Optimizing Miniscrew Stability: A Finite Element Study of Titanium Screw Insertion Angles
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Finite Element Model Construction
2.2.1. Bone and Miniscrew Modeling
- ❖
- Group A: 30° insertion angle;
- ❖
- Group B: 45° insertion angle;
- ❖
- Group C: 90° insertion angle (perpendicular).
2.2.2. Meshing and Contact Definitions
2.2.3. Loading Conditions
2.3. Material Properties
2.4. Outcome Measures and Analysis
Quantitative Output
2.5. Statistical Analysis
3. Results
3.1. Von Mises Stress Distribution
3.2. Displacement Analysis of the Miniscrew
3.3. Comparative Evaluation of Insertion Angles
3.4. Visual Interpretation of Stress Patterns
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santmarti-Oliver, M.; Jorba-Garcia, A.; Moya-Martinez, T.; de-la-Rosa-Gay, C.; Camps-Font, O. Safety and Accuracy of Guided Interradicular Miniscrew Insertion: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 7697. [Google Scholar] [CrossRef]
- Katyal, S.; Bhatia, N.K.; Sardana, R.; Singh, S.; Chugh, A.; Shamim, M.A.; Anil, A.; Negi, A.; Chugh, V.K. Success rate and factors affecting stability of infrazygomatic miniscrew implants: A systematic review and meta-analysis. Eur. J. Orthod. 2024, 47, cjae074. [Google Scholar] [CrossRef]
- Vale, F.; Travassos, R.; Couto, I.; Ribeiro, M.; Marques, F.; Caramelo, F.; Marto, C.M.; Spagnuolo, G.; Paula, A.B.; Nunes, C.; et al. Patient’s Perspective on Miniscrews During Orthodontic Treatment-A Systematic Review With Meta-Analysis. Orthod. Craniofac. Res. 2025, 28, 217–241. [Google Scholar] [CrossRef]
- Figueiredo, A.L.; Travassos, R.; Nunes, C.; Ribeiro, M.P.; Santos, M.; Iaculli, F.; Paula, A.B.; Marto, C.M.; Caramelo, F.; Francisco, I.; et al. Surface Treatment of Dental Mini-Sized Implants and Screws: A Systematic Review with Meta-Analysis. J. Funct. Biomater. 2024, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- Al-Thomali, Y.; Basha, S.; Mohamed, R.N. Effect of surface treatment on the mechanical stability of orthodontic miniscrews. Angle Orthod. 2022, 92, 127–136. [Google Scholar] [CrossRef]
- Valeri, C.; Aloisio, A.; Marzo, G.; Costigliola, G.; Quinzi, V. What is the impact of patient attributes, implant characteristics, surgical techniques, and placement location on the success of orthodontic mini-implants in young adults? A Systematic Review and Meta-Analysis. Saudi Dent. J. 2024, 36, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- van den Braak, M.C.T.; Hoekstra, J.W.M.; Bronkhorst, E.M.; Schols, J.; Ongkosuwito, E.M.; Meijer, G.J.; van den Beucken, J. The effect of surface roughening on the success of orthodontic mini-implants: A systematic review and meta-analysis. Am. J. Orthod. Dentofacial Orthop. 2024, 165, 262–271.e263. [Google Scholar] [CrossRef]
- Tarigan, S.H.P.; Sufarnap, E.; Bahirrah, S. The Orthodontic Mini-Implants Failures Based on Patient Outcomes: Systematic Review. Eur. J. Dent. 2024, 18, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Mihit Mihit, F.Z.; Zubizarreta-Macho, A.; Montiel-Company, J.M.; Albaladejo Martinez, A. Systematic review and network meta-analysis of the accuracy of the orthodontic mini-implants placed in the inter-radicular space by image-guided-based techniques. BMC Oral. Health 2023, 23, 383. [Google Scholar] [CrossRef]
- Lee, M.Y.; Park, J.H.; Park, S.J.; Chang, N.Y.; Chae, J.M. A finite element analysis of stress distribution with various directions of intermaxillary fixation using orthodontic mini-implants and elastics following mandibular advancement with a bilateral sagittal split ramus osteotomy. Orthod. Craniofac. Res. 2024, 27, 102–109. [Google Scholar] [CrossRef]
- Panaite, T.; Savin, C.; Olteanu, N.D.; Romanec, C.L.; Vieriu, R.M.; Balcos, C.; Chehab, A.; Zetu, I.N. Balancing the Load: How Optimal Forces Shape the Longevity and Stability of Orthodontic Mini-Implants. Dent. J. 2025, 13, 71. [Google Scholar] [CrossRef]
- Gupta, S.; Khera, A.K.; Raghav, P.; Wadhawan, A.; Wadhwa, P.; Sharma, N. Comparative evaluation of effectiveness of three versus four mini-implants for simultaneous intrusion and retraction of maxillary anterior teeth: A 3D FEM study. J. Orthod. Sci. 2024, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Sarika, K.; Kumaran, N.K.; Seralathan, S.; Sathishkumar, R.K.; Preethi, S.K. A Three-Dimensional Finite Element Analysis of the Stress Distribution Around the Bone Mini-Implant Interface Based on the Mini-Implant Angle of Insertion, Diameter, and Length. J. Pharm. Bioallied Sci. 2023, 15, S535–S539. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Santos, P.; Sousa-Santos, S.; Oliveira, A.C.; Queiros, C.; Mendes, J.; Aroso, C.; Mendes, J.M. Evaluation of Orthodontic Mini-Implants’ Stability Based on Insertion and Removal Torques: An Experimental Study. Bioengineering 2025, 12, 549. [Google Scholar] [CrossRef]
- Romanec, C.L.; Panaite, T.; Zetu, I.N. Dimensions Define Stability: Insertion Torque of Orthodontic Mini-Implants: A Comparative In Vitro Study. J. Clin. Med. 2025, 14, 1752. [Google Scholar] [CrossRef] [PubMed]
- Junnarkar, S.; Sabane, A.; Patil, A.; Tepan, M.; Rout, T.; Sharma, S.; Gholap, A. Optimizing orthodontic anchorage: Comparative evaluation of larger diameter, shorter length mini-implants for enhanced mechanical stability. Folia. Med. 2024, 66, 849–862. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Chekka, M.; Chawla, R.; Nehal Naimatullah, M.; Kumar Misra, K.; Kandikatla, P.; Prashant, M.C. Comparative Study of Mini-implants versus Standard Implants in Orthodontic Anchorage for Space Closure. J. Pharm. Bioallied Sci. 2024, 16, S2458–S2460. [Google Scholar] [CrossRef]
- Popa, A.; Dehelean, C.; Calniceanu, H.; Watz, C.; Brad, S.; Sinescu, C.; Marcu, O.A.; Popa, C.S.; Avram, S.; Nicolov, M.; et al. A Custom-Made Orthodontic Mini-Implant-Effect of Insertion Angle and Cortical Bone Thickness on Stress Distribution with a Complex In Vitro and In Vivo Biosafety Profile. Materials 2020, 13, 4789. [Google Scholar] [CrossRef]
- Laursen, M.G.; Melsen, B.; Cattaneo, P.M. An evaluation of insertion sites for mini-implants: A micro—CT study of human autopsy material. Angle Orthod. 2013, 83, 222–229. [Google Scholar] [CrossRef]
- Wilmes, B.; Su, Y.Y.; Drescher, D. Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod. 2008, 78, 1065–1070. [Google Scholar] [CrossRef]
- Hwang, H.S.; Lee, H.J.; Lim, S.W.; Cho, J.H.; Bechtold, T.E. Cone-beam computed tomography evaluation of root proximity of miniscrew implant and its correlation with failure. BMC Oral. Health 2025, 25, 1245. [Google Scholar] [CrossRef]
- Zhang, S.; Choi, Y.; Li, W.; Shi, D.; Tang, P.; Yang, L.; Wang, Y.; Yang, X.; Wu, J. The effects of cortical bone thickness and miniscrew implant root proximity on the success rate of miniscrew implant: A retrospective study. Orthod. Craniofac. Res. 2022, 25, 342–350. [Google Scholar] [CrossRef]
- Bhushan, B. Biomimetics: Lessons from nature–an overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chen, P.-Y.; Lin, A.Y.-M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef]
- Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Viceconti, M. Multiscale modeling methods in biomechanics. WIREs Syst. Biol. Med. 2017, 9, e1375. [Google Scholar] [CrossRef]
- Liu, S.; Yu, H.; Ding, N.; He, X.; Liu, H.; Zhang, J. Exploring Modeling Techniques for Soft Arms: A Survey on Numerical, Analytical, and Data-Driven Approaches. Biomimetics 2025, 10, 71. [Google Scholar] [CrossRef]
- Ryou, M.H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y.K.; Hong, S.; Ryu, J.H.; Kim, T.S.; Park, J.K.; Lee, H.; et al. Mussel-Inspired Adhesive Binders for High-Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries. Adv. Mater. 2012, 25, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2014, 14, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Hwang, J.R.; Fung, C.P. Study on the Reasonability of Single-Objective Optimization in Miniscrew Design. Materials 2025, 18, 973. [Google Scholar] [CrossRef] [PubMed]
- Nenen, F.; Garnica, N.; Rojas, V.; Oyonarte, R. Comparison of the primary stability of orthodontic miniscrews after repeated insertion cycles. Angle Orthod. 2021, 91, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Tepedino, M.; Masedu, F.; Chimenti, C. Comparative evaluation of insertion torque and mechanical stability for self-tapping and self-drilling orthodontic miniscrews—An in vitro study. Head. Face Med. 2017, 13, 10. [Google Scholar] [CrossRef]
- Ceddia, M.; Marchioli, G.; Romasco, T.; Comuzzi, L.; Piattelli, A.; Deporter, D.A.; Di Pietro, N.; Trentadue, B. Effect of Crestal Position on Bone-Implant Stress Interface of Three-Implant Splinted Prostheses: A Finite Element Analysis. Materials 2025, 18, 3344. [Google Scholar] [CrossRef]
- Ramirez-Fernandez, O.; Duran-Gonzalez, I.; Equihua-Guillen, F.; Avila, L.C.; Camporredondo, E.; Garcia-Lara, A.; Zuniga-Aguilar, E. Design and structural deformation assessment of three-dimensional printed dental implants by means of finite element analysis. Technol. Health Care 2025, 6, 9287329251346282. [Google Scholar] [CrossRef]
- Paul, P.; Mathur, A.K.; Chitra, P. Stress distribution patterns in mini-implant and bone in the infra-zygomatic crest region at different angulations: A finite element study. J. World Fed. Orthod. 2021, 10, 29–34. [Google Scholar] [CrossRef]
- Tan, F.; Wang, C.; Yang, C.; Huang, Y.; Fan, Y. Biomechanical Effects of Various Bone-Implant Interfaces on the Stability of Orthodontic Miniscrews: A Finite Element Study. J. Healthc. Eng. 2017, 2017, 7495606. [Google Scholar] [CrossRef]
- Yu, J.H.; Wang, Y.T.; Lin, C.L. Customized surgical template fabrication under biomechanical consideration by integrating CBCT image, CAD system and finite element analysis. Dent. Mater. J. 2018, 37, 6–14. [Google Scholar] [CrossRef]
- Meng, W.Y.; Ma, Y.Q.; Shi, B.; Liu, R.K.; Wang, X.M. The comparison of biomechanical effects of the conventional and bone-borne palatal expanders on late adolescence with unilateral cleft palate: A 3-dimensional finite element analysis. BMC Oral. Health 2022, 22, 600. [Google Scholar] [CrossRef]
- Olmez, C.; Halicioglu, K.; Dumanli Gok, G.; Koc, O. Optimizing mandibular second molar mesialization: A comparative analysis of stress distribution and displacement using tie-back and temporary skeletal anchorage device-assisted mechanisms with a nonlinear finite element model. Am. J. Orthod. Dentofac. Orthop. 2025, 168, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Goswami, M.; Sahu, A.; Prasad, R.R.; Priya, P.; Priya, P.; Roy, S.; A, A. Comparison of stress distribution and displacement pattern of maxillary expansion in craniomaxillary complex using rapid maxillary expander and maxillary skeletal expander: A finite element model analysis. Int. Orthod. 2025, 23, 100997. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, S.; Yamada, K.; Deguchi, T.; Hashimoto, T.; Kyung, H.M.; Takano-Yamamoto, T. Root proximity is a major factor for screw failure in orthodontic anchorage. Am. J. Orthod. Dentofac. Orthop. 2007, 131, S68–S73. [Google Scholar] [CrossRef] [PubMed]
- Poorsattar Bejeh Mir, A.; Ravadgar, M.; Poorsattar Bejeh Mir, M. Optimized orthodontic palatal miniscrew implant insertion angulation: A finite element analysis. Int. J. Oral. Maxillofac. Implant. 2015, 30, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Ryou, S.Y.; Lee, C.S.; Cho, I.S.; Amanov, A. Measurement of Dynamic Elastic Modulus and Poisson’s Ratio of Chemically Strengthened Glass. Materials 2020, 13, 5644. [Google Scholar] [CrossRef] [PubMed]
Material | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|
Cortical bone | 13.7 | 0.30 |
Cancellous bone | 1.37 | 0.30 |
Titanium alloy | 110 | 0.34 |
Insertion Angle | Cortical Bone Stress (MPa) | Cancellous Bone Stress (MPa) | Total Max Stress (MPa) |
---|---|---|---|
30° | 32.1 | 4.3 | 36.4 |
45° | 37.5 | 5.2 | 42.7 |
90° | 50.6 | 7.6 | 58.2 |
Insertion Angle | Mean Displacement (mm) | Standard Deviation (mm) |
---|---|---|
30° | 0.052 | 0.004 |
45° | 0.035 | 0.003 |
90° | 0.023 | 0.002 |
Insertion Angle | Max Von Mises Stress (MPa) | Mean Displacement (mm) | p-Value |
---|---|---|---|
30° | 36.4 | 0.052 | <0.05 |
45° | 42.7 | 0.035 | <0.05 |
90° | 58.2 | 0.023 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbulut, Y.; Ozdemir, S. Optimizing Miniscrew Stability: A Finite Element Study of Titanium Screw Insertion Angles. Biomimetics 2025, 10, 650. https://doi.org/10.3390/biomimetics10100650
Akbulut Y, Ozdemir S. Optimizing Miniscrew Stability: A Finite Element Study of Titanium Screw Insertion Angles. Biomimetics. 2025; 10(10):650. https://doi.org/10.3390/biomimetics10100650
Chicago/Turabian StyleAkbulut, Yasin, and Serhat Ozdemir. 2025. "Optimizing Miniscrew Stability: A Finite Element Study of Titanium Screw Insertion Angles" Biomimetics 10, no. 10: 650. https://doi.org/10.3390/biomimetics10100650
APA StyleAkbulut, Y., & Ozdemir, S. (2025). Optimizing Miniscrew Stability: A Finite Element Study of Titanium Screw Insertion Angles. Biomimetics, 10(10), 650. https://doi.org/10.3390/biomimetics10100650