Neuroimmunology and Allergic Disease
Abstract
:1. Introduction
2. Neuroimmune Cross-Talk in the Skin
3. Neuroimmune Cross-Talk in the Gut
4. Neuroimmune Cross-Talk in the Lungs
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sampath, V.; Sindher, S.B.; Pinzon, A.A.; Nadeau, K.C. Can food allergy be cured? What are the future prospects? Allergy 2019, 75, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Kabata, H.; Artis, D. Neuro-immune crosstalk and allergic inflammation. J. Clin. Investig. 2019, 129, 1475–1482. [Google Scholar] [CrossRef] [PubMed]
- Godinho-Silva, C.; Cardoso, F.; Veiga-Fernandes, H. Neuro–Immune Cell Units: A New Paradigm in Physiology. Annu. Rev. Immunol. 2019, 37, 19–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Kim, B.S. Itch: A Paradigm of Neuroimmune Crosstalk. Immunity 2020, 52, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, T.-L.B.; Kim, B.S. The Return of the Mast Cell: New Roles in Neuroimmune Itch Biology. J. Investig. Dermatol. 2020, 140, 945–951. [Google Scholar] [CrossRef]
- Serhan, N.; Basso, L.; Sibilano, R.; Petitfils, C.; Meixiong, J.; Bonnart, C.; Reber, L.; Marichal, T.; Starkl, P.; Cenac, N.; et al. House dust mites activate nociceptor–mast cell clusters to drive type 2 skin inflammation. Nat. Immunol. 2019, 20, 1435–1443. [Google Scholar] [CrossRef]
- Choi, J.E.; Di Nardo, A. Skin neurogenic inflammation. Semin. Immunopathol. 2018, 40, 249–259. [Google Scholar] [CrossRef]
- Thapaliya, M.; Na Ayudhya, C.C.; Amponnawarat, A.; Roy, S.; Ali, H. Mast Cell-Specific MRGPRX2: A Key Modulator of Neuro-Immune Interaction in Allergic Diseases. Curr. Allergy Asthma Rep. 2021, 21, 3. [Google Scholar] [CrossRef]
- McNeil, B.; Pundir, P.; Meeker, S.; Han, L.; Undem, B.J.; Kulka, M.; Dong, X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 2014, 519, 237–241. [Google Scholar] [CrossRef]
- Green, D.P.; Limjunyawong, N.; Gour, N.; Pundir, P.; Dong, X. A Mast-Cell-Specific Receptor Mediates Neurogenic Inflammation and Pain. Neuron 2019, 101, 412–420.e3. [Google Scholar] [CrossRef]
- Heyer, G.; Hornstein, O.P.; Handwerker, H.O. Reactions to intradermally injected substance P and topically applied mustard oil in atopic dermatitis patients. Acta Derm. -Venereol. 1991, 71, 291–295. [Google Scholar] [PubMed]
- Fujisawa, D.; Kashiwakura, J.; Kita, H.; Kikukawa, Y.; Fujitani, Y.; Sasaki-Sakamoto, T.; Kuroda, K.; Nunomura, S.; Hayama, K.; Terui, T.; et al. Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J. Allergy Clin. Immunol. 2014, 134, 622–633.e9. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Che, D.; Zhao, T.; Pundir, P.; Cao, J.; Lv, Y.; Wang, J.; Ma, P.; Fu, J.; Wang, N.; et al. MRGPRX2 is essential for sinomenine hydrochloride induced anaphylactoid reactions. Biochem. Pharmacol. 2017, 146, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Qiao, C.; Hu, S.; Che, D.; Wang, J.; Gao, J.; Ma, R.; Jiang, W.; Zhang, T.; Liu, R. The anti-anaphylactoid effects of Piperine through regulating MAS-related G protein-coupled receptor X2 activation. Phytother. Res. 2020, 34, 1409–1420. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, S.; Che, D.; An, H.; Liu, R. A mast-cell-specific receptor mediates Iopamidol induced immediate IgE-independent anaphylactoid reactions. Int. Immunopharmacol. 2019, 75, 105800. [Google Scholar] [CrossRef]
- Zhang, T.; Che, D.; Liu, R.; Han, S.; Wang, N.; Zhan, Y.; Pundir, P.; Cao, J.; Lv, Y.; Yang, L.; et al. Typical antimicrobials induce mast cell degranulation and anaphylactoid reactions via MRGPRX2 and its murine homologue MRGPRB2. Eur. J. Immunol. 2017, 47, 1949–1958. [Google Scholar] [CrossRef]
- Ogasawara, H.; Noguchi, M. Therapeutic Potential of MRGPRX2 Inhibitors on Mast Cells. Cells 2021, 10, 2906. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, E.-H.; Lim, Y.H.; Jeong, D.; Na, H.S.; Jung, Y. Pathophysiological Role of TLR4 in Chronic Relapsing Itch Induced by Subcutaneous Capsaicin Injection in Neonatal Rats. Immune Netw. 2022, 22, e20. [Google Scholar] [CrossRef]
- Qin, C.; Wang, Y.; Li, S.; Tang, Y.; Gao, Y. The Involvement of Endothelin Pathway in Chronic Psychological Stress-Induced Bladder Hyperalgesia Through Capsaicin-Sensitive C-Fiber Afferents. J. Inflamm. Res. 2022, 15, 1209–1226. [Google Scholar] [CrossRef]
- Meixiong, J.; Basso, L.; Dong, X.; Gaudenzio, N. Nociceptor–Mast Cell Sensory Clusters as Regulators of Skin Homeostasis. Trends Neurosci. 2020, 43, 130–132. [Google Scholar] [CrossRef]
- Kay, A.B. Calcitonin gene-related peptide– and vascular endothelial growth factor–positive inflammatory cells in late-phase allergic skin reactions in atopic subjects. J. Allergy Clin. Immunol. 2011, 127, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Song, M.; Kikuchi, H.; Hisamichi, K.; Xu, X.L.; Greenspan, A.; Kato, M.; Chiou, C.-F.; Kato, T.; Guzzo, C.; et al. Phase 2a, randomized, double-blind, placebo-controlled, multicenter, parallel-group study of a H4 R-antagonist (JNJ-39758979) in Japanese adults with moderate atopic dermatitis. J. Dermatol. 2015, 42, 129–139. [Google Scholar] [CrossRef]
- Wang, W.; Yu, H.; Pan, Y.; Shao, S. Combined Treatment With H1 and H4 Receptor Antagonists Improves Th2 Inflammatory Responses in the Nasal Mucosa of Allergic Rhinitis Rats. Am. J. Rhinol. Allergy 2021, 35, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Byeon, J.H.; Yoon, W.; Ahn, S.H.; Lee, H.S.; Kim, S.; Yoo, Y. Correlation of serum interleukin-31 with pruritus and blood eosinophil markers in children with atopic dermatitis. Allergy Asthma Proc. 2020, 41, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Kabashima, K.; Matsumura, T.; Komazaki, H.; Kawashima, M.; for the Nemolizumab JP01 andJP02 Study Group. Nemolizumab plus topical agents in patients with atopic dermatitis (AD) and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: Results from two phase III, long-term studies. Br. J. Dermatol. 2021, 186, 642–651. [Google Scholar] [CrossRef]
- Oetjen, L.K.; Mack, M.R.; Feng, J.; Whelan, T.M.; Niu, H.; Guo, C.J.; Chen, S.; Trier, A.M.; Xu, A.Z.; Tripathi, S.V.; et al. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell 2017, 171, 217–228.e13. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kodama, T.; Lee, J.; Utsunomiya, N.; Hayashi, S.; Sakamoto, H.; Kuramoto, H.; Kadowaki, M. Anti-Allergic Role of Cholinergic Neuronal Pathway via α7 Nicotinic ACh Receptors on Mucosal Mast Cells in a Murine Food Allergy Model. PLoS ONE 2014, 9, e85888. [Google Scholar] [CrossRef]
- Kim, J.-H.; Yamamoto, T.; Lee, J.; Yashiro, T.; Hamada, T.; Hayashi, S.; Kadowaki, M. CGRP, a neurotransmitter of enteric sensory neurons, contributes to the development of food allergy due to the augmentation of microtubule reorganization in mucosal mast cells. Biomed. Res. 2014, 35, 285–293. [Google Scholar] [CrossRef]
- Lee, J.; Yamamoto, T.; Hayashi, S.; Kuramoto, H.; Kadowaki, M. Enhancement of CGRP sensory afferent innervation in the gut during the development of food allergy in an experimental murine model. Biochem. Biophys. Res. Commun. 2013, 430, 895–900. [Google Scholar] [CrossRef]
- Yashiro, T.; Ogata, H.; Zaidi, S.; Lee, J.; Hayashi, S.; Yamamoto, T.; Kadowaki, M. Pathophysiological Roles of Neuro-Immune Interactions between Enteric Neurons and Mucosal Mast Cells in the Gut of Food Allergy Mice. Cells 2021, 10, 1586. [Google Scholar] [CrossRef]
- Freeman, M.R.; Sathish, V.; Manlove, L.; Wang, S.; Britt, R.D.; Thompson, M.A.; Pabelick, C.M.; Prakash, Y.S. Brain-derived neurotrophic factor and airway fibrosis in asthma. Am. J. Physiol. Cell. Mol. Physiol. 2017, 313, L360–L370. [Google Scholar] [CrossRef] [PubMed]
- Kistemaker, L.E.M.; Prakash, Y.S. Airway Innervation and Plasticity in Asthma. Physiology 2019, 34, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-G.; Tian, W.-M.; Zhang, H.; Li, M.; Shang, Y.-X. Nerve growth factor exacerbates allergic lung inflammation and airway remodeling in a rat model of chronic asthma. Exp. Ther. Med. 2013, 6, 1251–1258. [Google Scholar] [CrossRef]
- Huang, L.-W.; Sun, G.; Wang, D.-L.; Kong, L.-F. Inhibition of nerve growth factor/tyrosine kinase receptor A signaling ameliorates airway remodeling in chronic allergic airway inflammation. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 2261–2268. [Google Scholar] [PubMed]
- She, W.; Mei, Z.; Zhao, H.; Li, G.; Lin, Y. Nebulized Inhalation of Anti-Nerve Growth Factor Microspheres Inhibits Airway Remodeling in an Ovalbumin-Induced Rat Asthma Model. J. Aerosol Med. Pulm. Drug Deliv. 2019, 32, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Raap, U.; Fokkens, W.; Bruder, M.; Hoogsteden, H.; Kapp, A.; Braunstahl, G.-J. Modulation of neurotrophin and neurotrophin receptor expression in nasal mucosa after nasal allergen provocation in allergic rhinitis. Allergy 2008, 63, 468–475. [Google Scholar] [CrossRef]
- Gosens, R.; Gross, N. The mode of action of anticholinergics in asthma. Eur. Respir. J. 2018, 52, 1701247. [Google Scholar] [CrossRef]
- Kistemaker, L.E.; Gosens, R. Acetylcholine beyond bronchoconstriction: Roles in inflammation and remodeling. Trends Pharmacol. Sci. 2015, 36, 164–171. [Google Scholar] [CrossRef]
- Blake, K.J.; Jiang, X.R.; Chiu, I.M. Neuronal Regulation of Immunity in the Skin and Lungs. Trends Neurosci. 2019, 42, 537–551. [Google Scholar] [CrossRef]
- Pongratz, G.; McAlees, J.W.; Conrad, D.H.; Erbe, R.S.; Haas, K.M.; Sanders, V.M. The Level of IgE Produced by a B Cell Is Regulated by Norepinephrine in a p38 MAPK- and CD23-Dependent Manner. J. Immunol. 2006, 177, 2926–2938. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sindher, S.B.; Sampath, V.; Chin, A.R.; Nadeau, K.; Chinthrajah, R.S. Neuroimmunology and Allergic Disease. Allergies 2022, 2, 80-86. https://doi.org/10.3390/allergies2030008
Sindher SB, Sampath V, Chin AR, Nadeau K, Chinthrajah RS. Neuroimmunology and Allergic Disease. Allergies. 2022; 2(3):80-86. https://doi.org/10.3390/allergies2030008
Chicago/Turabian StyleSindher, Sayantani B., Vanitha Sampath, Andrew R. Chin, Kari Nadeau, and Rebecca Sharon Chinthrajah. 2022. "Neuroimmunology and Allergic Disease" Allergies 2, no. 3: 80-86. https://doi.org/10.3390/allergies2030008
APA StyleSindher, S. B., Sampath, V., Chin, A. R., Nadeau, K., & Chinthrajah, R. S. (2022). Neuroimmunology and Allergic Disease. Allergies, 2(3), 80-86. https://doi.org/10.3390/allergies2030008