Mast Cells in Tuberculosis: Immune Regulation, Allergic Environments, and Pathological Mechanisms
Abstract
1. Introduction
2. Prevalence and Epidemiology of Allergic Diseases and Tuberculosis
2.1. Th2 Immune Polarization and Impaired TB Control
2.2. Genetic Polymorphisms and Population-Specific Risk
2.3. Environmental Influences: Air Pollution, Tobacco Smoke, and Allergen Exposure
2.4. Gut–Lung Axis and Microbiota-Immune Crosstalk
2.5. Clinical and Public Health Implications of Mast Cell-Driven Immune Dysregulation in Tuberculosis
3. Gene–Environment Interactions and Molecular Mechanisms in Mast Cell-Mediated TB Pathogenesis
3.1. Genetic Factors Regulating Mast Cell Responses in TB
3.2. TLR2-Mediated Mast Cell Activation: A Crucial Defense Axis
3.3. Mast Cell Distribution and Phenotype in Human TB Lesions
3.4. Environmental Triggers of Mast Cell Activation and TB Susceptibility
3.5. Gut-Lung Axis, Microbiota, and Mast Cell Crosstalk
3.6. Dual Roles of Mast Cell-Derived Mediators in TB Immunopathology
4. The Role of Bacterial Contamination in TB Pathogenesis and Allergy Sensitization
5. The Role of Gut Microbiota in TB and Allergy Pathogenesis
6. The Impact of Immune Mechanisms on TB Pathogenesis and Mast Cell Activity
6.1. Innate Immune Recognition and MC Activation
6.2. Adaptive Immune Cross-Talk and Cytokine Modulation
6.3. Localization and Phenotypic Shifts in Mcs in Human TB Lesions
6.4. Context-Dependent Mediator Release
6.5. Implications for Immunotherapeutic Targeting
7. Conclusions
- -
- Comprehensive profiling of MC phenotypes and functions across TB stages;
- -
- Longitudinal epidemiological studies on TB incidence/severity in allergic populations;
- -
- Development and validation of MC-directed HDTs in preclinical/clinical TB models;
- -
- Exploration of personalized medicine approaches incorporating cytokine profiling, genetic risk markers, and environmental exposure data for patient stratification and tailored interventions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MC | Mast Cells |
Mtb | Mycobacterium tuberculosis |
TB | Tuberculosis |
HDT | Host-Directed Therapy |
LTBI | Latent Tuberculosis Infection |
Th1 | T-Helper Type 1 |
Th2 | T-Gelper Type 2 |
Treg | Regulatory T Cell |
TLR2 | Toll-Like Receptor 2 |
TNF-α | Tumor Necrosis Factor-Alpha |
TGF-β | Transforming Growth Factor-Beta |
interleukin | G Protein-Coupled Receptor |
FcεRI | High-Affinity IgE Receptor |
CD48 | Cluster of Differentiation 48 |
IFN-γ | Interferon-Gamma |
PM2.5 | Particulate Matter ≤ 2.5 µm |
References
- Garcia-Rodriguez, K.M.; Bini, E.I.; Gamboa-Domínguez, A.; Espitia-Pinzón, C.I.; Huerta-Yepez, S.; Bulfone-Paus, S.; Hernández-Pando, R. Differential mast cell numbers and characteristics in human tuberculosis pulmonary lesions. Sci. Rep. 2021, 11, 10687. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, S.; Hernández-Pando, R.; Abraham, S.N.; Enciso, J.A. Mast cell activation by Mycobacterium tuberculosis: Mediator release and role of CD48. J. Immunol. 2003, 170, 5590–5596. [Google Scholar] [CrossRef]
- Etna, M.P.; Giacomini, E.; Severa, M.; Coccia, E.M. Pro- and anti-inflammatory cytokines in tuberculosis: A two-edged sword in TB pathogenesis. Semin. Immunol. 2014, 26, 543–551. [Google Scholar] [CrossRef]
- Gupta, A.; Nayak, S.; Dey, R.; Das, P.; Basu, S. Mast cells promote pathology and susceptibility in tuberculosis. Elife 2024, 13, e102634. [Google Scholar] [CrossRef]
- Smith, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 2003, 16, 463–496. [Google Scholar] [CrossRef] [PubMed]
- Carlos, D.; Frantz, F.G.; Souza-Júnior, D.A.; Jamur, M.C.; Oliver, C.; Ramos, S.G.; Quesniaux, V.F.; Ryffel, B.; Silva, C.L.; Bozza, M.T.; et al. TLR2-dependent mast cell activation contributes to the control of Mycobacterium tuberculosis infection. Microbes Infect. 2009, 11, 770–778. [Google Scholar] [CrossRef]
- Tait Wojno, E.D.; Hunter, C.A.; Stumhofer, J.S. The immunobiology of the interleukin-12 family: Room for discovery. Immunity 2019, 50, 851–870. [Google Scholar] [CrossRef]
- Wang, H.; Ruan, G.; Li, Y.; Liu, X. The role and potential application of IL-12 in the immune regulation of tuberculosis. Int. J. Mol. Sci. 2025, 26, 3106. [Google Scholar] [CrossRef]
- Ashenafi, S.; Aderaye, G.; Bekele, A.; Zewdie, M.; Aseffa, G.; Hoang, A.T.N.; Carow, B.; Habtamu, M.; Wijkander, M.; Rottenberg, M.; et al. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin. Immunol. 2014, 151, 84–99. [Google Scholar] [CrossRef] [PubMed]
- Teles, R.M.B.; Graeber, T.G.; Krutzik, S.R.; Montoya, D.; Schenk, M.; Lee, D.J.; Komisopoulou, E.; Kelly-Scumpia, K.; Chun, R.; Iyer, S.S.; et al. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science 2013, 339, 1448–1453. [Google Scholar] [CrossRef]
- Parasa, V.R.; Rahman, M.J.; Hoang, A.T.N.; Svensson, M.; Brighenti, S.; Lerm, M. Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue. Dis. Model. Mech. 2014, 7, 281–288. [Google Scholar] [CrossRef]
- Zhen, L.; Sun, Y.; Gao, J. Interleukin-4 gene polymorphisms and the risk of tuberculosis: A meta-analysis. Cytokine 2023, 169, 156282. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, N.; Mao, M.; Zhou, Y.; Wu, Y.; Li, J.; Zhang, W.; Peng, C.; Chen, X.; Li, J. Fine particulate matter (PM2.5) promotes IgE-mediated mast cell activation through ROS/Gadd45b/JNK axis. J. Dermatol. Sci. 2021, 102, 47–57. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, P.; Romero-Andrada, I.; Molina-Moya, B.; Latorre, I.; Lacoma, A.; Prat-Aymerich, C.; Tabernero, L.; Domínguez, J. Impact of diesel exhaust particles on infections with Mycobacterium bovis BCG in in vitro human macrophages and an in vivo Galleria mellonella model. Environ. Pollut. 2024, 341, 122597. [Google Scholar] [CrossRef]
- Shi, W.; Hu, Y.; Ning, Z.; Xia, F.; Wu, M.; Hu, Y.O.O.; Chen, C.; Prast-Nielsen, S.; Xu, B. Alterations of gut microbiota in patients with active pulmonary tuberculosis in China: A pilot study. Int. J. Infect. Dis. 2021, 111, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, S.; Rivas-Santiago, B.; Enciso, J.A. Mycobacterium tuberculosis entry into mast cells through cholesterol-rich membrane microdomains. Scand. J. Immunol. 2009, 70, 256–263. [Google Scholar] [CrossRef]
- Mahajan, P.; Gor, H.R.; Jadhav, S.; Joshi, M.; Nema, V. Host-Directed Therapeutic for the treatment of Mycobacterium tuberculosis. Microbiol. Res. 2025, 299, 128253. [Google Scholar] [CrossRef]
- Caslin, H.L.; Kiwanuka, K.N.; Haque, T.T.; Taruselli, M.T.; MacKnight, H.P.; Paranjape, A.; Ryan, J.J. Controlling mast cell activation and homeostasis: Work influenced by Bill Paul that continues today. Front. Immunol. 2018, 9, 868. [Google Scholar] [CrossRef]
- McLeod, J.J.A.; Baker, B.; Ryan, J.J. Mast cell production and response to IL4 and IL13. Cytokine 2015, 75, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Choi, H.; Lee, H.; Han, K.; Park, D.W.; Park, T.S.; Moon, J.-Y.; Kim, T.-H.; Sohn, J.W.; Yoon, H.J.; et al. Impact of allergic disease on the risk of mycobacterial disease. J. Allergy Clin. Immunol. Pract. 2023, 11, 2830–2838.e4. [Google Scholar] [CrossRef]
- Yeh, J.J.; Wang, Y.C.; Kao, C.H. Asthma-Chronic Obstructive Pulmonary Diseases Overlap Syndrome Increases the Risk of Incident Tuberculosis: A National Cohort Study. PLoS ONE 2016, 11, e0159012. [Google Scholar] [CrossRef]
- Lin, H.-H.; Ezzati, M.; Murray, M. Tobacco smoke, indoor air pollution and tuberculosis: A systematic review and meta-analysis. PLoS Med. 2007, 4, e20. [Google Scholar] [CrossRef] [PubMed]
- Obore, N.; Kawuki, J.; Guan, J.; Papabathini, S.; Wang, L. Association between indoor air pollution, tobacco smoke and tuberculosis: An updated systematic review and meta-analysis. Public Health 2020, 187, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Chen, L.L.; Lu, R.Q.; Ma, W.W.; Xiao, R. Alteration of Intestinal Microbiota Composition in Oral Sensitized C3H/HeJ Mice Is Associated With Changes in Dendritic Cells and T Cells in Mesenteric Lymph Nodes. Front. Immunol. 2021, 12, 631494. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Vidyarthi, A.; Nadeem, S.; Negi, S.; Nair, G.; Agrewala, J.N. Alteration in the gut microbiota provokes susceptibility to tuberculosis. Front. Immunol. 2016, 7, 529. [Google Scholar] [CrossRef]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.A.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut–lung axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef]
- Mo, S.; Guo, J.; Ye, T.; Zhang, X.; Zeng, J.; Xu, Y.; Peng, B.; Dai, Y.; Xiao, W.; Zhang, P.; et al. Mycobac-terium tuberculosis utilizes host histamine receptor H1 to modulate reactive oxygen species production and phagosome maturation via the p38MAPK-NOX2 axis. mBio. 2022, 13, e02004-22. [Google Scholar] [CrossRef]
- Uğuz, A.; Naziroğlu, M.; Şahin, M.; Yüksel, M.; Aykur, M. The effect of cetirizine on IFN-gamma and IL-10 production in children with allergic rhinitis. Turk. J. Pediatr. 2005, 47, 111–115. [Google Scholar] [PubMed]
- Birring, S.S.; Wijsenbeek, M.; Agrawal, S.; van den Berg, J.; Stone, H.; Maher, T.M.; Morice, A.H. A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: A randomised, double-blind, proof-of-concept, phase 2 trial. Lancet Respir. Med. 2017, 5, 806–815. [Google Scholar] [CrossRef]
- Hardwick, C.; White, D.; Morris, E.; Monteiro, E.F.; A Breen, R.; Lipman, M. Montelukast as a potential therapy for TB-associated immune reconstitution inflammatory syndrome. Sex. Transm. Infect. 2006, 82, 513–514. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Bissonnette, R.; Ungar, B.; Suárez-Fariñas, M.; Ardeleanu, M.; Esaki, H.; Suprun, M.; Estrada, Y.; Xu, H.; Peng, X.; et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 143, 155–172. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, F.; Wang, Y.; Chen, J.; Yuan, X. Association between IFNGR1 gene polymorphisms and tuberculosis susceptibility: A meta-analysis. Front. Public Health 2022, 10, 976221. [Google Scholar] [CrossRef]
- Ober, C.; Yao, T.C. The genetics of asthma and allergic disease: A 21st century perspective. Immunol. Rev. 2011, 242, 10–30. [Google Scholar] [CrossRef]
- Roy, E.; Brennan, J.; Jolles, S.; Lowrie, D.B. Beneficial effect of anti-interleukin-4 antibody when administered in a murine model of tuberculosis infection. Tuberculosis 2008, 88, 197–202. [Google Scholar] [CrossRef]
- Heitmann, L.; Abad Dar, M.; Schreiber, T.; Erdmann, H.; Behrends, J.; McKenzie, A.N.J.; Brombacher, F.; Ehlers, S.; Hölscher, C. The IL-13/IL-4Rα axis is involved in tuberculosis-associated pathology. J. Pathol. 2014, 234, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Inghammar, M.; Ekbom, A.; Engström, G.; Ljungberg, B.; Romanus, V.; Löfdahl, C.-G.; Egesten, A.; Dheda, K. COPD and the Risk of Tuberculosis—A Population-Based Cohort Study. PLoS ONE 2010, 5, e10138. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, A.N.; McKenzie, C.I.; Shen, S.; Stanley, D.; Macia, L.; Mason, L.J.; Roberts, L.K.; Wong, C.H.Y.; Shim, R.; Robert, R.; et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 2015, 6, 7320. [Google Scholar] [CrossRef] [PubMed]
- Ege, M.J.; Mayer, M.; Normand, A.-C.; Genuneit, J.; Cookson, W.O.; Braun-Fahrländer, C.; Heederik, D.; Piarroux, R.; von Mutius, E. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 2011, 364, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, K.; Singh, S.; Phillips, R.O. Non-tuberculous mycobacteria in TB-endemic countries: Are we neglecting the danger? PLoS Negl. Trop. Dis. 2010, 4, e615. [Google Scholar] [CrossRef]
- Li, H.; Yang, T.; Ning, Q.; Li, F.; Chen, T.; Yao, Y.; Sun, Z. Exposure to cigarette smoke alters mast cell phenotype and function in the lung. Inhal. Toxicol. 2015, 27, 822–831. [Google Scholar] [CrossRef]
- Salimi, M.; Barlow, J.L.; Saunders, S.P.; Xue, L.; Gutowska-Owsiak, D.; Wang, X.; Huang, L.-C.; Johnson, D.; Scanlon, S.T.; McKenzie, A.N.J.; et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 2013, 210, 2939–2950. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, D.O.; Siefert, R.J.; Weiner, D.B. Alarmin IL-33 elicits potent TB-specific cell-mediated responses. Hum. Vaccin. Immunother. 2015, 11, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
Feature | Allergic Diseases | Tuberculosis (TB) |
---|---|---|
Mast Cell Activation | High | Moderate to high |
Dominant Cytokine | IL-4, IL-5, IL-13 | TNF-α, IFN-γ, IL-6 |
Immune Response | Th2-skewed | Th1/Th17-driven |
Pathology | Airway remodeling, inflammation | Granuloma formation, fibrosis |
Histamine Role | Promotes inflammation and Th2 bias | Suppresses IFN-γ, impairs Th1 response |
Mast Cell Stabilizers | Reduce allergic symptoms | Potential to limit TB-related fibrosis |
Leukotriene Antagonists | Alleviate bronchoconstriction | May reduce TB lesion inflammation |
Cytokine Modulators | Target IL-4/IL-13, IL-5, and TSLP (e.g., dupilumab, polizumab, tezepelumab) * | Under investigation for TB treatment |
Mediator/ Mechanism | Impact in Allergy | Impact in Tuberculosis | Therapeutic Targeting |
---|---|---|---|
Histamine | Promotes vasodilation Th2 inflammation | Suppresses IFN-γ; impairs macrophage activation | Antihistamines (cetirizine, fexofenadine) |
IL-4, IL-13 | Drives Th2 polarization; increases IgE production | Inhibits Th1 immunity; facilitates bacterial spread | IL-4/IL-13 inhibitors (dupilumab) |
Tryptase, Chymase | Tissue remodeling and fibrosis in chronic inflammation | Promotes fibrosis and granuloma instability | Mast cell stabilizers (cromolyn, ketotifen) |
Leukotriene B4 (LTB4) | Recruits eosinophils; induces airway inflammation | Dual role: aids granuloma formation but may cause tissue damage | Leukotriene receptor antagonists (montelukast) |
TLR2 Signaling | Limited role | Essential for mast cell–driven immunity to Mtb | TLR2 agonists or mast cell transfer |
IL-12/IFN-γ Axis | Downregulated; impairs Th1 control | Critical for macrophage activation and bacterial clearance | IFN-γ supplementation, IL-12 therapy |
IL-17A Secretion | Less involved | Supports granuloma maintenance | IL-17 modulation (under investigation) |
Gut–Lung Axis | Dysbiosis enhances allergic inflammation | Dysbiosis impairs pulmonary immunity | Probiotics, dietary fiber |
Environmental Exposure (PM2.5, smoke) | Exacerbates MC activation, Airway hyperreactivity | Promotes MC activation, Weakens anti-TB response | Air quality improvement policies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Park, G.; Lim, H.-S.; Hong, Y.; Seo, H. Mast Cells in Tuberculosis: Immune Regulation, Allergic Environments, and Pathological Mechanisms. Allergies 2025, 5, 30. https://doi.org/10.3390/allergies5030030
Lee SH, Park G, Lim H-S, Hong Y, Seo H. Mast Cells in Tuberculosis: Immune Regulation, Allergic Environments, and Pathological Mechanisms. Allergies. 2025; 5(3):30. https://doi.org/10.3390/allergies5030030
Chicago/Turabian StyleLee, Seung Hoon, Gunhyuk Park, Hye-Sun Lim, Yoonseo Hong, and Huiyun Seo. 2025. "Mast Cells in Tuberculosis: Immune Regulation, Allergic Environments, and Pathological Mechanisms" Allergies 5, no. 3: 30. https://doi.org/10.3390/allergies5030030
APA StyleLee, S. H., Park, G., Lim, H.-S., Hong, Y., & Seo, H. (2025). Mast Cells in Tuberculosis: Immune Regulation, Allergic Environments, and Pathological Mechanisms. Allergies, 5(3), 30. https://doi.org/10.3390/allergies5030030