Considering Grouped or Individual Non-Methane Volatile Organic Compound Emissions in Life Cycle Assessment of Composting Using Three Life Cycle Impact Assessment Methods
Abstract
:1. Introduction
2. Results
2.1. Influence of LCIA Method Selection on Overall Composting Emissions
2.2. Influence of LCIA Method Selection on Overall Composting Emissions
2.3. Endpoint Impact Categories: Considering Individual NMVOC vs. Grouped NMVOC
3. Discussion
3.1. LCIA Method Comparison
3.2. Midpoint Impact Categories: Considering Individual NMVOC vs. Grouped NMVOC
3.3. Endpoint Impact Categories: Considering Individual NMVOC vs. Grouped NMVOC
4. Materials and Methods
4.1. Investigated Composting Systems
4.2. Goal and Scope
4.3. Life-Cycle Inventory
4.4. Life Cycle Impact Assessment
4.5. Analysis of NMVOC Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allesch, A.B.P. Assessment methods for solid waste management: A literature review. Waste Manag. Res. 2014, 32, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, N. Getting to know the odor compounds. Biocycle 2002, 43, 42–44. [Google Scholar]
- Komilis, D.P.; Ham, R.K.; Park, J.K. Emission of volatile organic compounds during composting of municipal solid wastes. Water Res. 2004, 38, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Sironi, S.; Capelli, L.; Céntola, P.; Del Rosso, R.; Il Grande, M. Continuous monitoring of odours from a composting plant using electronic noses. Waste Manag. 2007, 27, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Calleja, I.; Delgado, L. European environmental technologies action plan (ETAP). J. Clean. Prod. 2008, 16, 181–183. [Google Scholar] [CrossRef]
- Giusti, L. A review of waste management practices and their impact on human health. Waste Manag. 2009, 29, 2227–2239. [Google Scholar] [CrossRef] [PubMed]
- Muller, T.; Thissen, R.; Braun, S.; Dott, W.; Fischer, G. (M)VOC and composting facilities. Part 1: (M)VOC emissions from municipal biowaste and plant refuse. Environ. Sci. Pollut. Res. 2004, 11, 91–97. [Google Scholar] [CrossRef]
- Pagans, E.l.; Font, X.; Sánchez, A. Biofiltration for ammonia removal from composting exhaust gases. Chem. Eng. J. 2005, 113, 105–110. [Google Scholar] [CrossRef]
- Liu, Z.; Kanjo, Y.; Mizutani, S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—Physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ. 2009, 407, 731–748. [Google Scholar] [CrossRef]
- Maulini-Duran, C.; Puyuelo, B.; Artola, A.; Font, X.; Sánchez, A.; Gea, T. VOC emissions from the composting of the organic fraction of municipal solid waste using standard and advanced aeration strategies. J. Chem. Technol. Biotechnol. 2014, 89, 579–586. [Google Scholar] [CrossRef]
- Khosravi, N.; Jobson, B.T. Estimation of VOC emission factors for manure compost using continuous measurements by PTR-MS. In AGU Fall Meeting Abstract; American Geophysical Union: Washington, DC, USA, 2020; p. A115-0009. [Google Scholar]
- Pagans, E.; Font, X.; Sánchez, A. Emission of volatile organic compounds from composting of different solid wastes: Abatement by biofiltration. J. Hazard. Mater. 2006, 131, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Monedero, M.A.; Fernández-Hernández, A.; Higashikawa, F.S.; Cayuela, M.L. Relationships between emitted volatile organic compounds and their concentration in the pile during municipal solid waste composting. Waste Manag. 2018, 79, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Nie, E.; Zheng, G.; Shao, Z.; Yang, J.; Chen, T. Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting. Waste Manag. 2018, 79, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Saldarriaga, J.F.A.; Aguado, R.; Morales, G.E. Assessment of VOC Emissions from Municipal Solid Waste Composting. Environ. Eng. Sci. 2014, 31, 300–307. [Google Scholar] [CrossRef]
- Lehtinen, J.; Tolvanen, O.; Nivukoski, U.; Veijanen, A.; Hänninen, K. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland. Waste Manag. 2013, 33, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Colón, J.; Cadena, E.; Pognani, M.; Barrena, R.; Sánchez, A.; Font, X.; Artola, A. Determination of the energy and environmental burdens associated with the biological treatment of source-separated Municipal Solid Wastes. Energy Environ. Sci. 2012, 5, 5731–5741. [Google Scholar] [CrossRef]
- Cadena, E.; Colón, J.; Artola, A.; Sánchez, A.; Font, X. Environmental impact of two aerobic composting technologies using life cycle assessment. Int. J. Life Cycle Assess. 2009, 14, 401–410. [Google Scholar] [CrossRef]
- Colón, J.; Martínez-Blanco, J.; Gabarrell, X.; Rieradevall, J.; Font, X.; Artola, A.; Sánchez, A. Performance of an industrial biofilter from a composting plant in the removal of ammonia and VOCs after material replacement. J. Chem. Technol. Biotechnol. 2009, 84, 1111–1117. [Google Scholar] [CrossRef]
- Laurent, A.; Hauschild, M.Z. Impacts of NMVOC emissions on human health in European countries for 2000–2010: Use of sector-specific substance profiles. Atmos. Environ. 2014, 85, 247–255. [Google Scholar] [CrossRef]
- Maranghi, S.; Brondi, C. Life Cycle Assessment in the Chemical Product Chain: Challenges, Methodological Approaches and Applications. In Life Cycle Assessment in the Chemical Product Chain; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- IPCC. Climate Change 2013: The Scientific Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- IPCC. Climate Change 2021 6th AR: The Scientific Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2021; p. 1535. [Google Scholar]
- Rosenbaum, R.K.; Hauschild, M.Z.; Boulay, A.M.; Fantke, P.; Laurent, A.; Núñez, M.; Vieira, M. Life Cycle Impact Assessment. In Life Cycle Assessment—Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 167–270. [Google Scholar]
- van Zelm, R.; Huijbregts, M.A.J.; den Hollander, H.A.; van Jaarsveld, H.A.; Sauter, F.J.; Struijs, J.; van Wijnen, H.J.; van de Meent, D. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos. Environ. 2008, 42, 441–453. [Google Scholar] [CrossRef]
- van Zelm, R.; Preiss, P.; van Goethem, T.; Van Dingenen, R.; Huijbregts, M. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation. Atmos. Environ. 2016, 134, 129–137. [Google Scholar] [CrossRef]
- Bulle, C.; Margni, M.; Patouillard, L.; Boulay, A.-M.; Bourgault, G.; De Bruille, V.; Cao, V.; Hauschild, M.; Henderson, A.; Humbert, S.; et al. IMPACT World+: A globally regionalized life cycle impact assessment method. Int. J. Life Cycle Assess. 2019, 24, 1653–1674. [Google Scholar] [CrossRef]
- Goyal, R.; England, M.H.; Sen Gupta, A.; Jucker, M. Reduction in surface climate change achieved by the 1987 Montreal Protocol. Environ. Res. Lett. 2019, 14, 124041. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Clemens, J.; Cuhls, C. Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste. Environ. Technol. 2003, 24, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.; Lant, P. Including N2O in ozone depletion models for LCA. Int. J. Life Cycle Assess. 2012, 17, 252–257. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- WMO. Assessment for decision makers. In Global Ozone Reserach and Monitoring Project; World Meterological Organisation: Geneva, Switzerland, 2014. [Google Scholar]
- Roy, P.-O.; Deschênes, L.; Margni, M. Life Cycle Impact Assessment of Terrestrial Acidification: Modeling Spatially Explicit Soil Sensitivity at the Global Scale. Environ. Sci. Technol. 2012, 46, 8270–8278. [Google Scholar] [CrossRef] [PubMed]
- Seppälä, J.; Posch, M.; Johansson, M.; Hettelingh, J.P. Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator (14 pp). Int. J. Life Cycle Assess. 2006, V11, 403–416. [Google Scholar] [CrossRef]
- Posch, M.; Seppälä, J.; Hettelingh, J.-P.; Johansson, M.; Margni, M.; Jolliet, O. The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. Int. J. Life Cycle Assess. 2008, 13, 477–486. [Google Scholar] [CrossRef]
- Gronlund, C.J.; Humbert, S.; Shaked, S.; O’Neill, M.S.; Jolliet, O. Characterizing the burden of disease of particulate matter for life cycle impact assessment. Air Qual. Atmos. Health 2015, 8, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Humbert, S.; Marshall, J.D.; Shaked, S.; Spadaro, J.V.; Nishioka, Y.; Preiss, P.; McKone, T.E.; Horvath, A.; Jolliet, O. Intake Fraction for Particulate Matter: Recommendations for Life Cycle Impact Assessment. Environ. Sci. Technol. 2011, 45, 4808–4816. [Google Scholar] [CrossRef]
- Fazio, S.C.V.; Sala, S.; Schau, E.M.; Secchi, M.; Zampori, L.; Diaconu, E. Supporting information to the characterisation factors of recommended EF Life Cycle Impact Assessment methods. Version 2 from ILCD to EF 3.0. In JRC Technical Report; European Commission Ispra: Ispra, Italy, 2018. [Google Scholar]
- Zhang, J.; Wang, C.; Qu, K.; Ding, J.; Shang, Y.; Liu, H.; Wei, M. Characteristics of Ozone Pollution, Regional Distribution and Causes during 2014–2018 in Shandong Province, East China. Atmosphere 2019, 10, 501. [Google Scholar] [CrossRef]
- Pinho, P.; Maia, R.; Monterroso, A. The quality of Portuguese Environmental Impact Studies: The case of small hydropower projects. Environ. Impact Assess. Rev. 2007, 27, 189–205. [Google Scholar] [CrossRef]
- Owsianiak, M.; Laurent, A.; Bjørn, A.; Hauschild, M.Z. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: A case study-based comparison. Int. J. Life Cycle Assess. 2014, 19, 1007–1021. [Google Scholar] [CrossRef]
- Li, S.; Hofstra, N.; van de Schans, M.G.M.; Yang, J.; Li, Y.; Zhang, Q.; Ma, L.; Strokal, M.; Kroeze, C.; Chen, X.; et al. Riverine Antibiotics from Animal Production and Wastewater. Environ. Sci. Technol. Lett. 2023, 10, 1059–1067. [Google Scholar] [CrossRef]
- Chaparro-Garnica, J.; Guiton, M.; Salinas-Torres, D.; Morallón, E.; Benetto, E.; Cazorla-Amorós, D. Life Cycle assessment of biorefinery technology producing activated carbon and levulinic acid. J. Clean. Prod. 2022, 380, 135098. [Google Scholar] [CrossRef]
- van Zelm, R.; Huijbregts, M.A.J.; van de Meent, D. USES-LCA 2.0—A global nested multi-media fate, exposure, and effects model. Int. J. Life Cycle Assess. 2009, 14, 282–284. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- Laurent, A.; Lautier, A.; Rosenbaum, R.; Olsen, S.; Hauschild, M. Normalization references for Europe and North America for application with USEtox™ characterization factors. Int. J. Life Cycle Assess. 2011, 16, 728–738. [Google Scholar] [CrossRef]
- Hellweg, S.; Demou, E.; Bruzzi, R.; Meijer, A.; Rosenbaum, R.K.; Huijbregts, M.A.J.; McKone, T.E. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment. Environ. Sci. Technol. 2009, 43, 1670–1679. [Google Scholar] [CrossRef]
- Kranert, M.C.-L.K. Sammlung und Transport. In Einführung in Die Abfallwirtschaft; Cord-Landwehr, M.K.K., Ed.; Vieweg+Teubner: Wiesbaden, Germany, 2010; pp. 91–133. [Google Scholar]
- Friedrich, J. Nachhaltigkeitsbewertung von Systemalternativen zur Transformation des Wasser-Energie-Nexus im städtischen Gebäudebestand. Ph.D. Thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2020. [Google Scholar]
- Kranert, M.C.-L.K. Biologische Verfahren. In Einführung in Die Abfallwirtschaft; Cord-Landwehr, M.K.K., Ed.; Vieweg+Teubner: Wiesbaden, Germany, 2010; pp. 185–291. [Google Scholar]
- Sánchez, A.; Artola, A.; Font, X.; Gea, T.; Barrena, R.; Gabriel, D.; Sánchez-Monedero, M.A.; Roig, A.; Cayuela, M.L.; Mondini, C. Greenhouse gas emissions from organic waste composting. Environ. Chem. Lett. 2015, 13, 223–238. [Google Scholar] [CrossRef]
- Epstein, E. Industrial Composting: Environmental Engineering and Facilities Management; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Clemens, C.C.B.M.J. Ermittlung der Emissionssituation bei der Verwertung von Bioabfällen; Umweltbundesamt: Dessau-Roßlau, Germany, 2015. [Google Scholar]
- RAL. Güte- und Prüfbestimmungen für Kompost; RAL: Berlin, Germany, 2007. [Google Scholar]
- WMO. Scientific Assessment of Ozone Depletion: 2010. In Global Ozone Reserach and Monitoring Project; World Meterological Organisation: Geneva, Switzerland, 2010. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Maulini-Duran, C.; Artola, A.; Font, X.; Sánchez, A. Gaseous emissions in municipal wastes composting: Effect of the bulking agent. Bioresour. Technol. 2014, 172, 260–268. [Google Scholar] [CrossRef]
- Bach, V.; Finkbeiner, M. Approach to qualify decision support maturity of new versus established impact assessment methods—Demonstrated for the categories acidification and eutrophication. Int. J. Life Cycle Assess. 2017, 22, 387–397. [Google Scholar] [CrossRef]
- Dreyer, L.; Niemann, A.; Hauschild, M. Comparison of Three Different LCIA Methods: EDIP97, CML2001 and Eco-indicator 99. Int. J. Life Cycle Assess. 2003, 8, 191–200. [Google Scholar] [CrossRef]
- Liu, Q.; Li, M.; Chen, R.; Li, Z.; Qian, G.; An, T.; Fu, J.; Sheng, G. Biofiltration treatment of odors from municipal solid waste treatment plants. Waste Manag. 2009, 29, 2051–2058. [Google Scholar] [CrossRef]
- Dhamodharan, K.; Varma, V.S.; Veluchamy, C.; Pugazhendhi, A.; Rajendran, K. Emission of volatile organic compounds from composting: A review on assessment, treatment and perspectives. Sci. Total Environ. 2019, 695, 133725. [Google Scholar] [CrossRef]
ReCiPe 2016 (H) | EF 3.0 | IMPACT World+ | |||||
---|---|---|---|---|---|---|---|
Ozone formation | Total composting emissions | kg NOx | 1.5 × 10−1 | kg NMVOCeq | 2.6 × 10−1 | kg NMVOCeq | 1.1 × 10−1 |
Grouped NMVOC | kg NOx | 1.6 × 10−1 | kg NMVOCeq | 8.8 × 10−1 | kg NMVOCeq | 8.8 × 10−1 | |
% share of total | 10.2% | 33.2% | 79.8% | ||||
Individual NMVOC | kg NOx | 1.4 × 10−1 | kg NMVOCeq | 1.6 × 10−1 | kg NMVOCeq | 1.2 × 10−1 | |
% share of total | 8.7% | 0.6% | 1.1% | ||||
Freshwater ecotoxicity | Total composting emissions | kg 1,4-Diclorobenzene (DCB) | 2.3 | kg CTUe | −1.0 × 104 | kg CTUe | 1.6 × 105 |
Grouped NMVOC | × | kg CTUe | 7.6 × 10−1 | × | |||
% share of total | × | 0.0% | × | ||||
Individual NMVOC | kg 1,4-DCB | 6.6 × 10−7 | kg CTUe | 2.0 × 10−3 | kg CTUe | 5.5 × 10−14 | |
% share of total | 0.0% | 0.0% | 0.0% | ||||
Human toxicity, carcinogens | Total composting emissions | kg 1,4-DCB | 4.8 × 10−1 | kg CTUh | 8.1 × 10−9 | kg CTUh | 5.9 × 10−7 |
Grouped NMVOC | × | kg CTUh | × | × | |||
% share of total | × | × | × | ||||
Individual NMVOC | kg 1,4-DCB | 1.4 × 10−3 | kg CTUh | 2.4 × 10−10 | kg CTUh | 3.0 × 10−10 | |
% share of total | 0.3% | 2.9% | 0.1% | ||||
Human toxicity, non-carcinogens | Total composting emissions | kg 1,4-DCB | 3.5 | kg CTUh | 6.4 × 10−9 | kg CTUh | −1.3 × 10−6 |
Grouped NMVOC | × | kg CTUh | 5.4 × 10−9 | × | |||
% share of total | × | 84.8% | × | ||||
Individual NMVOC | kg 1,4-DCB | 1.3 × 10−2 | kg CTUh | 5.4 × 10−10 | kg CTUh | 8.3 × 10−10 | |
% share of total | 0.4% | 8.5% | −0.1% |
ReCiPe 2016 | EF 3.0 | IMPACT World+ | |
---|---|---|---|
Climate change | IPCC AR5 [23] | IPCC AR5 [23] | IPCC AR5 [23] |
Acidification potential | GEOS-Chem [57] | [35,36] | GEOS-Chem [33] |
Ozone depletion potential | WMO 2011 [57] | WMO 2014 [33] | WMO 2014 [33] |
Ozone formation potential | TM5-FASST [26] | LOTOSEUROS [25] | LOTOSEUROS [25] |
Particulate matter formation | TM5-FASST [26] | UNEP recommendations | [37,39] |
ReCiPe 2016 | EF 3.0 | IMPACT World+ | |
---|---|---|---|
Ozone formation | kg NOx eq. | kg NMVOC eq. | kg NMVOC eq. |
Freshwater ecotoxicity | kg 1,4-DCB | kg CTUe | kg CTUe |
Human toxicity, carcinogens | kg 1,4-DCB | kg CTUh | kg CTUh |
Human toxicity, non-carcinogens | kg 1,4-DCB | kg CTUh | kg CTUh |
NMVOC Emissions | |
---|---|
Styrene | Dimethyl disulfide |
2-Pentanone | Pyridine |
Alpha-pinene | Toluene |
Beta-pinene | Xylene |
Limonene | Decane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, B.; Stichnothe, H. Considering Grouped or Individual Non-Methane Volatile Organic Compound Emissions in Life Cycle Assessment of Composting Using Three Life Cycle Impact Assessment Methods. Recycling 2024, 9, 35. https://doi.org/10.3390/recycling9030035
Joseph B, Stichnothe H. Considering Grouped or Individual Non-Methane Volatile Organic Compound Emissions in Life Cycle Assessment of Composting Using Three Life Cycle Impact Assessment Methods. Recycling. 2024; 9(3):35. https://doi.org/10.3390/recycling9030035
Chicago/Turabian StyleJoseph, Ben, and Heinz Stichnothe. 2024. "Considering Grouped or Individual Non-Methane Volatile Organic Compound Emissions in Life Cycle Assessment of Composting Using Three Life Cycle Impact Assessment Methods" Recycling 9, no. 3: 35. https://doi.org/10.3390/recycling9030035
APA StyleJoseph, B., & Stichnothe, H. (2024). Considering Grouped or Individual Non-Methane Volatile Organic Compound Emissions in Life Cycle Assessment of Composting Using Three Life Cycle Impact Assessment Methods. Recycling, 9(3), 35. https://doi.org/10.3390/recycling9030035