Roadside Fixed-Object Collisions, Barrier Performance, and Fatal Injuries in Single-Vehicle, Run-Off-Road Crashes
Abstract
:1. Introduction
1.1. Background
1.2. Research Objectives
2. Methods
2.1. Data Collection and Description
2.2. Statistical Modeling
2.2.1. Logit Model
2.2.2. Model Building and Goodness-of-Fit Test
3. Results
4. Discussions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AASHTO. Roadside Design Guide, 4th ed.; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2011. [Google Scholar]
- Kloeden, C.; McLean, A.; Baldock, M.; Cockington, A. Severe and Fatal Car Crashes Due to Roadside Hazards; NHMRC Road Accident Research Unit, University of Adelaide: Adelaide, Australia, 1999. [Google Scholar]
- Liu, C.; Subramanian, R. Factors Related to Fatal Single-Vehicle Run-Off-Road Crashes; DOT HS 811 232; U.S. Department of Transportation and National Highway Traffic Safety Administration: Washington, DC, USA, 2009. [Google Scholar]
- Van Petegem, J.H.; Wegman, F. Analyzing road design risk factors for run-off-road crashes in The Netherlands with crash prediction models. J. Saf. Res. 2014, 49, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, G.; Zhu, X.; Liu, X.C.; Tarefder, R. Analysis of driver injury severity in single-vehicle crashes on rural and urban roadways. Accid. Anal. Prev. 2016, 94, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Roque, C.; Moura, F.; Cardoso, J. Detecting unforgiving roadside contributors through the severity analysis of ran-off-road crashes. Accid. Anal. Prev. 2015, 80, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, F.D.B.; Awadalla, D.M. Roadside design assessment in an urban, low-density environment in the gulf cooperation council region. Traffic Inj. Prev. 2019, 20, 436–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Highway Guardrail Determination of Need and Geometric Requirements with Particular Reference to Beam-Type Guardrail; Special Report 81; Highway Research Board: Washington, DC, USA, 1964. [Google Scholar]
- Michie, J.D.; Calcote, L.R. Location, Selection, and Maintenance of Highway Guardrails and Median Barriers; NCHRP Report 54; Highway Research Board: Washington, DC, USA, 1968. [Google Scholar]
- Michie, J.D.; Bronstad, M.E. Location, Selection, and Maintenance of Highway Traffic Barriers; NCHRP Report 118; Highway Research Board: Washington, DC, USA, 1971. [Google Scholar]
- AASHTO. Guide for Selecting, Locating, and Designing Traffic Barriers; American Association of State Highway and Transportation Officials: Washington, DC, USA, 1977. [Google Scholar]
- Woods, D.L. In-service evaluation of roadside hardware. In The Role of the Civil Engineer in Highway Safety; ASCE: New York, NY, USA, 1983. [Google Scholar]
- Lee, J.; Mannering, F.L. Impact of roadside features on the frequency and severity of run-off-roadway accidents: An empirical analysis. Accid. Anal. Prev. 2002, 34, 149–161. [Google Scholar] [CrossRef]
- Holdridge, J.M.; Shankar, V.N.; Ulfarsson, G.F. The crash severity impacts of fixed roadside objects. J. Saf. Res. 2005, 36, 139–147. [Google Scholar] [CrossRef]
- Zou, Y.; Tarko, A.P.; Chen, E.; Romero, M.A. Effectiveness of cable barriers, guardrails, and concrete barrier walls in reducing the risk of injury. Accid. Anal. Prev. 2014, 72, 55–65. [Google Scholar] [CrossRef]
- Russo, B.J.; Savolainen, P.T. A comparison of freeway median crash frequency, severity, and barrier strike outcomes by median barrier type. Accid. Anal. Prev. 2018, 117, 216–224. [Google Scholar] [CrossRef]
- Molan, A.M.; Rezapour, M.; Ksaibati, K. Modeling traffic barriers crash severity by considering the effect of traffic barrier dimensions. J. Mod. Transp. 2019, 27, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Molan, A.M.; Rezapour, M.; Ksaibati, K. Investigating the relationship between crash severity, traffic barrier type, and vehicle type in crashes involving traffic barrier. J. Traffic Transp. Eng. 2020, 7, 125–136. [Google Scholar] [CrossRef]
- Hutchinson, T.P. Statistical modelling of injury severity, with special reference to driver and front seat passenger in single-vehicle crashes. Accid. Anal. Prev. 1986, 18, 157–167. [Google Scholar] [CrossRef]
- Eluru, N.; Paleti, R.; Pendyala, R.M.; Bhat, C.R. Modeling injury severity of multiple occupants of vehicles: Copula-based multivariate approach. Transp. Res. Rec. 2010, 2165, 1–11. [Google Scholar] [CrossRef]
- Harmon, T.; Bahar, G.; Gross, F. Crash Costs for Highway Safety Analysis; FHWA-SA-17-071; Fedral Highway Administration (FHWA): Washington, DC, USA, 2018. [Google Scholar]
- Turner, D.S.; Hall, J.H. Severity Indices for Roadside Features; NCHRP Synthesis 202; Transportation Research Board, National Research Council: Washington, DC, USA, 1994. [Google Scholar]
- Tarko, A.P.; Azam, S. Pedestrian injury analysis with consideration of the selectivity bias in linked police-hospital data. Accid. Anal. Prev. 2011, 43, 1689–1695. [Google Scholar] [CrossRef] [PubMed]
- Michie, J.D.; Bronstad, M.E. Highway guardrails: Safety feature or roadside hazard? Transp. Res. Rec. 1994, 1468, 1–8. [Google Scholar]
- Albuquerque, F.D.B.; Sicking, D.L. In-service safety performance evaluation of roadside concrete barriers. J. Transp. Saf. Secur. 2013, 5, 148–164. [Google Scholar] [CrossRef]
- Abu Dhabi City Municipality. Roadway Design Manual, 2nd ed.; Abu Dhabi Department of Municipal Affairs: Abu Dhabi, UAE, 2014. [Google Scholar]
- Zacharias, A. Abu Dhabi 20kph Speed Limit Buffer to be Removed in August. Available online: https://www.thenational.ae/uae/abu-dhabi-20kph-speed-limit-buffer-to-be-removed-in-august-1.753875 (accessed on 30 November 2018).
- Agresti, A. An Introduction to Categorical Data Analysis, 3nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Eliason, S.R. Maximum Likelihood Estimation: Logic and Practice, 1st ed.; Quantitative Applications in the Social Sciences; SAGE Publications, Inc.: Newbury Park, CA, USA, 1993; Volume 96. [Google Scholar]
- Hosmer, D.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley Interscience Publication: New York, NY, USA, 2000. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman & Hall/CRC Monographs on Statistics and Applied Probability; Chapman and Hall/CRC: London, UK, 1989. [Google Scholar]
- Ryan, B.F.; Ryan, T.A.; Joiner, B.L. Minitab 19; Minitab, LLC: State College, PA, USA, 2019. [Google Scholar]
- Albuquerque, F.D.B.; Sicking, D.L.; Faller, R.K.; Lechtenberg, K.A. Evaluating the cost-effectiveness of roadside culvert treatments. J. Transp. Eng. 2012, 137, 918–925. [Google Scholar] [CrossRef]
- Albuquerque, F.D.B.; Sicking, D.L.; Stolle, C. Optimal guardrail runout lengths for freeways. J. Transp. Saf. Secur. 2016, 9, 403–418. [Google Scholar] [CrossRef]
- AASHTO. Manual For Assessing Safety Hardware; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2009. [Google Scholar]
- Gabler, H.C.; Gabauer, D.J. Opportunities for reduction of fatalities in vehicle-guardrail collisions. Annu. Proc. Assoc. Adv. Automot. Med. 2007, 51, 31–48. [Google Scholar]
- Bryden, J.E.; Fortuniewicz, J.S. Traffic barrier performance related to vehicle size and type. Transp. Res. Rec. 1986, 1065, 69–78. [Google Scholar]
- Albuquerque, F.D.B.; Sicking, D.L.; Stolle, S.C. Roadway departure and impact conditions. Transp. Res. Rec. 2010, 2195, 106–114. [Google Scholar] [CrossRef]
- Viner, J.G. Harmful events in crashes. Accid. Anal. Prev. 1993, 25, 139–145. [Google Scholar] [CrossRef]
- Galati, J.V. Median Barrier Photographic Study; Highway Research Record No. 170; National Research Council, Highway Research Record: Washington, DC, USA, 1967; pp. 70–81. [Google Scholar]
- Carlson, R.D.; Allison, J.R.; Bryden, J.E. Performance of Highway Safety Devices; Research Report No. 57; New York Department of Transportation: New York, NY, USA, 1977. [Google Scholar]
Variable | Category | Frequency | % |
---|---|---|---|
Most harmful object struck | Tree | 77 | 13.87 |
Pole | 111 | 20.00 | |
Barrier | 175 | 31.53 | |
Curb | 72 | 12.97 | |
Others | 120 | 21.62 | |
Design speed (kph) | ≤80 | 238 | 42.88 |
≥100 | 317 | 57.12 | |
Vehicle class | Light vehicle | 509 | 91.71 |
Heavy vehicle | 30 | 5.41 | |
Motorcycle | 16 | 2.88 | |
Rollover | Yes | 205 | 36.94 |
No | 350 | 63.06 | |
Seatbelt use | Yes | 369 | 66.49 |
No | 186 | 33.51 |
Most Harmful Object Struck | |||||||||
---|---|---|---|---|---|---|---|---|---|
Tree | Pole | Barrier | Curb | Others | Sub-Totals | ||||
# | % | ||||||||
Crash Severity | Not Fatal | # | 65 | 93 | 158 | 64 | 104 | 484 | 87.21 |
% | 84.42 | 83.78 | 90.29 | 88.89 | 86.67 | ||||
Fatal | # | 12 | 18 | 17 | 8 | 16 | 71 | 12.79 | |
% | 15.58 | 16.22 | 9.71 | 11.11 | 13.33 | ||||
Sub-Totals | # | 77 | 111 | 175 | 72 | 120 | |||
% | 13.87 | 20.00 | 31.53 | 12.97 | 21.62 |
Non-Baseline Category | Baseline Category | # Total Observation | # Non-Baseline Observations | Odds | p-Value |
---|---|---|---|---|---|
Tree | Others (No barrier) | 380 | 77 | 1.3 | 0.50 |
Pole | 111 | 1.4 | 0.37 | ||
Tree | Concrete Barrier | 239 | 77 | 1.2 | 0.77 |
Pole | 111 | 1.2 | 0.68 | ||
Tree | W-beam Guardrail | 299 | 77 | 2.4 | 0.07 |
Pole | 111 | 2.5 | 0.04 | ||
Concrete Barrier | W-beam Guardrail | 162 | 51 | 2.0 | 0.19 |
Variable | Non-Baseline Category | Baseline Category | Total # Observations | # Non-Baseline Observations | Odds | p-Value | Goodness of Fit (p-Value) |
---|---|---|---|---|---|---|---|
Most Harmful Object Struck | Tree | Other hazards | 380 | 77 | 1.04 | 0.92 | 0.47 |
Pole | 111 | 1.46 | 0.28 | ||||
Design Speed | ≥100 kph | ≤80 kph | 172 | 1.93 | 0.03 | ||
Seatbelt | No | Yes | 145 | 2.21 | 0.01 | ||
Most Harmful Object Struck | Tree | W-beam Guardrail | 299 | 77 | 3.1 | 0.02 | 0.07 |
Pole | 111 | 4.7 | 0.00 | ||||
Design Speed | ≥100 kph | ≤80 kph | 189 | 3.3 | 0.01 | ||
Most Harmful Object Struck | Tree | Concrete Barrier | 239 | 77 | 1.1 | 0.81 | 0.24 |
Pole | 111 | 1.9 | 0.23 | ||||
Design Speed | ≥100 kph | ≤80 kph | 118 | 3.9 | 0.00 | ||
Most Harmful Object Struck | Concrete Barrier | W-beam Guardrail | 162 | 51 | 2.5 | 0.12 | 0.52 |
Design Speed | ≥100 kph | ≤80 kph | 135 | 2.0 | 0.40 |
Barrier Type | ||||||||
---|---|---|---|---|---|---|---|---|
W-Beam Guardrail | Concrete Barrier | Sub-Totals | ||||||
# | % | |||||||
Vehicle Containment | Yes | Crash Severity | Not Fatal | # | 62 / 121 | 35 / 61 | 97 / 182 | 93.27 / 91.92 |
% | 92.54 / 92.37 | 94.59 / 91.04 | ||||||
Fatal | # | 5/10 | 2/6 | 7 / 16 | 6.73 / 8.08 | |||
% | 7.46 / 7.63 | 5.41 / 8.96 | ||||||
Sub-Totals | # | 67 / 131 | 37 / 67 | |||||
% | 64.42 / 66.16 | 35.58 / 33.84 | ||||||
No | Not Fatal | # | 41 / 77 | 9 / 14 | 50 / 91 | 86.21 / 77.12 | ||
% | 93.18 / 81.91 | 64.29 / 58.33 | ||||||
Fatal | # | 3 / 17 | 5 / 10 | 8 / 27 | 13.79 / 22.88 | |||
% | 6.82 / 18.09 | 35.71 / 41.67 | ||||||
Sub-Totals | # | 44 / 94 | 14 / 24 | |||||
% | 75.86 / 79.66 | 24.14 / 20.34 | ||||||
Grand Totals | # | 111 / 225 | 51 / 91 | |||||
% | 68.52 / 71.20 | 31.48 / 28.80 | ||||||
Non-Containment Rate | 39.64 / 41.78 | 27.45 / 26.37 |
Variable | Non-Baseline Category | Baseline Category | Total # Observations | # Non-Baseline Observations | Odds | p-Value | Goodness of Fit (p-Value) |
---|---|---|---|---|---|---|---|
Most Harmful Object Struck | Tree/Pole | Curbs only, or no fixed object | 297 | 188 | 1.95 | 0.09 | 0.39 |
Design Speed | ≥100 kph | ≤80 kph | 133 | 1.85 | 0.08 | ||
Seatbelt | No | Yes | 111 | 1.76 | 0.11 | ||
Most Harmful Object Struck | Tree/Pole | No fixed object | 225 | 188 | 8.84 | 0.04 | 0.71 |
Design Speed | ≥100 kph | ≤80 kph | 112 | 2.85 | 0.01 | ||
Most Harmful Object Struck | Barrier | Curbs only, or no fixed object | 284 | 175 | 2.44 | 0.08 | 0.53 |
Design Speed | ≥100 kph | ≤80 kph | 192 | 0.45 | 0.11 | ||
Rollover | Yes | No | 144 | 4.81 | 0.00 | ||
Most Harmful Object Struck | Barrier | No fixed object | 212 | 175 | 7.29 | 0.06 | 0.99 |
Rollover | Yes | No | 106 | 4.15 | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albuquerque, F.D.B.d.; Awadalla, D.M. Roadside Fixed-Object Collisions, Barrier Performance, and Fatal Injuries in Single-Vehicle, Run-Off-Road Crashes. Safety 2020, 6, 27. https://doi.org/10.3390/safety6020027
Albuquerque FDBd, Awadalla DM. Roadside Fixed-Object Collisions, Barrier Performance, and Fatal Injuries in Single-Vehicle, Run-Off-Road Crashes. Safety. 2020; 6(2):27. https://doi.org/10.3390/safety6020027
Chicago/Turabian StyleAlbuquerque, Francisco Daniel Benicio de, and Dina Mohammad Awadalla. 2020. "Roadside Fixed-Object Collisions, Barrier Performance, and Fatal Injuries in Single-Vehicle, Run-Off-Road Crashes" Safety 6, no. 2: 27. https://doi.org/10.3390/safety6020027
APA StyleAlbuquerque, F. D. B. d., & Awadalla, D. M. (2020). Roadside Fixed-Object Collisions, Barrier Performance, and Fatal Injuries in Single-Vehicle, Run-Off-Road Crashes. Safety, 6(2), 27. https://doi.org/10.3390/safety6020027