Challenging the Biomimetic Promise—Do Laypersons Perceive Biomimetic Buildings as More Sustainable and More Acceptable?
Abstract
:1. Introduction
1.1. The Biomimetic Promise
1.2. In Danger of a Naturalistic Fallacy
1.3. A Biomimetic Bias?
1.3.1. “Laypersons”
1.3.2. The Analogy to the Natural-Is-Better Bias
1.3.3. “Laypersons” Attitudes Towards Biomimetic Buildings
1.3.4. The Interplay of Perceived Sustainability and Acceptability
1.4. Hypotheses
2. Methods
2.1. Power Analysis
2.2. Participants
2.3. General Procedure
2.3.1. Main Study
2.3.2. Follow-Up
2.4. Stimulus Material
2.4.1. Fiber Pavilion
2.4.2. Ceiling of an Auditorium
2.4.3. Wooden Shell
2.5. Measurements
2.5.1. Sustainability Measurement
2.5.2. Acceptability Measurement
2.5.3. Measurements of Socio-Political Attitudes
2.5.4. Statistical Analyses
3. Results
3.1. Differences in Perception Between Buildings
3.2. Biomimetic Hypothesis
3.3. Interaction Hypothesis
3.4. Mediation Hypothesis
3.5. Exploratory Analyses
3.5.1. Follow-Up
3.5.2. Correlations Between Acceptability and Sustainability
3.6. Manipulation Checks
3.7. Analyses of Socio-Political Attitudes
4. Discussion
4.1. Discussion of the Current Study Results
4.2. Future Research
4.3. Practical Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Description of Pretest
Appendix B. Additional Demographic Characteristics of the Sample
Ethnicity | Frequency | Percent |
Asian | 16 | |
Black | 3 | |
Mixed | 19 | |
Other | 8 | |
White | 192 | |
Total | 238 |
Household Net Income (Euro) | Frequency | Percent |
less than 1350 | 55 | |
1350–1849 | 25 | |
1850–2349 | 27 | |
2350–3099 | 51 | |
3100–5800 | 62 | |
more than 5800 | 17 | |
none of the aforementioned | 1 | |
Total | 238 |
Appendix C. Description of Measurements of Socio-Political Attitudes
Appendix D. Exploratory Testing on Socio-Political Attitudes
Subscale/Item | Test Statistic | DF | p | Effect Size | Sig. | ||||
Cultural Cognition Worldview Scales (short) [54] | |||||||||
Individualism-Communitarianism | 1.06 a | 0.29 | 0.14 c | ||||||
Hierarchy-Egalitarianism | −0.21 a | 0.84 | −0.03 c | ||||||
Individual Concerns (SOEP) [55] | |||||||||
General economic development | 7119 b | 0.47 | 0.05 d | ||||||
Own economic situation | 6892 b | 0.71 | 0.02 d | ||||||
Own retirement provision | 7017 b | 0.62 | 0.03 d | ||||||
Own health | 5760 b | 0.04 | 0.13 d | ⁎ | |||||
Protection of the environment | 6135 b | 0.35 | 0.06 d | ||||||
Consequences of climate change | 6198 b | 0.76 | 0.02 d | ||||||
Preservation of peace | 5949.50 b | 0.38 | 0.06 d | ||||||
Crime in Germany | 6743.50 b | 0.75 | 0.02 d | ||||||
Social cohesion of society | 6318.50 b | 0.88 | 0.01 d | ||||||
Immigration to Germany | 5808 b | 0.17 | 0.09 d | ||||||
Xenophobia in Germany | 6927.50 b | 0.22 | 0.08 d | ||||||
Oneself keeping up with technological progress | 7037 b | 0.74 | 0.02 d | ||||||
Own professional qualifications devaluation | 7115 b | 0.56 | 0.04 d | ||||||
Work-life balance | 7286 b | 0.23 | 0.08 d | ||||||
Own job security | 4314.50 b | 0.38 | 0.06 d |
Group | Would Vote For | Frequency | Percent | Cumulative Percent |
Biomimetic | AfD | 4 | 3.31 | 3.31 |
CDU/CSU | 19 | 15.70 | 19.01 | |
Die Linke | 15 | 12.40 | 31.41 | |
FDP | 3 | 2.48 | 33.88 | |
Bündnis 90/Die Grünen | 32 | 26.45 | 60.33 | |
SPD | 14 | 11.57 | 71.90 | |
Others | 16 | 13.22 | 85.12 | |
I would not vote | 18 | 14.88 | 100.00 | |
Total | 121 | 100.00 | ||
No Information | AfD | 2 | 1.71 | 1.71 |
CDU/CSU | 12 | 10.26 | 11.97 | |
Die Linke | 11 | 9.40 | 21.37 | |
FDP | 11 | 9.40 | 30.77 | |
Bündnis 90/Die Grünen | 26 | 22.22 | 52.99 | |
SPD | 17 | 14.53 | 67.52 | |
Others | 15 | 12.82 | 80.34 | |
I would not vote | 23 | 19.66 | 100.00 | |
Total | 117 | 100.00 |
Appendix E. The Bayes Factor: Quantifying Evidence for the Null Hypothesis
References
- Sterner, T.; Barbier, E.B.; Bateman, I.; van den Bijgaart, I.; Crépin, A.S.; Edenhofer, O.; Fischer, C.; Habla, W.; Hassler, J.; Johansson-Stenman, O.; et al. Policy Design for the Anthropocene. Nat. Sustain. 2019, 2, 14–21. [Google Scholar] [CrossRef]
- Möller, M.; Höfele, P.; Kiesel, A.; Speck, O. Reactions of Sciences to the Anthropocene: Highlighting Inter- and Transdisciplinary Practices in Biomimetics and Sustainability Research. Elem. Sci. Anthr. 2021, 9, 035. [Google Scholar] [CrossRef]
- von Gleich, A. Bionik: Vorbild Natur. Möglichkeiten und Grenzen einer leitbildorientierten Technikgestaltung. öKologisches Wirtsch.-Fachz. 2006, 21, 45–50. [Google Scholar] [CrossRef]
- von Gleich, A.; Pade, C.; Petschow, U.; Pissarskoi, E. Trends in Biomimetics. In Potentials and Trends in Biomimetics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 13–32. [Google Scholar] [CrossRef]
- Fayemi, P.E.; Wanieck, K.; Zollfrank, C.; Maranzana, N.; Aoussat, A. Biomimetics: Process, Tools and Practice. Bioinspiration Biomimetics 2017, 12, 011002. [Google Scholar] [CrossRef]
- Meier, B.P.; Dillard, A.J.; Lappas, C.M. Naturally Better? A Review of the Natural-is-better Bias. Soc. Personal. Psychol. Compass 2019, 13, e12494. [Google Scholar] [CrossRef]
- Speck, O.; Speck, D.; Horn, R.; Gantner, J.; Sedlbauer, K.P. Biomimetic Bio-Inspired Biomorph Sustainable? An Attempt to Classify and Clarify Biology-Derived Technical Developments. Bioinspiration & Biomimetics 2017, 12, 011004. [Google Scholar] [CrossRef]
- Speck, O.; Möller, M.; Grießhammer, R.; Speck, T. Biological Concepts as a Source of Inspiration for Efficiency, Consistency, and Sufficiency. Sustainability 2022, 14, 8892. [Google Scholar] [CrossRef]
- MacKinnon, R.B.; Oomen, J.; Pedersen Zari, M. Promises and Presuppositions of Biomimicry. Biomimetics 2020, 5, 33. [Google Scholar] [CrossRef]
- ISO:18458:2015-05; Biomimetics—Terminology, Concepts and Methodology. International Organization for Standardization: Beuth: Berlin, Germany, 2015.
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature, 2nd ed.; Harper Collins: New York, NY, USA, 2002. [Google Scholar]
- Jatsch, A.S.; Jacobs, S.; Wommer, K.; Wanieck, K. Biomimetics for Sustainable Developments—A Literature Overview of Trends. Biomimetics 2023, 8, 304. [Google Scholar] [CrossRef]
- Lecointre, G.; Aish, A.; Améziane, N.; Chekchak, T.; Goupil, C.; Grandcolas, P.; Vincent, J.F.; Sun, J.S. Revisiting nature’s “unifying patterns”: A biological appraisal. Biomimetics 2023, 8, 362. [Google Scholar] [CrossRef]
- Gerola, A.; Robaey, Z.; Blok, V. What Does It Mean to Mimic Nature? A Typology for Biomimetic Design. Philos. Technol. 2023, 36, 65. [Google Scholar] [CrossRef]
- Dicks, H. The Philosophy of Biomimicry. Philos. Technol. 2016, 29, 223–243. [Google Scholar] [CrossRef]
- Broeckhoven, C.; Winters, S. Biomimethics: A Critical Perspective on the Ethical Implications of Biomimetics in Technological Innovation. Bioinspiration Biomimetics 2023, 18, 053001. [Google Scholar] [CrossRef] [PubMed]
- Höfele, P. Von Kant zur Biomimetik? Zur Aktualität von Kants Konzept einer ‚Technik der Natur. In Klassische Deutsche Philosophie; Brill Mentis: Paderborn, Germany, 2024; pp. 91–105. [Google Scholar] [CrossRef]
- Mead, T.; Jeanrenaud, S. The Elephant in the Room: Biomimetics and Sustainability? Bioinspired, Biomim. Nanobiomater. 2017, 6, 113–121. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science 1974, 185, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Korteling, J.E.; Toet, A. Cognitive Biases. In Encyclopedia of Behavioral Neuroscience, 2nd ed.; Della Sala, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 610–619. [Google Scholar]
- Anderson, M.W.; Teisl, M.F.; Noblet, C.L. Whose values count: Is a cheory of social choice for sustainability science possible? Sustain. Sci. 2016, 11, 373–383. [Google Scholar] [CrossRef]
- Kohsaka, R.; Fujihira, Y.; Uchiyama, Y.; Kajima, S.; Nomura, S.; Ebinger, F. Public perception and expectations of biomimetics Technology: Empirical survey of museum visitors in Japan. Curator Mus. J. 2017, 60, 427–444. [Google Scholar] [CrossRef]
- Haans, A. The natural preference in people’s appraisal of light. J. Environ. Psychol. 2014, 39, 51–61. [Google Scholar] [CrossRef]
- Li, H.; Cao, Y. Then the Lord Said, ’Let There Be Natural Light’: The Naturalness Preference in Tibetan Buddhists’ Evaluations of Light. J. Environ. Psychol. 2024, 96, 102317. [Google Scholar] [CrossRef]
- McMahan, E.A.; Josh, P. Measuring Preference for Natural versus Built Environments: Initial Validation of the Preference for Nature Questionnaire. Ecopsychology 2017, 9, 161–171. [Google Scholar] [CrossRef]
- Siegrist, M.; Árvai, J. Risk Perception: Reflections on 40 Years of Research. Risk Anal. 2020, 40, 2191–2206. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, M.; Hartmann, C. Consumer Acceptance of Novel Food Technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Rudski, J.M.; Osei, W.; Jacobson, A.R.; Lynch, C.R. Would You Rather Be Injured by Lightning or a Downed Power Line? Preference for Natural Hazards. Judgm. Decis. Mak. 2011, 6, 314–322. [Google Scholar] [CrossRef]
- AlAli, M.; Mattar, Y.; Alzaim, M.; Beheiry, S. Applications of biomimicry in architecture, construction and civil engineering. Biomimetics 2023, 8, 202. [Google Scholar] [CrossRef] [PubMed]
- Oguntona, O.A.; Aigbavboa, C.O. Nature Inspiration, Imitation, and Emulation: Biomimicry Thinking Path to Sustainability in the Construction Industry. Front. Built Environ. 2023, 9, 1085979. [Google Scholar] [CrossRef]
- Speck, T. Approaches to bio-inspiration in novel architecture. In Built to Grow—Blending Architecture and Biology; Imhof, B., Gruber, P., Eds.; De Gruyter: Berlin, Germany, 2016; pp. 145–152. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Grove-Smith, J.; Aydin, V.; Feist, W.; Schnieders, J.; Thomas, S. Standards and policies for very high energy efficiency in the urban building sector towards reaching the 1.5 ∘C target. Curr. Opin. Environ. Sustain. 2018, 30, 103–114. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Mossin, N.; Stilling, S.; Bøjstrup, T.C.; Larsen, V.G.; Lotz, M.; Blegvad, A. An Architecture Guide to the UN 17 Sustainable Development Goals; KADK: Copenhagen, Denmark, 2018. [Google Scholar]
- Huijts, N.M.A.; Molin, E.J.E.; Steg, L. Psychological Factors Influencing Sustainable Energy Technology Acceptance: A Review-Based Comprehensive Framework. Renew. Sustain. Energy Rev. 2012, 16, 525–531. [Google Scholar] [CrossRef]
- Milchram, C.; van de Kaa, G.; Doorn, N.; Künneke, R. Moral Values as Factors for Social Acceptance of Smart Grid Technologies. Sustainability 2018, 10, 2703. [Google Scholar] [CrossRef]
- Fenn, J.; Helm, J.F.; Höfele, P.; Kulbe, L.; Ernst, A.; Kiesel, A. Identifying Key-Psychological Factors Influencing the Acceptance of yet Emerging Technologies—A Multi-Method-Approach to Inform Climate Policy. PLOS Clim. 2023, 2, e0000207. [Google Scholar] [CrossRef]
- Al-Emran, M. Beyond Technology Acceptance: Development and Evaluation of Technology-Environmental, Economic, and Social Sustainability Theory. Technol. Soc. 2023, 75, 102383. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chapman, G.B. Why Do People like Natural? Instrumental and Ideational Bases for the Naturalness Preference. J. Appl. Soc. Psychol. 2012, 42, 2859–2878. [Google Scholar] [CrossRef]
- Schuldt, J.P.; Schwarz, N. The “Organic” Path to Obesity? Organic Claims Influence Calorie Judgments and Exercise Recommendations. Judgm. Decis. Mak. 2010, 5, 144–150. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Upham, P.; Oltra, C.; Boso, À. Towards a Cross-Paradigmatic Framework of the Social Acceptance of Energy Systems. Energy Res. Soc. Sci. 2015, 8, 100–112. [Google Scholar] [CrossRef]
- Hornsey, M.J.; Harris, E.A.; Bain, P.G.; Fielding, K.S. Meta-Analyses of the Determinants and Outcomes of Belief in Climate Change. Nat. Clim. Chang. 2016, 6, 622–626. [Google Scholar] [CrossRef]
- Smith, E.K.; Bognar, M.J.; Mayer, A.P. Polarisation of climate and environmental attitudes in the United States, 1973–2022. NPJ Clim. Action 2024, 3. [Google Scholar] [CrossRef]
- Thornton, T.F.; Mangalagiu, D.; Ma, Y.; Lan, J.; Yazar, M.; Saysel, A.K.; Chaar, A.M. Cultural models of and for urban sustainability: Assessing beliefs about Green-Win. Clim. Chang. 2020, 160, 521–537. [Google Scholar] [CrossRef]
- Steegen, S.; Tuerlinckx, F.; Gelman, A.; Vanpaemel, W. Increasing Transparency through a Multiverse Analysis. Perspect. Psychol. Sci. 2016, 11, 702–712. [Google Scholar] [CrossRef]
- Keysers, C.; Gazzola, V.; Wagenmakers, E.J. Using Bayes Factor hypothesis testing in neuroscience to establish evidence of absence. Nat. Neurosci. 2020, 23, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Stephens, C.L. A Bayesian approach to absent evidence reasoning. Informal Log. 2011, 31. [Google Scholar] [CrossRef]
- Andraszewicz, S.; Scheibehenne, B.; Rieskamp, J.; Grasman, R.; Verhagen, J.; Wagenmakers, E.J. An Introduction to Bayesian Hypothesis Testing for Management Research. J. Manag. 2015, 41, 521–543. [Google Scholar] [CrossRef]
- JASP Team. Computer Software, Version 0.18.3; JASP Team: Singapore, 2024.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Kahan, D.M. Cultural Cognition as a Conception of the Cultural Theory of Risk. In Handbook of Risk Theory: Epistemology, Decision Theory, Ethics, and Social Implications of Risk; Roeser, S., Hillerbrand, R., Sandin, P., Peterson, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 725–759. [Google Scholar] [CrossRef]
- SOEP Group. SOEP-Core—2020: Person (CAPI, mit Verweis auf Variablen); Technical Report 1135; DIW: Berlin, Germany; SOEP: Berlin, Germany, 2022. [Google Scholar]
- Infratest Dimap. ARD–Deutschlandtrend August 2022; Technical Report; Infratest Dimap: Berlin, Germany, 2022. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Etz, A.; Vandekerckhove, J. Introduction to Bayesian inference for psychology. Psychon. Bull. Rev. 2018, 25, 5–34. [Google Scholar] [CrossRef]
- Etz, A. Introduction to the concept of likelihood and its applications. Adv. Methods Pract. Psychol. Sci. 2018, 1, 60–69. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorki, M.; Speck, O.; Möller, M.; Fenn, J.; Estadieu, L.; Menges, A.; Schiller, M.; Speck, T.; Kiesel, A. Challenging the Biomimetic Promise—Do Laypersons Perceive Biomimetic Buildings as More Sustainable and More Acceptable? Biomimetics 2025, 10, 86. https://doi.org/10.3390/biomimetics10020086
Gorki M, Speck O, Möller M, Fenn J, Estadieu L, Menges A, Schiller M, Speck T, Kiesel A. Challenging the Biomimetic Promise—Do Laypersons Perceive Biomimetic Buildings as More Sustainable and More Acceptable? Biomimetics. 2025; 10(2):86. https://doi.org/10.3390/biomimetics10020086
Chicago/Turabian StyleGorki, Michael, Olga Speck, Martin Möller, Julius Fenn, Louisa Estadieu, Achim Menges, Mareike Schiller, Thomas Speck, and Andrea Kiesel. 2025. "Challenging the Biomimetic Promise—Do Laypersons Perceive Biomimetic Buildings as More Sustainable and More Acceptable?" Biomimetics 10, no. 2: 86. https://doi.org/10.3390/biomimetics10020086
APA StyleGorki, M., Speck, O., Möller, M., Fenn, J., Estadieu, L., Menges, A., Schiller, M., Speck, T., & Kiesel, A. (2025). Challenging the Biomimetic Promise—Do Laypersons Perceive Biomimetic Buildings as More Sustainable and More Acceptable? Biomimetics, 10(2), 86. https://doi.org/10.3390/biomimetics10020086