Learning Dynamics of Solitonic Optical Multichannel Neurons
Abstract
1. Introduction
2. Synaptic Specificity, Hebbian Learning and Functional Heterogeneity
3. Optical Solitons and Simulation Method
- If a channel is written or rewritten with significantly higher beam power than the others, it experiences a more pronounced local index variation. As a result, weaker channels tend to merge into the stronger one and disappear.
- If the writing beam remains in a given channel for a longer duration than in others, the deeper index modulation ultimately causes the collapse of the competing channels.
4. Multichannel Solitonic Neurons Learning
4.1. Single-Node Neurons
4.2. Multi-Node Neurons
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 5th ed.; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Buzsáki, G. Rhythms of the Brain; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Li, Q.; Song, Y.; Liu, X.; Song, W.; Zhao, B.; Wang, Z.; Chen, A.; Zhang, T.; Chen, L. TaiBai: A fully programmable brain-inspired processor with topology-aware efficiency. arXiv 2025, arXiv:2508.18961. [Google Scholar]
- Backus, J. Can programming be liberated from the von Neumann style? Commun. ACM 1978, 21, 613–641. [Google Scholar] [CrossRef]
- Shen, Y.; Harris, N.C.; Skirlo, S.A.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Ríos, C.; Youngblood, N.; Cheng, Z.; Le Gallo, M.; Pernice, W.H.P.; Wright, C.D.; Sebastian, A.; Bhaskaran, H. In-memory computing on a photonic platform. Sci. Adv. 2019, 5, eaau5759. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Tan, M.; Corcoran, B.; Wu, J.; Boes, A.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Hicks, D.G.; Morandotti, R.; et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 2021, 589, 44–51. [Google Scholar] [CrossRef]
- Tait, A.N.; de Lima, T.F.; Zhou, E.; Wu, A.X.; Nahmias, M.A.; Shastri, B.J.; Prucnal, P.R. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 2020, 10, 7430. [Google Scholar] [CrossRef]
- Gentili, P.L.; Zurlo, M.P.; Stano, P. Neuromorphic engineering in wetware: The state of the art and its perspectives. Front. Neurosci. 2024, 18, 1443121. [Google Scholar] [CrossRef]
- Perera, S.; Balasubramaniam, S.; Somathilaka, S.; Wen, Q.; Li, X.; Kasthurirathna, D. Wet-neuromorphic computing: A new paradigm for biological artificial intelligence. IEEE Intell. Syst. 2025, 40, 39–48. [Google Scholar] [CrossRef]
- Stegeman, G.I.; Segev, M. Optical spatial solitons and their interactions: Universality and diversity. Science 1999, 286, 1518–1523. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.; Dally, W. EIE: Efficient Inference Engine on Compressed Deep Neural Network. arXiv 2016, arXiv:1602.01528. [Google Scholar] [CrossRef]
- De Luca, C.; Tincanin, M.; Indiveri, G.; Donati, E. A Neuromorphic multi-scale approach for real-time heart rate and state detection. npj Unconv. Comput. 2025, 2, 6. [Google Scholar] [CrossRef]
- Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Wiley: Hoboken, NJ, USA, 1949. [Google Scholar]
- Harvey, C.D.; Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 2007, 450, 1195–1200. [Google Scholar] [CrossRef]
- Lammers, K.; Alberucci, A.; Jisha, C.P.; Szameit, A.; Nolte, S. Electro-optical control of polarization in femtosecond-laser written waveguides using an embedded liquid crystal cell. Opt. Mater. Express 2024, 14, 836–846. [Google Scholar] [CrossRef]
- Fields, R.D.; Eshete, F.; Stevens, B.; Itoh, K. Action potential-dependent regulation of gene expression: Temporal specificity in Ca2+, cAMP-responsive element binding proteins, and MAPK signaling. J. Neurosci. 1997, 17, 7252–7266. [Google Scholar] [CrossRef]
- Fiete, I.R.; Seung, H.S. Gradient learning in spiking neural networks by dynamic perturbation of conductances. Phys. Rev. Lett. 2006, 97, 048104. [Google Scholar] [CrossRef]
- Bile, A.; Tari, H.; Fazio, E. Episodic Memory and Information Recognition Using Solitonic Neural Networks Based on Photorefractive Plasticity. Appl. Sci. 2022, 12, 5585. [Google Scholar] [CrossRef]
- Cancedda, L.; Poo, M.-M. Synapse Formation and Elimination: Competition and the Role of Activity. In Encyclopedia of Neuroscience; Springer: Berlin/Heidelberg, Germany, 2024; pp. 3932–3938. [Google Scholar]
- Indiveri, G.; Liu, S.C. Memory and information processing in neuromorphic systems. Proc. IEEE 2015, 103, 1379–1397. [Google Scholar] [CrossRef]
- Kano, M.; Hashimoto, K. Synapse elimination in the central nervous system. Curr. Opin. Neurobiol. 2009, 19, 154–161. [Google Scholar] [CrossRef]
- Hooks, B.M.; Chen, C. Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse. Neuron 2006, 52, 281–291. [Google Scholar] [CrossRef]
- Schafer, D.P.; Lehrman, E.K.; Stevens, B. The “quad-partite” synapse: Microglia-synapse interactions in the developing and mature CNS. Glia 2013, 61, 24–36. [Google Scholar] [CrossRef]
- Bile, A.; Chauvet, M.; Tari, H.; Fazio, E. Supervised Learning of Soliton X-junctions in Lithium Niobate Films on Insulator. Opt. Lett. 2022, 47, 5893–5896. [Google Scholar] [CrossRef]
- Hebb, D.O. On the nature of fear. Psychol. Rev. 1946, 53, 259–276. [Google Scholar] [CrossRef]
- Bi, G.-Q.; Poo, M.-M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998, 18, 10464–10472. [Google Scholar] [CrossRef]
- Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Kandel, E.R. The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses. Science 2001, 294, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Bile, A.; Moratti, F.; Tari, H.; Fazio, E. Supervised and unsupervised learning using a fully-plastic all-optical unit of artificial intelligence based on solitonic waveguides. Neural Comput. Appl. 2021, 33, 17071–17079. [Google Scholar] [CrossRef]
- Kandel, E.R. La biologie et le futur de la psychanalyse: Un nouveau cadre conceptuel de travail pour une psychiatrie revisitée. L’Évolution Psychiatr. 2002, 67, 1. [Google Scholar] [CrossRef]
- Buzsáki, G.; Draguhn, A. Neuronal Oscillations in Cortical Networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef]
- Casanueva-Morato, D.; Wu, C.; Indiveri, G.; Linares-Barranco, A. Dominguez-Morales, J.P. Towards a Dynamic Closed-Loop Neuromorphic Trajectory Interpolation Model: Hardware Emulation and Software Simulation. IEEE Trans. Circuits Syst. II Express Briefs 2025, 14, 1. [Google Scholar] [CrossRef]
- Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671. [Google Scholar] [CrossRef]
- Hebb, D.O. Concerning imagery. Psychol. Rev. 1968, 75, 466–477. [Google Scholar] [CrossRef]
- Bile, A. Solitonic Neural Networks: An Innovative Photonic Neural Network Based on Solitonic Interconnections; Springer: Berlin/Heidelberg, Germany, 2024; ISBN 978-3-031-48654-8. [Google Scholar] [CrossRef]
- Alonzo, M.; Moscatelli, D.; Bastiani, L.; Belardini, A.; Soci, C.; Fazio, E. All-Optical Reinforcement Learning in Solitonic X-Junctions. Sci. Rep. 2018, 8, 5716. [Google Scholar] [CrossRef]
- Chauvet, M.; Bassignot, F.; Henrot, F.; Devaux, F.; Gauthier-Manuel, L.; Maillotte, H.; Ulliac, G.; Sylvain, B. Fast-beam self-trapping in LiNbO3 films by pyroelectric effect. Opt. Lett. 2015, 40, 1258. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bile, A.; Nabizada, A.; Hamza, A.M.; Fazio, E. Learning Dynamics of Solitonic Optical Multichannel Neurons. Biomimetics 2025, 10, 645. https://doi.org/10.3390/biomimetics10100645
Bile A, Nabizada A, Hamza AM, Fazio E. Learning Dynamics of Solitonic Optical Multichannel Neurons. Biomimetics. 2025; 10(10):645. https://doi.org/10.3390/biomimetics10100645
Chicago/Turabian StyleBile, Alessandro, Arif Nabizada, Abraham Murad Hamza, and Eugenio Fazio. 2025. "Learning Dynamics of Solitonic Optical Multichannel Neurons" Biomimetics 10, no. 10: 645. https://doi.org/10.3390/biomimetics10100645
APA StyleBile, A., Nabizada, A., Hamza, A. M., & Fazio, E. (2025). Learning Dynamics of Solitonic Optical Multichannel Neurons. Biomimetics, 10(10), 645. https://doi.org/10.3390/biomimetics10100645