 25.23 | E59 | White | 3 | 11.6 |
E34 | White | 3 | 4.27 | E60 | Grey | 2 | 4.74 |
Devices Optical and Technical Characteristics | Equipment | |
---|---|---|
ASD FieldSpec® 4 Standard-Res | SisuCHEMATM XL Chemical Imaging Workstation | |
Operation mode | Reflectance probe | High speed push-broom hyperspectral |
Spectral range | 350–2500 nm (investigated in this study: 1000–2500 nm) | 1000–2500 nm |
Spectral sampling—pixel | 1.4 nm at 350–1000 nm, 1.1 nm at 1001–2500 nm | 6.3 nm |
Spectral resolution | 3 nm at 700 nm, 10 nm at 1400–2100 nm | 10 nm |
Field of view | 1 cm2 | 50 mm (with a 31 mm lens) |
Spatial pixels/line | - | 384 pixels |
Illumination | Contact probe with spot size of 10 mm | Diffuse line illumination unit |
Channels—spectral bands | 2151 (investigated in this study: 1501) | 256 |
Sample ID | Br (mg/kg) | Br Content According to CENELEC | Sample ID | Br (mg/kg) | Br Content According to CENELEC |
---|---|---|---|---|---|
E7 | 123,100 | “High Br content” | E56 | 66,400 | “High Br content” |
E38 | 97,700 | “High Br content” | E11 | 61,000 | “High Br content” |
E18 | 93,700 | “High Br content” | E2 | 60,800 | “High Br content” |
E25 | 86,600 | “High Br content” | E60 | 28,400 | “High Br content” |
E26 | 84,500 | “High Br content” | E4 | 27,600 | “High Br content” |
E52 | 83,000 | “High Br content” | E20 | 27,200 | “High Br content” |
E12 | 82,500 | “High Br content” | E14 | 26,400 | “High Br content” |
E17 | 82,300 | “High Br content” | E29 | 16,100 | “High Br content” |
E36 | 82,300 | “High Br content” | E40 | 8450 | “High Br content” |
E58 | 81,000 | “High Br content” | E57 | 35 | “Low Br content” |
E59 | 80,700 | “High Br content” | E47 | 28 | “Low Br content” |
E41 | 80,500 | “High Br content” | E31 | 11 | “Low Br content” |
E49 | 76,800 | “High Br content” | E34 | 11 | “Low Br content” |
E23 | 75,900 | “High Br content” | E55 | 9 | “Low Br content” |
E24 | 75,900 | “High Br content” | E46 | 8 | “Low Br content” |
E8 | 75,200 | “High Br content” | E42 | 5 | “Low Br content” |
E19 | 75,000 | “High Br content” | E54 | 4 | “Low Br content” |
E51 | 72,400 | “High Br content” | E39 | 3 | “Low Br content” |
Model Phase (Dataset) | Class | Sensitivity | Specificity | Precision | Accuracy | Class Error |
---|---|---|---|---|---|---|
Calibration (training set) | High Br content | 0.833 | 1.000 | 1.000 | 0.873 | 0.083 |
High Br content | 1.000 | 0.833 | 0.652 | 0.873 | 0.083 | |
Cross–validation (training set) | High Br content | 0.833 | 0.933 | 0.976 | 0.857 | 0.117 |
High Br content | 0.933 | 0.833 | 0.636 | 0.857 | 0.117 | |
Prediction (validation set) | High Br content | 0.857 | 1.000 | 1.000 | 0.900 | 0.071 |
High Br content | 1.000 | 0.857 | 0.750 | 0.900 | 0.071 |
Model Phase (Dataset) | Class | Sensitivity | Specificity | Precision | Accuracy | Class Error |
---|---|---|---|---|---|---|
Calibration (training set) | High Br content | 0.900 | 0.833 | 0.947 | 0.885 | 0.133 |
Low Br content | 0.833 | 0.900 | 0.714 | 0.885 | 0.133 | |
Cross–validation (training set) | High Br content | 0.890 | 0.833 | 0.947 | 0.877 | 0.138 |
Low Br content | 0.833 | 0.890 | 0.694 | 0.877 | 0.138 | |
Prediction (average spectra; validation set-) | High Br content | 0.886 | 1.000 | 1.000 | 0.920 | 0.057 |
Low Br content | 1.000 | 0.886 | 0.789 | 0.920 | 0.057 | |
Prediction (imaging; validation set-) | High Br content | 0.950 | 0.951 | 0.951 | 0.950 | 0.050 |
Low Br content | 0.951 | 0.950 | 0.995 | 0.950 | 0.050 | |
Prediction (imaging; global set) | High Br content | 0.881 | 0.932 | 0.928 | 0.906 | 0.094 |
Low Br content | 0.932 | 0.881 | 0.886 | 0.906 | 0.094 |
Device | Model Phase (Dataset) | Class | Sensitivity | Specificity | Precision | Accuracy | Class Error |
---|---|---|---|---|---|---|---|
SisuCHEMA XL™ | Training (training set) | ABS | 0.999 | 0.999 | 0.999 | 0.999 | 0.001 |
PS | 0.999 | 0.999 | 0.999 | 0.999 | 0.001 | ||
Cross-validation (training set) | ABS | 0.999 | 0.999 | 0.999 | 0.999 | 0.001 | |
PS | 0.999 | 0.999 | 0.999 | 0.999 | 0.001 | ||
ASD FieldSpec® 4 Standard Res | Prediction (global set) | ABS | 0.950 | 0.638 | 0.766 | 0.811 | 0.206 |
PS | 0.638 | 0.950 | 0.911 | 0.811 | 0.206 | ||
SisuCHEMA XL™ | Prediction (global set; average spectra) | ABS | 1.000 | 0.713 | 0.813 | 0.872 | 0.144 |
PS | 0.713 | 1.000 | 1.000 | 0.872 | 0.144 | ||
Prediction (global set; imaging) | ABS | 0.985 | 0.682 | 0.756 | 0.833 | 0.167 | |
PS | 0.682 | 0.985 | 0.978 | 0.833 | 0.167 |
Classification Model | Device | Dataset | Recognition (%) | Error (%) |
---|---|---|---|---|
Br content | ASD FieldSpec® 4 Standard-Res | Training set | 88.46 | 11.54 |
Validation set | 90.00 | 10.00 | ||
SisuCHEMA XL™ (average spectra) | Training set | 88.46 | 11.54 | |
Validation set | 90.00 | 10.00 | ||
SisuCHEMA XL™ (imaging) | Global set | 88.89 | 11.11 | |
Validation set | 90.00 | 10.00 | ||
Polymer identification | ASD FieldSpec® 4 Standard-Res | Global set | 80.56 | 19.44 |
SisuCHEMA XL™ (average spectra) | Global set | 88.89 | 11.11 | |
SisuCHEMA XL™ (imaging) | Global set | 88.89 | 11.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonifazi, G.; Fiore, L.; Gasbarrone, R.; Hennebert, P.; Serranti, S. Detection of Brominated Plastics from E-Waste by Short-Wave Infrared Spectroscopy. Recycling 2021, 6, 54. https://doi.org/10.3390/recycling6030054
Bonifazi G, Fiore L, Gasbarrone R, Hennebert P, Serranti S. Detection of Brominated Plastics from E-Waste by Short-Wave Infrared Spectroscopy. Recycling. 2021; 6(3):54. https://doi.org/10.3390/recycling6030054
Chicago/Turabian StyleBonifazi, Giuseppe, Ludovica Fiore, Riccardo Gasbarrone, Pierre Hennebert, and Silvia Serranti. 2021. "Detection of Brominated Plastics from E-Waste by Short-Wave Infrared Spectroscopy" Recycling 6, no. 3: 54. https://doi.org/10.3390/recycling6030054
APA StyleBonifazi, G., Fiore, L., Gasbarrone, R., Hennebert, P., & Serranti, S. (2021). Detection of Brominated Plastics from E-Waste by Short-Wave Infrared Spectroscopy. Recycling, 6(3), 54. https://doi.org/10.3390/recycling6030054