Recycling of Waste Fiber-Reinforced Plastic Composites: A Patent-Based Analysis
Abstract
:1. Introduction
2. Theoretical Background
2.1. Recycling Processes
2.1.1. Mechanical Recycling
2.1.2. Thermal Recycling
2.1.3. Chemical Recycling
2.2. Advantages and Drawbacks of Recycling Processes
2.3. Patent as a Source of Technological Information
3. Methodology
3.1. Time Series Analysis
3.2. Patent Trend Analysis
3.3. Citation Analysis
3.4. Workflow of the Study
4. Empirical Results and Discussion
4.1. Time Series Analysis
4.2. Patent Trend Analysis
4.3. Citation Analysis
4.4. Glimpses into Future Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Search Keywords | |
---|---|
Overall patent pool | Fiber-reinforced plastic |
Fiber-reinforced polymer | |
CFRP | |
GFRP | |
Recycling | |
Recovering | |
Reclaiming |
Search Keywords | |
---|---|
Mechanical recycling | Mechanical |
Pulverizing | |
Powdering | |
Grinding | |
Shredding | |
Crushing | |
Thermal recycling | Thermal |
Thermic | |
Pyrolysis | |
Fluidized bed | |
Chemical recycling | Chemical |
Solvolysis | |
Hydrolysis | |
Glycolysis | |
Acid | |
Solvent |
References
- Yao, S.S.; Jin, F.L.; Rhee, K.Y.; Hui, D.; Park, S.J. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos. Part B Eng. 2018, 142, 241–250. [Google Scholar] [CrossRef]
- Bachmann, J.; Hidalgo, C.; Bricout, S. Environmental analysis of innovative sustainable composites with potential use in aviation sector—A life cycle assessment review. Sci. China Technol. Sci. 2017, 60, 1301–1317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chevali, V.S.; Wang, H.; Wang, C.H. Current status of carbon fibre and carbon fibre composites recycling. Compos. Part B Eng. 2020, 193, 108053. [Google Scholar] [CrossRef]
- Lefeuvre, A.; Garnier, S.; Jacquemin, L.; Pillain, B.; Sonnemann, G. Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050. Resour. Conserv. Recycl. 2017, 125, 264–272. [Google Scholar] [CrossRef]
- Sauer, M.; Kühnel, M.; Elmar, W.; Mathes, V. Composites Market Report 2018—Market Developments, Trends, Outlook and Challenges; Carbon Composites: Augsburg, Germany, 2018. [Google Scholar]
- Pimenta, S.; Pinho, S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Manag. 2011, 31, 378–392. [Google Scholar] [CrossRef] [Green Version]
- McConnell, V.P. Launching the carbon fibre recycling industry. Reinf. Plast. 2010, 54, 33–37. [Google Scholar] [CrossRef]
- Bashir, S.T.; Yang, L.; Anderson, R.; Tang, P.L.; Liggat, J.J.; Thomason, J.L. A simple chemical approach to regenerating the strength of thermally damaged glass fibre. Compos. Part A Appl. Sci. Manuf. 2017, 102, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Pickering, S.J. Recycling technologies for thermoset composite materials-current status. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Yang, Y.; Boom, R.; Irion, B.; Van Heerden, D.J.; Kuiper, P.; De Wit, H. Recycling of composite materials. Chem. Eng. Process. Process Intensif. 2012, 51, 53–68. [Google Scholar] [CrossRef]
- Rani, M.; Choudhary, P.; Krishnan, V.; Zafar, S. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos. Part B 2021, 215, 108768. [Google Scholar] [CrossRef]
- Mativenga, P.T.; Sultan, A.A.M.; Agwa-Ejon, J.; Mbohwa, C. Composites in a Circular Economy: A Study of United Kingdom and South Africa. Procedia CIRP 2017, 61, 691–696. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar]
- Ribeiro, M.C.S.; Fiúza, A.; Ferreira, A.; Dinis, M.D.L.; Meira Castro, A.C.; Meixedo, J.P.; Alvim, M.R. Recycling approach towards sustainability advance of composite materials’ industry. Recycling 2016, 1, 178. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, D.; Sabitha, S.; Nagpal, R.; Mattas, N. Landscape Analysis of Patent Dataset. J. Intell. Prop. Rights 2016, 21, 221–225. [Google Scholar]
- Pimenta, S.; Pinho, S.T. Recycling of Carbon Fibers. In Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 269–283. ISBN 9780123965066. [Google Scholar]
- Ribeiro, M.C.S.; Meira-Castro, A.C.; Silva, F.G.; Santos, J.; Meixedo, J.P.; Fiúza, A.; Dinis, M.L.; Alvim, M.R. Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: A case study regarding GFRP pultrusion wastes. Resour. Conserv. Recycl. 2015, 104, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.; Savage, L.; Ghita, O.R.; Evans, K.E. Sheet moulding compound (SMC) from carbon fibre recyclate. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1232–1237. [Google Scholar] [CrossRef]
- Pickering, S.J.; Kelly, R.M.; Kennerley, J.R.; Rudd, C.D.; Fenwick, N.J. A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites. Compos. Sci. Technol. 2000, 60, 509–523. [Google Scholar] [CrossRef]
- Giorgini, L.; Benelli, T.; Mazzocchetti, L.; Leonardi, C.; Zattini, G.; Minak, G.; Dolcini, E.; Cavazzoni, M.; Montanari, I.; Tosi, C. Recovery of carbon fibers from cured and uncured carbon fiber reinforced composites wastes and their use as feedstock for a new composite production. Polym. Compos. 2015, 36, 1084–1095. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Prabhakara, H.M.; Bramer, E.A.; Dierkes, W.; Akkerman, R.; Brem, G. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 2018, 136, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Dang, W.; Kubouchi, M.; Sembokuya, H.; Tsuda, K. Chemical recycling of glass fiber reinforced epoxy resin cured with amine using nitric acid. Polym. Guildf. 2005, 46, 1905–1912. [Google Scholar] [CrossRef]
- Jiang, G.; Pickering, S.J.; Lester, E.H.; Turner, T.A.; Wong, K.H.; Warrior, N.A. Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol. Compos. Sci. Technol. 2009, 69, 192–198. [Google Scholar] [CrossRef]
- Marsh, G. Carbon recycling: A soluble problem. Reinf. Plast. 2009, 53, 22–27. [Google Scholar] [CrossRef]
- Gosau, J.-M.; Wesley, T.F.; Allred, R.E. Integrated Composite Recycling Process. In Proceedings of the 38th SAMPE Technical Conference, Dallas, TX, USA, 7-9 November 2006. [Google Scholar]
- Meyer, L.O.; Schulte, K.; Grove-Nielsen, E. CFRP-Recycling Following a Pyrolysis Route: Process Optimization and Potentials. J. Compos. Mater. 2009, 43, 1121–1132. [Google Scholar] [CrossRef] [Green Version]
- Poulikakos, L.D.; Papadaskalopoulou, C.; Hofko, B.; Gschösser, F.; Cannone Falchetto, A.; Bueno, M.; Arraigada, M.; Sousa, J.; Ruiz, R.; Petit, C.; et al. Harvesting the unexplored potential of European waste materials for road construction. Resour. Conserv. Recycl. 2017, 116, 32–44. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, L.; Huang, Y.; Du, J. Recycling of carbon/epoxy composites. J. Appl. Polym. Sci. 2004, 94, 1912–1916. [Google Scholar] [CrossRef]
- OECD Patent Statistics Manual; OECD Publishing: Paris, France, 2009; ISBN 978-92-64-05412-7.
- Tseng, Y.H.; Lin, C.J.; Lin, Y.I. Text mining techniques for patent analysis. Inf. Process. Manag. 2007, 43, 1216–1247. [Google Scholar] [CrossRef]
- Asche, G. “80% of technical information found only in patents”—Is there proof of this? World Pat. Inf. 2017, 48, 16–28. [Google Scholar] [CrossRef]
- Campbell, R.S. Patent trends as a technological forecasting tool. World Pat. Inf. 1983, 5, 137–143. [Google Scholar] [CrossRef]
- Abbas, A.; Zhang, L.; Khan, S.U. A literature review on the state-of-the-art in patent analysis. World Pat. Inf. 2014, 37, 3–13. [Google Scholar] [CrossRef]
- Grant, E.; Van den Hof, M.; Gold, E.R. Patent landscape analysis: A methodology in need of harmonized standards of disclosure. World Pat. Inf. 2014, 39, 3–10. [Google Scholar] [CrossRef]
- Widodo, A.; Fanani, M.I.; Budi, I. Enriching Time Series Datasets using Nonparametric Kernel Regression to Improve Forecasting Accuracy. In Proceedings of the 2011 International Conference on Advanced Computer Science and Information Systems, Jakarta, Indonesia, 17–18 December 2011; pp. 227–232. [Google Scholar]
- Yoon, J.; Park, Y.; Kim, M.; Lee, J.; Lee, D. Tracing evolving trends in printed electronics using patent information. J. Nanopart. Res. 2014, 16, 1–15. [Google Scholar] [CrossRef]
- Bengisu, M.; Nekhili, R. Forecasting emerging technologies with the aid of science and technology databases. Technol. Forecast. Soc. Chang. 2006, 73, 835–844. [Google Scholar] [CrossRef]
- Cioffi, D.F. A tool for managing projects: An analytic parameterization of the S-curve. Int. J. Proj. Manag. 2005, 23, 215–222. [Google Scholar] [CrossRef]
- Haupt, R.; Kloyer, M.; Lange, M. Patent indicators for the technology life cycle development. Res. Policy 2007, 36, 387–398. [Google Scholar] [CrossRef]
- Mann, D. Integrating The World’s Most Effective Creative Design Strategies. In Proceedings of the DRS2002—Common Ground, London, UK, 5-7 September 2002. [Google Scholar]
- Ernst, H. The Use of Patent Data for Technological Forecasting: The Diffusion of CNC-Technology in the Machine Tool Industry. Small Bus. Econ. 1997, 9, 361–381. [Google Scholar] [CrossRef]
- Ranaei, S.; Karvonen, M.; Suominen, A.; Kässi, T. Forecasting emerging technologies of low emission vehicle. In Proceedings of the Proceedings of PICMET ′14 Conference: Portland International Center for Management of Engineering and Technology, Infrastructure and Service Integration, Kanazawa, Japan, 27–31 July 2014; pp. 2924–2937. [Google Scholar]
- Jaffe, A.B.; De Rassenfosse, G. Patent Citation Data in Social Science Research : Overview and Best Practices. In Research Handbook on the Economics of Intellectual Property Law; Edward Elgar Publishing: Cheltenham, UK, 2019; Volume 68, pp. 1360–1374. [Google Scholar] [CrossRef]
- Karvonen, M.; Kapoor, R.; Uusitalo, A.; Ojanen, V. Technology competition in the internal combustion engine waste heat recovery: A patent landscape analysis. J. Clean. Prod. 2016, 112, 3735–3743. [Google Scholar] [CrossRef]
- Kumar, S.; Ugirashebuja, E.; Carnwath, L.; Tamminen, T.; Boyd, D. Environmental Rule of Law: First Global Report; UN Environment: Nairobi, Kenya, 2019. [Google Scholar]
- Brochado, A.; Teiga, N.; Oliveira-Brochado, F. The ecological conscious consumer behaviour: Are the activists different? Int. J. Consum. Stud. 2017, 41, 138–146. [Google Scholar] [CrossRef]
- Ali, A.; Xiaoling, G.; Ali, A.; Sherwani, M.; Muneeb, F.M. Customer motivations for sustainable consumption: Investigating the drivers of purchase behavior for a green-luxury car. Bus. Strateg. Environ. 2019, 28, 833–846. [Google Scholar] [CrossRef]
- Miranda, J.; Pérez-Rodríguez, R.; Borja, V.; Wright, P.K.; Molina, A. Sensing, smart and sustainable product development (S3 product) reference framework. Int. J. Prod. Res. 2019, 57, 4391–4412. [Google Scholar] [CrossRef]
- Ellringmann, T.; Wilms, C.; Warnecke, M.; Seide, G.; Gries, T. Carbon fiber production costing: A modular approach. Text. Res. J. 2016, 86, 178–190. [Google Scholar] [CrossRef]
- Watts, R.J.; Porter, A.L. R and D cluster quality measures and technology maturity. Technol. Forecast. Soc. Chang. 2003, 70, 735–758. [Google Scholar] [CrossRef]
- Dyllick, T.; Muff, K. Clarifying the Meaning of Sustainable Business: Introducing a Typology From Business-as-Usual to True Business Sustainability. Organ. Environ. 2016, 29, 156–174. [Google Scholar] [CrossRef] [Green Version]
- Pilkington, A.; Dyerson, R.; Tissier, O. The electric vehicle: Patent data as indicators of technological development. World Pat. Inf. 2002, 24, 5–12. [Google Scholar] [CrossRef]
Advantages | Drawbacks | |||
---|---|---|---|---|
Mechanical recycling | Relatively simple | [9] | Decrease in mechanical properties | [9,17] |
Environmentally friendly | [6] | Recovery of both fibers and resin as powders and coarse | [9,18] | |
Few applications for remanufacturing | [6] | |||
Thermal recycling | High mechanical properties | [6,20] | Fiber quality depends on process parameters | [26,27] |
Environmentally friendly | [6] | Recycled fibers in fluffy form | [9] | |
With pyrolysis, production of oil from the polymer matrix | [9] | With pyrolysis, possibility of char on fiber surface | [26] | |
With fluidized bed, clean fiber surface and good tolerance to contaminated materials | [9] | With fluidized bed, no recovery of polymer matrix and greater decrease in fibers strength and length | [13,19] | |
Chemical recycling | Recovery of both fibers and resin (the latter as monomers) | [10] | Generally, not environmentally friendly | [13,28] |
High mechanical properties and fiber length | [6] | Low tolerance to contaminated materials | [10] | |
Reduction in bonding between fibers and new resin | [23] |
Patent Analysis Type | Description | Techniques |
---|---|---|
Technology roadmap | To provide a commercial prospect and to understand perspectives, prior and current use for the considered technology | Time series analysis |
Patent trend analysis | ||
Citation analysis | ||
Originality/R&D support | To compare a new patent with an existing one in a specific technical domain | Infringement analysis |
Novelty analysis | ||
White spot analysis | ||
To analyze the perspectives of key technologies, research, development trends, and changes for a specific technical field | IPC analysis | |
Technology classification | Family analysis | |
Cluster analysis | ||
Technology distribution | To provide information about technology concerning the main technology domain, competitors, assignees, etc. | Technology distribution by country |
Association rule analysis | ||
Assignee analysis | ||
Rival/competitor analysis |
Share of Upper Limit | Stage of Technology Life Cycle |
---|---|
Yt/L ≤ 10% | Birth |
10% < Yt/L ≤ 50% | Growth |
50% < Yt/L < 90% | Maturity |
Yt/L ≥ 90% | Saturation |
Actors | Mechanical Recycling | Thermal Recycling | Chemical Recycling |
---|---|---|---|
Research | 8.4% | 15.0% | 26.7% |
Individuals | 10.2% | 9.8% | 6.6% |
Manufacture of chemicals and chemical products | 14.8% | 13.8% | 22.5% |
Manufacture of rubber and plastic products | 6.4% | 6.9% | 4.0% |
Manufacture of electrical equipment | 3.8% | 7.1% | 13.0% |
Manufacture of motor vehicles, trailers, and semi-trailers | 10.1% | 7.1% | 3.1% |
Construction of buildings | 6.6% | 2.7% | - |
Other | 39.7% | 37.6% | 24.1% |
Mechanical | Thermal | Chemical | Other | Average Number of Citations Per Patent | |
---|---|---|---|---|---|
Mechanical | 3.3% | 3.0% | 3.1% | 90.5% | 5.9 |
Thermal | 1.4% | 11.4% | 5.6% | 81.6% | 5.6 |
Chemical | 0.9% | 2.8% | 14.0% | 82.3% | 6.6 |
Year | Mechanical | Thermal | Chemical | Other | |
1991 | 1995 | 2.1% | 1.1% | 1.1% | 95.8% |
1996 | 2000 | 5.3% | 2.7% | 0.7% | 91.3% |
2001 | 2005 | 3.6% | 3.2% | 1.6% | 91.6% |
2006 | 2010 | 2.5% | 4.1% | 4.1% | 89.3% |
2011 | 2015 | 2.6% | 2.2% | 5.5% | 89.7% |
2016 | 2020 | 3.7% | 5.2% | 4.4% | 86.7% |
Year | Mechanical | Thermal | Chemical | Other | |
1991 | 1995 | 0.5% | 2.2% | 1.1% | 96.2% |
1996 | 2000 | 0.0% | 3.1% | 2.1% | 94.8% |
2001 | 2005 | 0.0% | 4.8% | 4.3% | 90.9% |
2006 | 2010 | 1.9% | 13.1% | 6.3% | 78.8% |
2011 | 2015 | 1.6% | 11.6% | 3.3% | 83.5% |
2016 | 2020 | 2.9% | 22.6% | 13.6% | 60.9% |
Year | Mechanical | Thermal | Chemical | Other | |
1991 | 1995 | 0.4% | 0.8% | 1.2% | 97.6% |
1996 | 2000 | 0.0% | 3.3% | 1.6% | 95.1% |
2001 | 2005 | 0.4% | 0.9% | 11.4% | 87.3% |
2006 | 2010 | 1.1% | 0.8% | 15.6% | 82.5% |
2011 | 2015 | 1.0% | 5.4% | 15.9% | 77.7% |
2016 | 2020 | 1.6% | 4.4% | 23.0% | 71.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombo, B.; Gaiardelli, P.; Dotti, S.; Caretto, F.; Coletta, G. Recycling of Waste Fiber-Reinforced Plastic Composites: A Patent-Based Analysis. Recycling 2021, 6, 72. https://doi.org/10.3390/recycling6040072
Colombo B, Gaiardelli P, Dotti S, Caretto F, Coletta G. Recycling of Waste Fiber-Reinforced Plastic Composites: A Patent-Based Analysis. Recycling. 2021; 6(4):72. https://doi.org/10.3390/recycling6040072
Chicago/Turabian StyleColombo, Beatrice, Paolo Gaiardelli, Stefano Dotti, Flavio Caretto, and Gaetano Coletta. 2021. "Recycling of Waste Fiber-Reinforced Plastic Composites: A Patent-Based Analysis" Recycling 6, no. 4: 72. https://doi.org/10.3390/recycling6040072
APA StyleColombo, B., Gaiardelli, P., Dotti, S., Caretto, F., & Coletta, G. (2021). Recycling of Waste Fiber-Reinforced Plastic Composites: A Patent-Based Analysis. Recycling, 6(4), 72. https://doi.org/10.3390/recycling6040072