Potential Effects of Permanent Daylight Savings Time on Daylight Exposure and Risk during Commute Times across United States Cities in 2023–2024 Using a Biomathematical Model of Fatigue
Abstract
:1. Introduction
2. Materials and Methods
2.1. SAFTE-FAST Biomathematical Modeling Software
2.2. City Selection Criteria
2.2.1. Location and Observation of DST
2.2.2. Population and Traffic Congestion
2.3. Selection of Time Periods
2.4. Generation of Work Schedule Data
2.5. Generation of School Schedule Data
2.6. Modeling Time Change Arrangements in SAFTE-FAST
2.7. Statistical Analysis
3. Results
3.1. Schedule Descriptive Statistics
3.2. Time Change Arrangements and Exposure to Daylight
3.3. Time Change Arrangements and Predicted Effectiveness
3.4. Time Change Arrangements and Rush Hour Commutes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, C.E.; Cunningham, L.J. Daylight Saving Time. Congressional Research Service. 2020. Available online: https://crsreports.congress.gov/product/details?prodcode=R45208 (accessed on 1 August 2022).
- Government. Public Law 109-58-Energy Policy Act of 2005. Authentic United States Government Information. Available online: https://uscode.house.gov/statutes/pl/109/58.pdf (accessed on 1 August 2022).
- Congress. S.623 117th Congress (2021–2022): Sunshine Protection Act of 2021. 2022. Available online: https://www.congress.gov/bill/117th-congress/senate-bill/623 (accessed on 1 August 2023).
- Rishi, M.A.; Ahmed, O.; Barrantes Perez, J.H.; Berneking, M.; Dombrowsky, J.; Flynn-Evans, E.E.; Santiago, V.; Sullivan, S.S.; Upender, R.; Yuen, K. Daylight saving time: An American Academy of Sleep Medicine position statement. J. Clin. Sleep Med. 2020, 16, 1781–1784. [Google Scholar] [CrossRef]
- Roenneberg, T.; Winnebeck, E.C.; Klerman, E.B. Daylight saving time and artificial time zones—A battle between biological and social times. Front. Physiol. 2019, 10, 944. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Wirz-Justice, A.; Skene, D.J.; Ancoli-Israel, S.; Wright, K.P.; Dijk, D.-J.; Zee, P.; Gorman, M.R.; Winnebeck, E.C.; Klerman, E.B. Why should we abolish daylight saving time? J. Biol. Rhythm. 2019, 34, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Kotchen, M.J.; Grant, L.E. Does daylight saving time save energy? Evidence from a natural experiment in Indiana. Rev. Econ. Stat. 2011, 93, 1172–1185. [Google Scholar] [CrossRef]
- Hill, S.; Desobry, F.; Garnsey, E.; Chong, Y.-F. The impact on energy consumption of daylight saving clock changes. Energy Policy 2010, 38, 4955–4965. [Google Scholar] [CrossRef]
- Zick, C.D. Does daylight savings time encourage physical activity? J. Phys. Act. Health 2014, 11, 1057–1060. [Google Scholar] [CrossRef]
- Goodman, A.; Page, A.S.; Cooper, A.R. Daylight saving time as a potential public health intervention: An observational study of evening daylight and objectively-measured physical activity among 23,000 children from 9 countries. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 84. [Google Scholar] [CrossRef]
- Calandrillo, S.P.; Buehler, D.E. Time well spent: An economic analysis of daylight saving time legislation. Wake Forest L. Rev. 2008, 43, 45. [Google Scholar]
- Kamstra, M.J.; Kramer, L.A.; Levi, M.D. Losing sleep at the market: The daylight saving anomaly. Am. Econ. Rev. 2000, 90, 1005–1011. [Google Scholar] [CrossRef]
- Fritz, J.; VoPham, T.; Wright, K.P., Jr.; Vetter, C. A chronobiological evaluation of the acute effects of daylight saving time on traffic accident risk. Curr. Biol. 2020, 30, 729–735.e722. [Google Scholar] [CrossRef]
- Bünnings, C.; Schiele, V. Spring forward, don′t fall back: The effect of daylight saving time on road safety. Rev. Econ. Stat. 2021, 103, 165–176. [Google Scholar] [CrossRef]
- Carey, R.N.; Sarma, K.M. Impact of daylight saving time on road traffic collision risk: A systematic review. BMJ Open 2017, 7, e014319. [Google Scholar] [CrossRef] [PubMed]
- Herd, D.R.; Agent, K.R.; Rizenbergs, R.L. Traffic Accidents: Day Versus Night. Transportation Research Board. 1980. Available online: https://onlinepubs.trb.org/Onlinepubs/trr/1980/753/753-005.pdf (accessed on 2 August 2022).
- Laliotis, I.; Moscelli, G.; Monastiriotis, V. Summertime and the drivin’is easy? Daylight Saving Time and vehicle accidents. Health Econ. 2019; early view. Available online: http://aei.pitt.edu/102417/(accessed on 1 August 2023).
- Wright, K.P., Jr.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. Entrainment of the human circadian clock to the natural light-dark cycle. Curr. Biol. 2013, 23, 1554–1558. [Google Scholar] [CrossRef]
- Hashizaki, M.; Nakajima, H.; Shiga, T.; Tsutsumi, M.; Kume, K. A longitudinal large-scale objective sleep data analysis revealed a seasonal sleep variation in the Japanese population. Chronobiol. Int. 2018, 35, 933–945. [Google Scholar] [CrossRef]
- Meltzer, L.J.; Plog, A.E.; Wahlstrom, K.L.; Strand, M.J. Biology vs. Ecology: A Longitudinal Examination of Sleep, Development, and a Change in School Start Times. Sleep Med. 2022, 90, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Ziporyn, T.D.; Owens, J.A.; Wahlstrom, K.L.; Wolfson, A.R.; Troxel, W.M.; Saletin, J.M.; Rubens, S.L.; Pelayo, R.; Payne, P.A.; Hale, L. Adolescent sleep health and school start times: Setting the research agenda for California and beyond: A research summit summary: A research summit summary. Sleep Health 2022, 8, 11–22. [Google Scholar] [CrossRef]
- Meltzer, L.J.; Wahlstrom, K.L.; Plog, A.E.; Strand, M.J. Changing school start times: Impact on sleep in primary and secondary school students. Sleep 2021, 44, zsab048. [Google Scholar] [CrossRef] [PubMed]
- Bin-Hasan, S.; Kapur, K.; Rakesh, K.; Owens, J. School start time change and motor vehicle crashes in adolescent drivers. J. Clin. Sleep Med. 2020, 16, 371–376. [Google Scholar] [CrossRef]
- Bureau of Labor Statistics. Job Flexibilities and Work Schedules Summary; Bureau of Labor Statistics: Washington, DC, USA, 2019.
- Lerman, S.E.; Eskin, E.; Flower, D.J.; George, E.C.; Gerson, B.; Hartenbaum, N.; Hursh, S.R.; Moore-Ede, M. Fatigue risk management in the workplace. J. Occup. Environ. Med. 2012, 54, 231–258. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Wright, K.P. Sleep loss and fatigue in shift work and shift work disorder. Sleep Med. Clin. 2009, 4, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Kantermann, T. Challenging the Human Circadian Clock by Daylight Saving Time and Shift-Work; LMU: Munich, Germany, 2008. [Google Scholar]
- Hursh, S.R.; Balkin, T.J.; Miller, J.C.; Eddy, D.R. The fatigue avoidance scheduling tool: Modeling to minimize the effects of fatigue on cognitive performance. SAE Trans. 2004, 113, 111–119. [Google Scholar]
- Hursh, S.R.; Redmond, D.P.; Johnson, M.L.; Thorne, D.R.; Belenky, G.; Balkin, T.J.; Storm, W.F.; Miller, J.C.; Eddy, D.R. Fatigue models for applied research in warfighting. Aviat. Space Environ. Med. 2004, 75, A44–A53. [Google Scholar] [PubMed]
- Roma, P.G.; Hursh, S.R.; Mead, A.M.; Nesthus, T.E. Flight Attendant Work/Rest Patterns, Alertness, and Performance assessment: Field Validation of Biomathematical Fatigue Modeling; Federal Aviation Administration, Civil Aerospace Medical Institute: Oklahoma City, OK, USA, 2012.
- Arnedt, J.T.; Wilde, G.J.; Munt, P.W.; MacLean, A.W. How do prolonged wakefulness and alcohol compare in the decrements they produce on a simulated driving task? Accid. Anal. Prev. 2001, 33, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.; Reid, K. Fatigue, alcohol and performance impairment. Nature 1997, 388, 235. [Google Scholar] [CrossRef]
- Devine, J.K.; Garcia, C.R.; Simoes, A.S.; Guelere, M.R.; de Godoy, B.; Silva, D.S.; Pacheco, P.C.; Choynowski, J.; Hursh, S.R. Predictive Biomathematical Modeling Compared to Objective Sleep During COVID-19 Humanitarian Flights. Aerosp. Med. Hum. Perform. 2022, 93, 4–12. [Google Scholar] [CrossRef]
- Schwartz, L.P.; Devine, J.K.; Hursh, S.R.; Mosher, E.; Schumacher, S.; Boyle, L.; Davis, J.E.; Smith, M.; Fitzgibbons, S.C. Biomathematical modeling predicts fatigue risk in general surgery residents. J. Surg. Educ. 2021, 78, 2094–2101. [Google Scholar] [CrossRef]
- Hursh, S.R.; Fanzone, J.F.; Raslear, T.G. Analysis of the Relationship between Operator Effectiveness Measures and Economic Impacts of Rail Accidents (Technial Report DOT/FRA/ORD-11/13); U.S. Department of Transportation: Washington, DC, USA, 2011.
- Register, F. 49 CFR Part 228. In Hours of Service of Railroad Employees; Code of Federal Regulations; 2011. Available online: https://www.ecfr.gov/current/title-49/subtitle-B/chapter-II/part-228 (accessed on 4 August 2022).
- Pruchnicki, S.A.; Wu, L.J.; Belenky, G. An exploration of the utility of mathematical modeling predicting fatigue from sleep/wake history and circadian phase applied in accident analysis and prevention: The crash of Comair Flight 5191. Accid. Anal. Prev. 2011, 43, 1056–1061. [Google Scholar] [CrossRef]
- Hursh, S.R.; Raslear, T.G.; Kaye, A.S.; Fanzone, J.F. Validation and Calibration of a Fatigue Assessment Tool for Railroad Work Schedules, Summary Report; Report No. DOT/FRA/ORD–06/21; Federal Railroad Administration: Washington, DC, USA, 2006.
- NCSL. Daylight Saving Time|State Legislation. Available online: https://www.ncsl.org/research/transportation/daylight-savings-time-state-legislation.aspx (accessed on 19 April 2022).
- Woolf, H.M. On the Computation of Solar Elevation Angles and the Determination of Sunrise and Sunset Times; National Aeronautics and Space Administration: Washington, DC, USA, 1968.
- NIST. The Official U.S. Time. Available online: https://www.time.gov/ (accessed on 19 April 2022).
- UTA. Uniform Time Act of 1966 (15 U.S.C. §§ 260-64). Authenticated United States Government Information. 1966. Available online: https://www.govinfo.gov/content/pkg/STATUTE-80/pdf/STATUTE-80-Pg107.pdf (accessed on 4 August 2022).
- NHTSA. State Traffic Safety Information. Available online: https://cdan.nhtsa.gov/stsi.htm (accessed on 19 April 2022).
- Management, O.; Budget, O. 2010 standards for delineating metropolitan and micropolitan statistical areas. Fed. Regist. 2010, 75, 37246–37252. [Google Scholar]
- Average Number of Hours in the School Day and Average Number of Days in the School Year for Public Schools, by State: 2007–2008. Available online: https://nces.ed.gov/surveys/sass/tables/sass0708_035_s1s.asp (accessed on 29 April 2022).
- Wheaton, A.G.F.; Gabrielle, A.; Croft, J.B. School Start Times for Middle School and High School Students—United States, 2011–2012 School Year. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6430a1.htm?s_cid=mm6430a1_w (accessed on 29 April 2022).
- Hursh, S.R. System and Method for Evaluating Task Effectiveness Based on Sleep Pattern. U.S. Patent 6,579,233, 17 June 2003. [Google Scholar]
- Gertler, J.; Hursh, S.; Fanzone, J.; Raslear, T.; America, Q.N. Validation of FAST Model Sleep Estimates with Actigraph Measured Sleep in Locomotive Engineers; Federal Railroad Administration: Washington, DC, USA, 2012.
- Hursh, S.; Gertler, J.; Raslear, T. Measurement and Estimation of Sleep in Railroad Worker Employees. Res. Results. 2011. Available online: https://trid.trb.org/view/1244647 (accessed on 1 August 2023).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2. [Google Scholar] [CrossRef]
- Lahti, T.; Nysten, E.; Haukka, J.; Sulander, P.; Partonen, T. Daylight Saving Time Transitions and Road Traffic Accidents. J. Environ. Public Health 2010, 2010, 657167. [Google Scholar] [CrossRef] [PubMed]
- Robb, D.; Barnes, T. Accident rates and the impact of daylight saving time transitions. Accid. Anal. Prev. 2018, 111, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Lambe, M.; Cummings, P. The shift to and from daylight savings time and motor vehicle crashes. Accid. Anal. Prev. 2000, 32, 609–611. [Google Scholar] [CrossRef] [PubMed]
- Raynham, P.; Unwin, J.; Khazova, M.; Tolia, S. The role of lighting in road traffic collisions. Light. Res. Technol. 2020, 52, 485–494. [Google Scholar] [CrossRef]
- Skeldon, A.C.; Phillips, A.J.; Dijk, D.-J. The effects of self-selected light-dark cycles and social constraints on human sleep and circadian timing: A modeling approach. Sci. Rep. 2017, 7, 45158. [Google Scholar] [CrossRef]
- McMahon, D.M.; Burch, J.B.; Wirth, M.D.; Youngstedt, S.D.; Hardin, J.W.; Hurley, T.G.; Blair, S.N.; Hand, G.A.; Shook, R.P.; Drenowatz, C. Persistence of social jetlag and sleep disruption in healthy young adults. Chronobiol. Int. 2018, 35, 312–328. [Google Scholar] [CrossRef]
- Owens, J.A.; Dearth-Wesley, T.; Lewin, D.; Gioia, G.; Whitaker, R.C. Self-regulation and sleep duration, sleepiness, and chronotype in adolescents. Pediatrics 2016, 138, e20161406. [Google Scholar] [CrossRef] [PubMed]
- Legislation. Available online: https://www.startschoollater.net/legislation.html (accessed on 3 June 2022).
- Skeldon, A.C.; Dijk, D.-J. School start times and daylight saving time confuse California lawmakers. Curr. Biol. 2019, 29, R278–R279. [Google Scholar] [CrossRef]
- Schmider, E.; Ziegler, M.; Danay, E.; Beyer, L.; Bühner, M. Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodol. Eur. J. Res. Methods Behav. Soc. Sci. 2010, 6, 147. [Google Scholar]
- Gentry, J.; Evaniuck, J.; Suriyamongkol, T.; Mali, I. Living in the wrong time zone: Elevated risk of traffic fatalities in eccentric time localities. Time Soc. 2022, 31, 0961463X221104675. [Google Scholar] [CrossRef]
- AP-NORC. Dislike for Changing the Clocks Persists. Available online: http://apnorc.org/projects/dislike-for-changing-the-clocks-persists (accessed on 9 June 2022).
Shift Type | Shift Start Time | Shift End Time | Expected Morning Waketime | Average Expected Sleep Duration per 24 h (in mins) |
---|---|---|---|---|
Day | 09:00 | 17:00 | 07:16 ± 00:04 | 482 ± 45 |
Evening | 17:00 | 01:00 | 07:25 ± 00:04 | 363 ± 60 |
Night | 23:00 | 07:00 | 07:53 ± 00:06 | 338 ± 43 |
School | 08:10 ± 00:17 | 14:45 ± 00:27 | 07:14 ± 00:04 | 460 ± 67 |
CTA (M ± SD) | Permanent DST (M ± SD) | Permanent ST (M ± SD) | F(2,74) Value | p Value | η2 (95% CI) | |
---|---|---|---|---|---|---|
Average Sunrise | 07:08 ± 02:48 | 07:35 ± 03:18 | 06:42 ± 03:18 | 387.24 | <0.001 ** | 0.84 (0.79–0.87) |
Distance between Sunrise and Waketime ‡ | 19 ± 69 min | −15 ± 86 min | 44 ± 86 min | 406.82 | <0.001 ** | 0.85 (0.80–0.87) |
Percentage of Waketimes Occurring Before Sunrise | 42 ± 37% | 63 ± 41% | 33 ± 38% | 76.37 | <0.001 ** | 0.51 (0.39–0.59) |
Percent Darkness During the Total Waking Day | 32 ± 13% | 29 ± 13% | 33 ± 12% | 94.69 | <0.001 ** | 0.56 (0.45–0.64) |
Percent Darkness During Commute-to-work | 28 ± 44% | 32 ± 45% | 28 ± 44% | 6.48 | 0.002 * | 0.08 (0.01–0.17) |
Percent Darkness During Work Day | 41 ± 42% | 41 ± 42% | 41 ± 42% | 0.08 | 0.93 | 0.001 (0.00–0.01) |
Percent Darkness During Commute-Home | 31 ± 44% | 30 ± 45% | 31 ± 44% | 0.37 | 0.68 | 0.005 (0.00–0.04) |
Percent Darkness During Sleep | 66 ± 24% | 71 ± 26% | 63 ± 24% | 103.11 | <0.001 ** | 0.58 (0.48–0.65) |
CTA (M ± SD) | Permanent DST (M ± SD) | Permanent ST (M ± SD) | F(2,74) Value | p Value | η2 (95% CI) | |
---|---|---|---|---|---|---|
Commute-to-work Average Effectiveness | 96.02 ± 3.27 | 96.12 ± 3.12 | 96.12 ± 3.14 | 9.50 | 0.001 ** | 0.11 (0.03–0.21) |
Commute-to-work Minimum Effectiveness | 94.94 ± 3.87 | 95.04 ± 3.73 | 95.04 ± 3.75 | 8.24 | 0.004 * | 0.10 (0.02–0.19) |
Work Day Average Effectiveness | 91.21 ± 10.76 | 91.32 ± 10.60 | 91.33 ± 10.61 | 11.40 | <0.001 ** | 0.13 (0.04–0.23) |
Work Day Minimum Effectiveness | 86.70 ± 12.32 | 86.84 ± 12.13 | 86.83 ± 12.13 | 4.82 | 0.009 * | 0.06 (0.004–0.14) |
Commute-Home Average Effectiveness | 87.36 ± 11.83 | 87.50 ± 11.64 | 87.49 ± 11.63 | 3.37 | 0.04 * | 0.04 (0.00–0.12) |
Commute-Home Minimum Effectiveness | 86.31 ± 11.93 | 86.45 ± 11.75 | 86.44 ± 11.75 | 3.23 | 0.04 * | 0.04 (0.00–0.11) |
Total Waking Day Average Effectiveness | 93.60 ± 5.99 | 93.63 ± 5.98 | 93.63 ± 5.98 | 9.19 | <0.001 ** | 0.11 (0.03–0.20) |
Total Waking Day Minimum Effectiveness | 89.45 ± 5.91 | 89.48 ± 5.90 | 89.48 ± 5.89 | 24.26 | <0.001 ** | 0.25 (0.13–0.35) |
CTA (M ± SD) | Permanent DST (M ± SD) | Permanent ST (M ± SD) | F Value | p Value | η2 (95% CI) | |
---|---|---|---|---|---|---|
Morning Rush Hour Average Effectiveness | 87.89 ± 14.37 | 88.05 ± 14.15 | 88.07 ± 14.16 | F(2,54) = 3.14 | 0.05 † | 0.05 (0.00–0.14) |
Morning Rush Hour Minimum Effectiveness | 86.92 ± 14.22 | 87.06 ± 14.00 | 87.09 ± 14.00 | F(2,54) = 2.90 | 0.06 † | 0.05 (0.00–0.14) |
Percent Darkness During Morning Rush Hour | 7 ± 23% | 16 ± 31% | 7 ± 23% | F(2,54) = 14.35 | <0.001 ** | 0.21 (0.08–0.33) |
Evening Rush Hour Average Effectiveness | 97.48 ± 0.92 | 97.50 ± 0.90 | 97.49 ± 0.91 | F(2,39) = 0.54 | 0.58 | 0.01 (0.00–0.08) |
Evening Rush Hour Minimum Effectiveness | 97.11 ± 0.68 | 97.12 ± 0.66 | 97.12 ± 0.67 | F(2,39) = 0.51 | 0.60 | 0.01 (0.00–0.08) |
Percent Darkness During Evening Rush Hour | 7 ± 14% | 0 ± 0% | 7 ± 15% | F(2,39) = 8.80 | <0.001 ** | 0.18 (0.33–0.62) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devine, J.K.; Choynowski, J.; Hursh, S.R. Potential Effects of Permanent Daylight Savings Time on Daylight Exposure and Risk during Commute Times across United States Cities in 2023–2024 Using a Biomathematical Model of Fatigue. Safety 2023, 9, 59. https://doi.org/10.3390/safety9030059
Devine JK, Choynowski J, Hursh SR. Potential Effects of Permanent Daylight Savings Time on Daylight Exposure and Risk during Commute Times across United States Cities in 2023–2024 Using a Biomathematical Model of Fatigue. Safety. 2023; 9(3):59. https://doi.org/10.3390/safety9030059
Chicago/Turabian StyleDevine, Jaime K., Jake Choynowski, and Steven R. Hursh. 2023. "Potential Effects of Permanent Daylight Savings Time on Daylight Exposure and Risk during Commute Times across United States Cities in 2023–2024 Using a Biomathematical Model of Fatigue" Safety 9, no. 3: 59. https://doi.org/10.3390/safety9030059
APA StyleDevine, J. K., Choynowski, J., & Hursh, S. R. (2023). Potential Effects of Permanent Daylight Savings Time on Daylight Exposure and Risk during Commute Times across United States Cities in 2023–2024 Using a Biomathematical Model of Fatigue. Safety, 9(3), 59. https://doi.org/10.3390/safety9030059