A Synthesis of Express Analytic Hierarchy Process (EAHP) and Partial Least Squares-Structural Equations Modeling (PLS-SEM) for Sustainable Construction and Demolition Waste Management Assessment: The Case of Malaysia
Abstract
:1. Introduction
2. Literature Review
2.1. Sustainability Concept in CDWM
2.2. Environmental Aspect of CDWM
2.3. Economic Aspect of CDWM
2.4. Social Aspect of CDWM
2.5. Administrative Aspect of CDWM
3. Conceptual Framework
4. Materials and Methods
4.1. Pilot Testing Using Express Analytic Hierarchy Process (EAHP)
4.2. Main Survey Distribution (Round 2)
4.3. Primary Data Tests
4.4. Assessing the Research Model
5. Results
5.1. EAHP Results
5.2. Measurement Model Assessment
5.3. Structural Model Assessment
6. Discussions
6.1. Synthesis of Empirical Findings
6.2. Theoretical Contribution
6.3. Practical Contribution
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
1.1 Respondent’s gender: |
Male |
Female |
1.3 Highest Academic Qualification1.4 Organisation |
Category | Code | Factors |
1. Environmental aspect | ENP1 | 1.1. Land consumption due to waste |
ENP2 | 1.2. Noise pollution | |
ENP3 | 1.3. Water pollution | |
ENP4 | 1.4. Air pollution | |
ENP5 | 1.5. Public environment contamination due to illegal waste dumping | |
2. Economic aspect | ECP1 | 2.1. Waste sorting, collection, and separation costs |
ECP2 | 2.2. Costs associated with reusing waste | |
ECP3 | 2.3. Costs associated with recycling waste | |
ECP4 | 2.4. Costs associated with waste transportation | |
ECP5 | 2.5. Costs associated with waste disposal | |
ECP6 | 2.6. Penalty for illegal dumping of waste | |
ECP7 | 2.7. Revenue from selling recycled materials | |
ECP8 | 2.8. Saving in project costs | |
ECP9 | 2.9. Incentive mechanism for waste management | |
3. Social aspect | SOP1 | 3.1. Waste management practitioners’ awareness |
SOP2 | 3.2. Provision of job opportunities | |
SOP3 | 3.3. Arduous physical working condition | |
SOP4 | 3.4. Health related long impacts | |
SOP5 | 3.5. Waste management operatives’ safety | |
SOP6 | 3.6. Public satisfaction about waste management practices | |
SOP7 | 3.7. Public demand for regulating illegal waste dumping | |
SOP8 | 3.8. Aesthetic impacts of illegal waste dumping | |
4. Administrative aspect | ADP1 | 4.1. Policy quality |
ADP2 | 4.2. Technology | |
ADP3 | 4.3. Management and supervision | |
ADP4 | 4.4. Responsibility issues |
1 | : | Equally important |
2 | : | Equally to moderately more important |
3 | : | Moderately more important |
4 | : | Moderately to strongly more important |
5 | : | Strongly more important |
6 | : | Strongly to very strongly more important |
7 | : | Very strongly more important |
8 | : | Very strongly to extremely more important |
9 | : | Extremely more important |
Environmental aspect | Economic aspect | Social aspect | Administrative aspect | |
Selected category |
ENP1 | ENP2 | ENP3 | ENP4 | ENP5 | |
Selected ENP |
ECP1 | ECP2 | ECP3 | ECP4 | ECP5 | ECP6 | ECP7 | ECP8 | ECP9 | |
Selected ECP |
SOP1 | SOP2 | SOP3 | SOP4 | SOP5 | SOP6 | SOP7 | SOP8 | |
Selected SOP |
ADP1 | ADP2 | ADP3 | ADP4 | |
Selected ADP |
1.1 Respondent’s gender: |
Male |
Female |
1.2 Respondent’s age: |
18 to 26 |
27 to 35 |
36 to 44 |
45 to 55 |
56 and above |
1.3 Work experience in CDWM (Please check only one) |
Less than 3 years |
Between 3 to 6 years |
Between 6 to 9 years |
Between 9 to 12 years |
12 years and more |
1.4 Highest Academic Qualification (Please check only one) |
Certificate |
Diploma |
Bachelor’s degree |
Master’s degree |
PhD |
1.5 Occupation (Please check only one) |
Contractor |
Academic |
Consultant |
Government officer |
Construction research institute |
1 | Environmental factors | 1 | 2 | 3 | 4 | 5 |
ENP2 | Noise pollution | |||||
ENP3 | Water pollution | |||||
ENP4 | Air pollution | |||||
ENP5 | Public environment contamination due to illegal waste dumping |
2 | Economic factors | 1 | 2 | 3 | 4 | 5 |
ECP1 | Waste sorting, collection, and separation costs | |||||
ECP2 | Costs associated with reusing waste | |||||
ECP3 | Costs associated with recycling waste | |||||
ECP4 | Costs associated with waste transportation | |||||
ECP5 | Costs associated with waste disposal | |||||
ECP7 | Revenue from selling recycled materials | |||||
ECP8 | Saving in project costs |
3 | Social factors | 1 | 2 | 3 | 4 | 5 |
SOP1 | Waste management practitioners’ awareness | |||||
SOP3 | Arduous physical working condition | |||||
SOP4 | Health related long impacts | |||||
SOP5 | Waste management operatives’ safety | |||||
SOP6 | Public satisfaction about waste management practices | |||||
SOP7 | Public demand for regulating illegal waste dumping | |||||
SOP8 | Aesthetic impacts of illegal waste dumping |
4 | Administrative factors | 1 | 2 | 3 | 4 | 5 |
ADP1 | Policy quality | |||||
ADP2 | Technology | |||||
ADP3 | Management and supervision | |||||
ADP4 | Responsibility issues |
5 | Waste management hierarchy | 1 | 2 | 3 | 4 | 5 |
5.1 | Reduce | |||||
5.2 | Reuse | |||||
5.3 | Recycle | |||||
5.4 | Disposal |
References
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [Green Version]
- Ghafourian, K.; Mohamed, Z.; Ismail, S.; Abolghasemi, M.; Bavafa, A. Sustainable Construction And Demolition Waste Management In Malaysia: Current Issues. J. Kemanus. 2017, 15, 21–31. [Google Scholar]
- Ghafourian, K.; Mohamed, Z.; Ismail, S.; Malakute, R.; Abolghasemi, M. Current status of the research on construction and demolition waste management. Indian J. Sci. Technol. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.; Tam, V.W.Y. Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. J. Clean. Prod. 2020, 263, 121265. [Google Scholar] [CrossRef]
- Kabirifar, K.; Mojtahedi, M.; Changxin Wang, C.; Tam, V.W.Y. Effective construction and demolition waste management assessment through waste management hierarchy; a case of Australian large construction companies. J. Clean. Prod. 2021, 312, 127790. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Tam, V.W.Y.; Zuo, J. Considering life-cycle environmental impacts and society’s willingness for optimizing construction and demolition waste management fee: An empirical study of China. J. Clean. Prod. 2019, 206, 1004–1014. [Google Scholar] [CrossRef]
- Yazdani, M.; Kabirifar, K.; Frimpong, B.E.; Shariati, M.; Mirmozaffari, M.; Boskabadi, A. Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia. J. Clean. Prod. 2021, 280, 124138. [Google Scholar] [CrossRef]
- Esa, M.R.; Halog, A.; Rigamonti, L. Developing strategies for managing construction and demolition wastes in Malaysia based on the concept of circular economy. J. Mater. Cycles Waste Manag. 2017, 19, 1144–1154. [Google Scholar] [CrossRef]
- Esa, M.R.; Halog, A.; Rigamonti, L. Strategies for minimizing construction and demolition wastes in Malaysia. Resour. Conserv. Recycl. 2017, 120, 219–229. [Google Scholar] [CrossRef]
- Negash, Y.T.; Hassan, A.M.; Tseng, M.-L.; Wu, K.-J.; Ali, M.H. Sustainable construction and demolition waste management in Somaliland: Regulatory barriers lead to technical and environmental barriers. J. Clean. Prod. 2021, 297, 126717. [Google Scholar] [CrossRef]
- Begum, R.A.; Siwar, C.; Pereira, J.J.; Jaafar, A.H. A benefit–cost analysis on the economic feasibility of construction waste minimisation: The case of Malaysia. Resour. Conserv. Recycl. 2006, 48, 86–98. [Google Scholar] [CrossRef]
- Begum, R.A.; Siwar, C.; Pereira, J.J.; Jaafar, A.H. Implementation of waste management and minimisation in the construction industry of Malaysia. Resour. Conserv. Recycl. 2007, 51, 190–202. [Google Scholar] [CrossRef]
- Bao, Z.; Lu, W.; Chi, B.; Yuan, H.; Hao, J. Procurement innovation for a circular economy of construction and demolition waste: Lessons learnt from Suzhou, China. Waste Manag. 2019, 99, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, S.H.; Burman, M.; Braimah, N. Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. J. Clean. Prod. 2020, 244, 118710. [Google Scholar] [CrossRef]
- Lachimpadi, S.K.; Pereira, J.J.; Taha, M.R.; Mokhtar, M. Construction waste minimisation comparing conventional and precast construction (Mixed System and IBS) methods in high-rise buildings: A Malaysia case study. Resour. Conserv. Recycl. 2012, 68, 96–103. [Google Scholar] [CrossRef]
- Huang, B.; Wang, X.; Kua, H.; Geng, Y.; Bleischwitz, R.; Ren, J. Construction and demolition waste management in China through the 3R principle. Resour. Conserv. Recycl. 2018, 129, 36–44. [Google Scholar] [CrossRef]
- Yeheyis, M.; Hewage, K.; Alam, M.S.; Eskicioglu, C.; Sadiq, R. An overview of construction and demolition waste management in Canada: A lifecycle analysis approach to sustainability. Clean Technol. Env. Policy 2013, 15, 81–91. [Google Scholar] [CrossRef]
- Lu, W. Big data analytics to identify illegal construction waste dumping: A Hong Kong study. Resour. Conserv. Recycl. 2019, 141, 264–272. [Google Scholar] [CrossRef]
- Ng, L.S.; Tan, L.W.; Seow, T.W. Current practices of construction waste reduction through 3R practice among contractors in malaysia: Case study in penang. IOP Conf. Ser. Mater. Sci. Eng. 2017, 271, 012039. [Google Scholar] [CrossRef]
- Turkyilmaz, A.; Guney, M.; Karaca, F.; Bagdatkyzy, Z.; Sandybayeva, A.; Sirenova, G. A Comprehensive Construction and Demolition Waste Management Model using PESTEL and 3R for Construction Companies Operating in Central Asia. Sustainability 2019, 11, 1593. [Google Scholar] [CrossRef] [Green Version]
- Tsai, F.M.; Bui, T.-D.; Tseng, M.-L.; Wu, K.-J. A causal municipal solid waste management model for sustainable cities in Vietnam under uncertainty: A comparison. Resour. Conserv. Recycl. 2020, 154, 104599. [Google Scholar] [CrossRef]
- Tam, V.W.-Y.; Lu, W. Construction waste management profiles, practices, and performance: A cross-jurisdictional analysis in four countries. Sustainability 2016, 8, 190. [Google Scholar]
- Aluko, O.O.; Obafemi, T.H.; Obiajunwa, P.O.; Obiajunwa, C.J.; Obisanya, O.A.; Odanye, O.H.; Odeleye, A.O. Solid waste management and health hazards associated with residence around open dumpsites in heterogeneous urban settlements in Southwest Nigeria. Int. J. Environ. Health Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Mahpour, A. Prioritizing barriers to adopt circular economy in construction and demolition waste management. Resour. Conserv. Recycl. 2018, 134, 216–227. [Google Scholar] [CrossRef]
- Rahman, I.A.; Nagapan, S.; Asmi, A. Initial PLS Model of Construction Waste Factors. Procedia Soc. Behav. Sci. 2014, 129, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Umar, U.A.; Shafiq, N.; Isa, M.H. Investigation of construction wastes generated in the Malaysian residential sector. Waste Manag. Res. 2018, 36, 1157–1165. [Google Scholar] [CrossRef]
- Illankoon, I.M.C.S.; Tam Vivian, W.Y.; Le Khoa, N. Environmental, Economic, and Social Parameters in International Green Building Rating Tools. J. Prof. Issues Eng. Educ. Pract. 2017, 143, 05016010. [Google Scholar] [CrossRef]
- Papastamoulis, V.; London, K.; Feng, Y.; Zhang, P.; Crocker, R.; Patias, P. Conceptualising the Circular Economy Potential of Construction and Demolition Waste: An Integrative Literature Review. Recycling 2021, 6, 61. [Google Scholar] [CrossRef]
- Wu, H.; Zuo, J.; Yuan, H.; Zillante, G.; Wang, J. Cross-regional mobility of construction and demolition waste in Australia: An exploratory study. Resour. Conserv. Recycl. 2020, 156, 104710. [Google Scholar] [CrossRef]
- Yuan, H. Key indicators for assessing the effectiveness of waste management in construction projects. Ecol. Indic. 2013, 24, 476–484. [Google Scholar] [CrossRef]
- Bai, X.; Surveyer, A.; Elmqvist, T.; Gatzweiler, F.W.; Güneralp, B.; Parnell, S.; Prieur-Richard, A.-H.; Shrivastava, P.; Siri, J.G.; Stafford-Smith, M.; et al. Defining and advancing a systems approach for sustainable cities. Curr. Opin. Environ. Sustain. 2016, 23, 69–78. [Google Scholar] [CrossRef]
- Starik, M.; Kanashiro, P. Toward a Theory of Sustainability Management: Uncovering and Integrating the Nearly Obvious. Organ. Environ. 2013, 26, 7–30. [Google Scholar] [CrossRef]
- Krystofik, M.; Wagner, J.; Gaustad, G. Leveraging intellectual property rights to encourage green product design and remanufacturing for sustainable waste management. Resour. Conserv. Recycl. 2015, 97, 44–54. [Google Scholar] [CrossRef]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.C.; Tam, V.W.Y. A conceptual foundation for effective construction and demolition waste management. Clean. Eng. Technol. 2020, 1, 100019. [Google Scholar] [CrossRef]
- Aslam, M.S.; Huang, B.; Cui, L. Review of construction and demolition waste management in China and USA. J. Environ. Manag. 2020, 264, 110445. [Google Scholar] [CrossRef] [PubMed]
- Oreto, C.; Veropalumbo, R.; Viscione, N.; Biancardo, S.A.; Russo, F. Investigating the environmental impacts and engineering performance of road asphalt pavement mixtures made up of jet grouting waste and reclaimed asphalt pavement. Environ. Res. 2021, 198, 111277. [Google Scholar] [CrossRef]
- Blaisi, N.I. Construction and demolition waste management in Saudi Arabia: Current practice and roadmap for sustainable management. J. Clean. Prod. 2019, 221, 167–175. [Google Scholar] [CrossRef]
- Borghi, G.; Pantini, S.; Rigamonti, L. Life cycle assessment of non-hazardous Construction and Demolition Waste (CDW) management in Lombardy Region (Italy). J. Clean. Prod. 2018, 184, 815–825. [Google Scholar] [CrossRef]
- Esin, T.; Cosgun, N. A study conducted to reduce construction waste generation in Turkey. Build. Environ. 2007, 42, 1667–1674. [Google Scholar] [CrossRef]
- Oreto, C.; Russo, F.; Veropalumbo, R.; Viscione, N.; Biancardo, S.A.; Dell’Acqua, G. Life Cycle Assessment of Sustainable Asphalt Pavement Solutions Involving Recycled Aggregates and Polymers. Materials 2021, 14, 3867. [Google Scholar] [CrossRef]
- Mah, C.M.; Fujiwara, T.; Ho, C.S. Construction and demolition waste generation rates for high-rise buildings in Malaysia. Waste Manag. Res. 2016, 34, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Jamaludin, A.H.; Karim, N.A.; Noor, R.N.H.R.M.; Othman, N.; Malik, S.A. Preliminary study on enhancing waste management best practice model in Malaysia construction industry. AIP Conf. Proc. 2017, 1875, 030008. [Google Scholar] [CrossRef] [Green Version]
- Seror, N.; Portnov, B.A. Identifying areas under potential risk of illegal construction and demolition waste dumping using GIS tools. Waste Manag. 2018, 75, 22–29. [Google Scholar] [CrossRef]
- Jain, S.; Singhal, S.; Jain, N.K.; Bhaskar, K. Construction and demolition waste recycling: Investigating the role of theory of planned behavior, institutional pressures and environmental consciousness. J. Clean. Prod. 2020, 263, 121405. [Google Scholar] [CrossRef]
- Barbudo, A.; Ayuso, J.; Lozano, A.; Cabrera, M.; López-Uceda, A. Recommendations for the management of construction and demolition waste in treatment plants. Environ. Sci. Pollut. Res. 2020, 27, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Yi, G.; Tam, V.W.Y.; Huang, T. A system dynamics-based environmental performance simulation of construction waste reduction management in China. Waste Manag. 2016, 51, 130–141. [Google Scholar] [CrossRef]
- Nabi Bidhendi, G.; Daryabeigi Zand, A.; Vaezi Heir, A.; Nabi bidhendi, A. Prioritizing of strategies for the ecological design of urban waste transfer stations using SWOT analysis. J. Environ. Sci. Stud. 2020, 5, 2665–2672. [Google Scholar]
- Ajibade, F.O.; Adelodun, B.; Lasisi, K.H.; Fadare, O.O.; Ajibade, T.F.; Nwogwu, N.A.; Sulaymon, I.D.; Ugya, A.Y.; Wang, H.C.; Wang, A. Chapter 25—Environmental pollution and their socioeconomic impacts. In Microbe Mediated Remediation of Environmental Contaminants; Kumar, A., Singh, V.K., Singh, P., Mishra, V.K., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 321–354. [Google Scholar]
- Chileshe, N.; Rameezdeen, R.; Hosseini, M.R.; Martek, I.; Li, H.X.; Panjehbashi-Aghdam, P. Factors driving the implementation of reverse logistics: A quantified model for the construction industry. Waste Manag. 2018, 79, 48–57. [Google Scholar] [CrossRef]
- Reza, B.; Sadiq, R.; Hewage, K. Sustainability assessment of flooring systems in the city of Tehran: An AHP-based life cycle analysis. Constr. Build. Mater. 2011, 25, 2053–2066. [Google Scholar] [CrossRef]
- Khanh Ha, D.; Kim Soo, Y. Development of waste occurrence level indicator in Vietnam construction industry. Eng. Constr. Archit. Manag. 2015, 22, 715–731. [Google Scholar] [CrossRef]
- Osmani, M. Chapter 15—Construction Waste. In Waste; Letcher, T.M., Vallero, D.A., Eds.; Academic Press: Boston, MA, USA, 2011; pp. 207–218. [Google Scholar]
- Marrero, M.; Puerto, M.; Rivero-Camacho, C.; Freire-Guerrero, A.; Solís-Guzmán, J. Assessing the economic impact and ecological footprint of construction and demolition waste during the urbanization of rural land. Resour. Conserv. Recycl. 2017, 117, 160–174. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ji, X.; Liu, G.; Ulgiati, S. Evaluating the transition towards cleaner production in the construction and demolition sector of China: A review. J. Clean. Prod. 2018, 195, 418–434. [Google Scholar] [CrossRef]
- Shivaraj, S.; Abd Halid, A.; Sasitharan, N.; Kumanan, K.; Haritharan, M.; Zawawi, D. Investigate How Construction Waste Generation Rate is Different for Every Types of Project in Peninsular Malaysia using Site Visit Method. Int. J. Integr. Eng. 2018, 10, 150–156. [Google Scholar]
- Lockrey, S.; Nguyen, H.; Crossin, E.; Verghese, K. Recycling the construction and demolition waste in Vietnam: Opportunities and challenges in practice. J. Clean. Prod. 2016, 133, 757–766. [Google Scholar] [CrossRef]
- Tura, N.; Hanski, J.; Ahola, T.; Ståhle, M.; Piiparinen, S.; Valkokari, P. Unlocking circular business: A framework of barriers and drivers. J. Clean. Prod. 2019, 212, 90–98. [Google Scholar] [CrossRef]
- Chen, J.; Hua, C.; Liu, C. Considerations for better construction and demolition waste management: Identifying the decision behaviors of contractors and government departments through a game theory decision-making model. J. Clean. Prod. 2019, 212, 190–199. [Google Scholar] [CrossRef]
- Yuan, H. Barriers and countermeasures for managing construction and demolition waste: A case of Shenzhen in China. J. Clean. Prod. 2017, 157, 84–93. [Google Scholar] [CrossRef]
- Abarca-Guerrero, L.; Maas, G.; Van Twillert, H. Barriers and Motivations for Construction Waste Reduction Practices in Costa Rica. Resources 2017, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Wahi, N.; Joseph, C.; Tawie, R.; Ikau, R. Critical Review on Construction Waste Control Practices: Legislative and Waste Management Perspective. Procedia Soc. Behav. Sci. 2016, 224, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Mihai, F.-C.; Grozavu, A. Role of Waste Collection Efficiency in Providing a Cleaner Rural Environment. Sustainability 2019, 11, 6855. [Google Scholar] [CrossRef] [Green Version]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.C. A Systematic Review of Construction and Demolition Waste Management in Australia: Current Practices and Challenges. Recycling 2021, 6, 34. [Google Scholar] [CrossRef]
- Munyasya, B.M.; Chileshe, N. Towards Sustainable Infrastructure Development: Drivers, Barriers, Strategies, and Coping Mechanisms. Sustainability 2018, 10, 4341. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, S.O.; Oyedele, L.O. Policy imperatives for diverting construction waste from landfill: Experts’ recommendations for UK policy expansion. J. Clean. Prod. 2017, 147, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Imam, A.; Mohammed, B.; Wilson, D.C.; Cheeseman, C.R. Solid waste management in Abuja, Nigeria. Waste Manag. 2008, 28, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Shooshtarian, S.; Maqsood, T.; Khalfan, M.; Yang, R.J.; Wong, P. Landfill Levy Imposition on Construction and Demolition Waste: Australian Stakeholders’ Perceptions. Sustainability 2020, 12, 4496. [Google Scholar] [CrossRef]
- Bao, Z.; Lu, W. Developing efficient circularity for construction and demolition waste management in fast emerging economies: Lessons learned from Shenzhen, China. Sci. Total Environ. 2020, 724, 138264. [Google Scholar] [CrossRef] [PubMed]
- Marzouk, M.; Azab, S. Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics. Resour. Conserv. Recycl. 2014, 82, 41–49. [Google Scholar] [CrossRef]
- Santos, A.C.; Mendes, P.; Ribau Teixeira, M. Social life cycle analysis as a tool for sustainable management of illegal waste dumping in municipal services. J. Clean. Prod. 2019, 210, 1141–1149. [Google Scholar] [CrossRef]
- Husgafvel, R.; Pajunen, N.; Virtanen, K.; Paavola, I.-L.; Päällysaho, M.; Inkinen, V.; Heiskanen, K.; Dahl, O.; Ekroos, A. Social sustainability performance indicators—Experiences from process industry. Int. J. Sustain. Eng. 2015, 8, 14–25. [Google Scholar] [CrossRef]
- Li, J.; Zuo, J.; Jiang, W.; Zhong, X.; Li, J.; Pan, Y. Policy instrument choice for construction and demolition waste management: The case study of Shenzhen, China. Eng. Constr. Archit. Manag. 2020, 27, 1283–1297. [Google Scholar] [CrossRef]
- del Río Merino, M.; Izquierdo Gracia, P.; Weis Azevedo, I.S. Sustainable construction: Construction and demolition waste reconsidered. Waste Manag. Res. 2009, 28, 118–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekaran, U.; Bougie, R. Research Methods for Business: A Skill Building Approach; John Wiley & Sons: Chichester, West Sussex, UK, 2016. [Google Scholar]
- Hair, J.F., Jr.; Page, M.; Brunsveld, N. Essentials of Business Research Methods; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Sev, A. How can the construction industry contribute to sustainable development? A conceptual framework. Sustain. Dev. 2009, 17, 161–173. [Google Scholar] [CrossRef]
- Hu, Y. Minimization management of construction waste. In Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011; pp. 2769–2772. [Google Scholar]
- Yates, J.K.; Castro-Lacouture, D. Sustainability in Engineering Design and Construction; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Srour, I.M.; Chehab, G.R.; El-Fadel, M.; Tamraz, S. Pilot-based assessment of the economics of recycling construction demolition waste. Waste Manag. Res. 2013, 31, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.J. Making Sustainability Work: Best Practices in Managing and Measuring Corporate Social, Environmental and Economic Impacts; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Almahmoud, E.; Doloi Hemanta, K. Assessment of social sustainability in construction projects using social network analysis. Facilities 2015, 33, 152–176. [Google Scholar] [CrossRef]
- Jin, R.; Li, B.; Zhou, T.; Wanatowski, D.; Piroozfar, P. An empirical study of perceptions towards construction and demolition waste recycling and reuse in China. Resour. Conserv. Recycl. 2017, 126, 86–98. [Google Scholar] [CrossRef]
- Gangolells, M.; Casals, M.; Forcada, N.; Macarulla, M. Analysis of the implementation of effective waste management practices in construction projects and sites. Resour. Conserv. Recycl. 2014, 93, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Flynn, B.B.; Sakakibara, S.; Schroeder, R.G.; Bates, K.A.; Flynn, E.J. Empirical research methods in operations management. J. Oper. Manag. 1990, 9, 250–284. [Google Scholar] [CrossRef]
- Dainty, A. Methodological pluralism in construction management research. Adv. Res. Methods Built Environ. 2008, 1, 1–13. [Google Scholar]
- Saunders, M.; Lewis, P.; Thornhill, A. Research Methods for Business Students; Pearson Education: London, UK, 2009. [Google Scholar]
- Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches; Sage Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Phillips, P.P.; Stawarski, C.A. Data collection: Planning for and Collecting All Types of Data; John Wiley & Sons: San Francisco, CA, USA, 2008; Volume 175. [Google Scholar]
- Babbie, E.R. The Basics of Social Research; Nelson Education: Boston, MA, USA, 2015. [Google Scholar]
- Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Canteras-Jordana, J.C. A review of application of multi-criteria decision making methods in construction. Autom. Constr. 2014, 45, 151–162. [Google Scholar] [CrossRef]
- Khoshand, A.; Khanlari, K.; Abbasianjahromi, H.; Zoghi, M. Construction and demolition waste management: Fuzzy Analytic Hierarchy Process approach. Waste Manag. Res. 2020, 38, 773–782. [Google Scholar] [CrossRef]
- Lee, S. Determination of Priority Weights under Multiattribute Decision-Making Situations: AHP versus Fuzzy AHP. J. Constr. Eng. Manag. 2015, 141, 05014015. [Google Scholar] [CrossRef]
- Cheng Eddie, W.L.; Li, H. Construction Partnering Process and Associated Critical Success Factors: Quantitative Investigation. J. Manag. Eng. 2002, 18, 194–202. [Google Scholar] [CrossRef]
- Leal, J.E. AHP-express: A simplified version of the analytical hierarchy process method. MethodsX 2020, 7, 100748. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation; McGraw: New York, NY, USA, 1980. [Google Scholar]
- Mani, V.; Agrawal, R.; Sharma, V. Supplier selection using social sustainability: AHP based approach in India. Int. Strateg. Manag. Rev. 2014, 2, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L.; Özdemir, M.S. How many judges should there be in a group? Ann. Data Sci. 2014, 1, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Dawes, J. Do data characteristics change according to the number of scale points used? An experiment using 5-point, 7-point and 10-point scales. Int. J. Mark. Res. 2008, 50, 61–104. [Google Scholar] [CrossRef]
- Marshall, G. The purpose, design and administration of a questionnaire for data collection. Radiography 2005, 11, 131–136. [Google Scholar] [CrossRef]
- CIDB. Available online: http://cims.cidb.gov.my/smis/regcontractor/reglocalsearchcontractor.vbhtml (accessed on 15 August 2021).
- Malaysia, C.I.D.B. Impact Study on Iso 14001 Implementation to G7 Contractors with Annual Turnover RM200 Million and Above; Construction Industry Development Board Malaysia: Kuala Lumpur, Malaysia, 2018; p. 36.
- White, D.; Fortune, J. Current practice in project management—An empirical study. Int. J. Proj. Manag. 2002, 20, 1–11. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Jörg, H.; Christian, M.R.; Marko, S. Using Partial Least Squares Path Modeling in Advertising Research: Basic Concepts and Recent IssuesHandbook of Research on International Advertising; Edward Elgar Publishing: Cheltenham, UK, 2012. [Google Scholar]
- Sarstedt, M.; Mooi, E. A Concise Guide to Market Research: The Process, Data, and Methods Using IBM SPSS Statistics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Hair Joseph, F.; Risher Jeffrey, J.; Sarstedt, M.; Ringle Christian, M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray Pauline, A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, A.T.W.; Shen, L. Investigating the determinants of contractor’s construction and demolition waste management behavior in Mainland China. Waste Manag. 2017, 60, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Henri, J.-F.; Journeault, M. Eco-control: The influence of management control systems on environmental and economic performance. Account. Organ. Soc. 2010, 35, 63–80. [Google Scholar] [CrossRef]
- Calvo, N.; Varela-Candamio, L.; Novo-Corti, I. A Dynamic Model for Construction and Demolition (C&D) Waste Management in Spain: Driving Policies Based on Economic Incentives and Tax Penalties. Sustainability 2014, 6, 416. [Google Scholar] [CrossRef] [Green Version]
- Zuo, J.; Jin, X.-H.; Flynn, L. Social Sustainability in Construction—An Explorative Study. Int. J. Constr. Manag. 2012, 12, 51–63. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, A.T.W.; Poon, C.S. Promoting effective construction and demolition waste management towards sustainable development: A case study of Hong Kong. Sustain. Dev. 2020, 28, 1713–1724. [Google Scholar] [CrossRef]
- Umar, U.A.; Shafiq, N.; Ahmad, F.A. A case study on the effective implementation of the reuse and recycling of construction & demolition waste management practices in Malaysia. Ain Shams Eng. J. 2021, 12, 283–291. [Google Scholar] [CrossRef]
- Yong, Y.S.; Lim, Y.A.; Ilankoon, I.M.S.K. An analysis of electronic waste management strategies and recycling operations in Malaysia: Challenges and future prospects. J. Clean. Prod. 2019, 224, 151–166. [Google Scholar] [CrossRef]
Category | Code | Factors | References |
---|---|---|---|
1. Environmental | ENP1 | 1.1. Land consumption due to waste | [10,23,30,34,68] |
ENP2 | 1.2. Noise pollution | ||
ENP3 | 1.3. Water pollution | ||
ENP4 | 1.4. Air pollution | ||
ENP5 | 1.5. Public environment contamination due to illegal waste dumping | ||
2. Economic | ECP1 | 2.1. Waste sorting, collection, and separation costs | [30,37,54,69] |
ECP2 | 2.2. Costs associated with reusing waste | ||
ECP3 | 2.3. Costs associated with recycling waste | ||
ECP4 | 2.4. Costs associated with waste transportation | ||
ECP5 | 2.5. Costs associated with waste disposal | ||
ECP6 | 2.6. Penalty for illegal dumping of waste | ||
ECP7 | 2.7. Revenue from selling recycled materials | ||
ECP8 | 2.8. Saving in project costs | ||
ECP9 | 2.9. Incentive mechanism for waste management | ||
3. Social | SOP1 | 3.1. Waste management practitioners’ awareness | [30,70,71] |
SOP2 | 3.2. Provision of job opportunities | ||
SOP3 | 3.3. Arduous physical working condition | ||
SOP4 | 3.4. Health related long impacts | ||
SOP5 | 3.5. Waste management operatives’ safety | ||
SOP6 | 3.6. Public satisfaction about waste management practices | ||
SOP7 | 3.7. Public demand for regulating illegal waste dumping | ||
SOP8 | 3.8. Aesthetic impacts of illegal waste dumping | ||
4. Administrative | ADP1 | 4.1. Policy quality | [30,72,73] |
ADP2 | 4.2. Technology | ||
ADP3 | 4.3. Management and supervision | ||
ADP4 | 4.4. Responsibility issues |
Intensity of Importance * | Linguistic Value |
---|---|
1 | Equally important |
2 | Equally to moderately more important |
3 | Moderately more important |
4 | Moderately to strongly more important |
5 | Strongly more important |
6 | Strongly to very strongly more important |
7 | Very strongly more important |
8 | Very strongly to extremely more important |
9 | Extremely more important |
Gender | Female | Male | |||
---|---|---|---|---|---|
Number | 8 | 55 | |||
Percentage (%) | 13% | 87% | |||
Age | 18–26 | 27–35 | 36–44 | 45–55 | 56 and above |
Number | 8 | 16 | 23 | 12 | 4 |
Percentage (%) | 12.7% | 25.4% | 36.5% | 19% | 6.35% |
Work Experience in CDWM | Less than 3 | 3–6 | 6–9 | 9–12 | 12 years and more |
Year(s) | 0 | 14 | 12 | 22 | 15 |
Percentage (%) | 0 | 22% | 19% | 35% | 24% |
Highest qualification | Certificate | Diploma | Bachelor’s degree | Master’s degree | PhD |
Number | 3 | 9 | 20 | 17 | 14 |
Percentage (%) | 4.8% | 14.3% | 31.7% | 27% | 22% |
The most relevant role | Contractor | Academic | Consultant | Government officer | Construction research institutes |
Number | 10 | 6 | 9 | 21 | 17 |
Percentage (%) | 16% | 10% | 14% | 33% | 27% |
Criteria | Local Weight (1) | Code | Sub-Criteria | Local Weight (2) | Global Weight (3) | Ranking |
---|---|---|---|---|---|---|
1. Environmental aspect | 0.29400 | ENP1 | 1. Land consumption due to waste | 0.05875 | 0.01897 | 20 |
ENP2 | 2. Noise pollution | 0.1632 | 0.04798 | 7 | ||
ENP3 | 3. Water pollution | 0.10354 | 0.03044 | 11 | ||
ENP4 | 4. Air pollution | 0.28028 | 0.08240 | 2 | ||
ENP5 | 5. Public environment contamination due to illegal waste dumping | 0.39424 | 0.11590 | 1 | ||
2. Economic aspect | 0.32229 | ECP1 | 1. Waste sorting, collection, and separation costs | 0.18165 | 0.05866 | 3 |
ECP2 | 2. Costs associated with reusing waste | 0.1697 | 0.054806 | 5 | ||
ECP3 | 3. Costs associated with recycling waste | 0.1697 | 0.054806 | 5 | ||
ECP4 | 4. Costs associated with waste transportation | 0.08758 | 0.028285 | 13 | ||
ECP5 | 5. Costs associated with waste disposal | 0.06392 | 0.020643 | 16 | ||
ECP6 | 6. Penalty for illegal dumping of waste | 0.04288 | 0.013848 | 22 | ||
ECP7 | 7. Revenue from selling recycled materials | 0.17019 | 0.054964 | 4 | ||
ECP8 | 8. Saving in project costs | 0.07115 | 0.022978 | 15 | ||
ECP9 | 9. Incentive mechanism for waste management | 0.04322 | 0.013958 | 21 | ||
3. Social aspect | 0.20143 | SOP1 | 1. Waste management practitioners’ awareness | 0.20089 | 0.03847 | 9 |
SOP2 | 2. Provision of job opportunities | 0.05144 | 0.00985 | 23 | ||
SOP3 | 3. Arduous physical working condition | 0.17887 | 0.034257 | 10 | ||
SOP4 | 4. Health related long impacts | 0.09788 | 0.018746 | 17 | ||
SOP5 | 5. Waste management operatives’ safety | 0.15165 | 0.029044 | 12 | ||
SOP6 | 6. Public satisfaction about waste management practices | 0.09622 | 0.018428 | 18 | ||
SOP7 | 7. Public demand for regulating illegal waste dumping | 0.09593 | 0.018372 | 19 | ||
SOP8 | 8. Aesthetic impacts of illegal waste dumping | 0.12712 | 0.02434 | 14 | ||
4. Administrative aspect | 0.18228 | ADP1 | 1. Policy quality | 0.24771 | 0.04744 | 7 |
ADP2 | 2. Technology | 0.27371 | 0.05242 | 6 | ||
ADP3 | 3. Management and supervision | 0.20487 | 0.03923 | 8 | ||
ADP4 | 4. Responsibility issues | 0.27371 | 0.05242 | 6 | ||
Total | 1.000 | Total | 1.000 |
Construct | Items | Loading | Cronbach Alpha (CA) | CR | AVE | N of Deleted Indicators |
---|---|---|---|---|---|---|
Environmental aspect | ENP2 | 0.849 | 0.786 | 0.858 | 0.605 | 0 |
ENP3 | 0.678 | |||||
ENP4 | 0.856 | |||||
ENP5 | 0.711 | |||||
Economic aspect | ECP1 | 0.814 | 0.891 | 0.915 | 0.606 | 0 |
ECP2 | 0.832 | |||||
ECP3 | 0.723 | |||||
ECP4 | 0.852 | |||||
ECP5 | 0.716 | |||||
ECP7 | 0.799 | |||||
ECP8 | 0.697 | |||||
Social aspect | SOP1 | 0.769 | 0.793 | 0.854 | 0.543 | 1 (SOP3) |
SOP4 | 0.621 | |||||
SOP5 | 0.624 | |||||
SOP6 | 0.825 | |||||
SOP7 | 0.816 | |||||
SOP8 | 0.734 | |||||
Administrative aspect | ADP1 | 0.896 | 0.787 | 0.860 | 0.610 | 0 |
ADP2 | 0.824 | |||||
ADP3 | 0.750 | |||||
ADP4 | 0.629 | |||||
WMH | Reduce | 0.709 | 0.605 | 0.772 | 0.500 | 0 |
Reuse | 0.738 | |||||
Recycle | 0.723 | |||||
Disposal | 0.527 |
HTMT (Bootstrapping) | ||||
---|---|---|---|---|
Constructs | Administrative | Economic | Environmental | Social |
Economic | 0.423 | |||
Environmental | 0.527 | 0.498 | ||
Social | 0.658 | 0.545 | 0.608 | |
WMH | 0.789 | 0.515 | 0.664 | 0.696 |
1. Collinearity Assessment (VIF), 2. Coefficient of Determination (R2), and 3. Effect Size | |||||
---|---|---|---|---|---|
Indicators/Variables | VIF | Rin² | Rex² | Effect Size | |
Environmental aspect | 0.865 | 0.835 | 0.222 | Medium | |
ENP2 | 1.330 | ||||
ENP3 | 1.510 | ||||
ENP4 | 1.498 | ||||
ENP5 | 1.858 | ||||
Economic aspect | 0.865 | 0.779 | 0.637 | Large | |
ECP1 | 2.210 | ||||
ECP2 | 2.076 | ||||
ECP3 | 1.640 | ||||
ECP4 | 2.316 | ||||
ECP5 | 1.708 | ||||
ECP7 | 2.028 | ||||
ECP8 | 2.355 | ||||
Social aspect | 0.865 | 0.826 | 0.289 | Medium | |
SOP1 | 1.752 | ||||
SOP4 | 1.438 | ||||
SOP5 | 1.407 | ||||
SOP6 | 1.847 | ||||
SOP7 | 1.560 | ||||
SOP8 | 1.346 | ||||
Administrative aspect | 0.865 | 0.858 | 0.052 | Small | |
ADP1 | 1.539 | ||||
ADP2 | 1.428 | ||||
ADP3 | 1.424 | ||||
ADP4 | 1.230 | ||||
WMH | - | - | - | - | |
Reduce | 1.158 | ||||
Reuse | 1.097 | ||||
Recycle | 1.111 | ||||
Disposal | 1.014 | ||||
4. Path Coefficients | |||||
Hypotheses | Relationship | t-Value | Supported | ||
H1 | Environmental → WMH | 4.142 | Yes | ||
H2 | Economic → WMH | 6.833 | Yes | ||
H3 | Social →WMH | 4.678 | Yes | ||
H4 | Administrative → WMH | 1.831 | Yes | ||
5. Predictive Relevance | |||||
WMH | 0.353 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghafourian, K.; Kabirifar, K.; Mahdiyar, A.; Yazdani, M.; Ismail, S.; Tam, V.W.Y. A Synthesis of Express Analytic Hierarchy Process (EAHP) and Partial Least Squares-Structural Equations Modeling (PLS-SEM) for Sustainable Construction and Demolition Waste Management Assessment: The Case of Malaysia. Recycling 2021, 6, 73. https://doi.org/10.3390/recycling6040073
Ghafourian K, Kabirifar K, Mahdiyar A, Yazdani M, Ismail S, Tam VWY. A Synthesis of Express Analytic Hierarchy Process (EAHP) and Partial Least Squares-Structural Equations Modeling (PLS-SEM) for Sustainable Construction and Demolition Waste Management Assessment: The Case of Malaysia. Recycling. 2021; 6(4):73. https://doi.org/10.3390/recycling6040073
Chicago/Turabian StyleGhafourian, Kambiz, Kamyar Kabirifar, Amir Mahdiyar, Maziar Yazdani, Syuhaida Ismail, and Vivian W. Y. Tam. 2021. "A Synthesis of Express Analytic Hierarchy Process (EAHP) and Partial Least Squares-Structural Equations Modeling (PLS-SEM) for Sustainable Construction and Demolition Waste Management Assessment: The Case of Malaysia" Recycling 6, no. 4: 73. https://doi.org/10.3390/recycling6040073
APA StyleGhafourian, K., Kabirifar, K., Mahdiyar, A., Yazdani, M., Ismail, S., & Tam, V. W. Y. (2021). A Synthesis of Express Analytic Hierarchy Process (EAHP) and Partial Least Squares-Structural Equations Modeling (PLS-SEM) for Sustainable Construction and Demolition Waste Management Assessment: The Case of Malaysia. Recycling, 6(4), 73. https://doi.org/10.3390/recycling6040073